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Abstract
Sufficient and necessary conditions are presented for the existence of (N, M)-positive operator valued measures ((N, M)-POVMs)

valid for arbitrary-dimensional quantum systems. Firstly, a sufficient condition for the existence of (N, M)-POVMs is presented. It
yields a simple relation determining an upper bound on the continuous parameter of an arbitrary (N, M)-POVM, below which all
its POVM elements are guaranteed to be positive semidefinite. Secondly, for arbitrary optimal (N, M)-POVMs conditions on their
existence are derived, which exhibit a close connection to the existence of sets of (M − 1)N isospectral, traceless, orthonormal,
and hermitian operators with particular common spectra. The specific form of the two possible types of spectra depends on
whether M is smaller than the dimension of the quantum system under consideration or not. For the special case of M = 2
and dimensions, which are powers of two, these sets of operators always exist and can be expressed in terms of the Clifford
algebra of tensor products of Pauli operators.

Key words: quantum information science, quantum correlations in quantum information science, quantum entanglement
detection

1. Introduction
The development of efficient quantum measurement tech-

niques is important for central tasks of quantum informa-
tion processing [1, 2], such as quantum state reconstruction
or the detection of characteristic quantum correlations. In
this context (N, M)-POVMs [3] have been introduced recently
as interesting one-parameter-continuous families of positive
operator valued measures (POVMs). They describe numerous
important quantum measurements in a unified way. These
measurements include projective measurements with com-
plete sets of mutually unbiased bases (MUBs) [4], mutually un-
biased measurements (MUMs) [5], symmetric informationally
complete POVMs (SIC-POVMs) [6, 7] and their generalizations
(GSIC-POVMs) [8]. For purposes of quantum information pro-
cessing informationally complete (N, M)-POVMs are particu-
larly interesting, because they enable a complete reconstruc-
tion of quantum states.

Recent investigations exploring characteristic features of
(N, M)-POVMs have concentrated on possible applications in
quantum information processing and on basic theoretical
questions concerning their existence. On the application side
the potential of (N, M)-POVMs for the local detection of prov-
able bipartite quantum entanglement [9] and quantum steer-
ing [10] has been investigated. As far as basic theoretical ques-
tions are concerned, it has been demonstrated that (N, M)-
POVMs can always be constructed for sufficiently small val-
ues of their continuous parameter [3]. However, for larger or
even maximal values of their continuous parameter, i.e., for

optimal (N, M)-POVMs, it generally causes major theoretical
problems to guarantee the positive semidefiniteness of all
POVM elements involved. Despite considerable research ef-
forts concentrating on the subclasses of SIC-POVM and MUBs,
for example, open questions concerning their existence in ar-
bitrary dimensions still remain [11, 12]. Thus, questions con-
cerning the existence and construction of (N, M)-POVMs for
large or even maximal values of their continuous parameter
are still widely open.

In order to obtain a detailed theoretical understanding of
(N, M)-POVMs and of their characteristic features there is a
need to develop sufficient and necessary conditions, which
guarantee their existence. It is a main intention of this pa-
per to address this issue and to explore general features of
the existence and construction of (N, M)-POVMs with the help
of orthonormal hermitian operator bases. As a first main re-
sult we develop a sufficient condition for the existence of
(N, M)-POVMs. This sufficient condition yields a simple up-
per bound on the continuous parameter, within which this
existence is guaranteed. Thus, this result complements the
already known property that (N, M)-POVMs can always be con-
structed for sufficiently small values of their continuous pa-
rameters [3]. As a second main result we present conditions
on the existence of optimal (N, M)-POVMs. They exhibit a close
connection to the existence of sets of (M − 1)N isospectral,
traceless, orthonormal, and hermitian operators with partic-
ular common spectra. It turns out that the particular form
of the two possible types of common spectra depends on
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whether M is smaller than the dimension of the quantum sys-
tem under consideration or not. This result generalizes an al-
ready known property of GSICs [8], i.e., optimal (1, d2)-POVMs,
to arbitrary optimal (N, M)-POVMs. Furthermore, for the spe-
cial case of M = 2 and dimensions, which are powers of 2,
these sets of operators always exist and can be expressed in
terms of the Clifford algebra of tensor products of Pauli op-
erators.

This paper is organized as follows. In Section 2 basic fea-
tures of (N, M)-POVMs are summarized. In Section 2.1 their
defining properties are recapitulated [3]. In Section 2.2 re-
cent results [9] on their necessary relation to orthonormal
hermitian operator bases are summarized. Furthermore, as
a motivation for the subsequent discussion typical problems
are discussed originating from the positive semidefiniteness
of all its POVM elements. As one of our main results, in
Section 3 a sufficient condition is presented, under which for
any d-dimensional quantum system (N, M)-POVMs can be con-
structed. As a second main result in Section 4 conditions for
the existence of optimal (N, M)-POVMs are presented, which
exhibit a close connection to the existence of sets of (M − 1)N
isospectral, traceless, orthonormal, and hermitian operators
with particular common spectra. In Section 5 a necessary and
sufficient condition for the existence of optimal (N, 2)-POVMs
with N ≤ d2 − 1 is derived. It is shown that they can only ex-
ist in even-dimensional Hilbert spaces, and explicit construc-
tions are presented for dimensions d = 2k with k ∈ N.

2. Informationally complete positive
operator valued measures

In this section elementary features of the recently devel-
oped (N, M)-POVMs [3] are summarized. In the first subsec-
tion their definition and resulting elementary properties are
recapitulated. In the second subsection recently discussed ba-
sic relations between informationally complete (N, M)-POVMs
and orthonormal hermitian operator bases are summarized
[9]. Furthermore, some typical problems are discussed, which
complicate the construction of (N, M)-POVMs by basis expan-
sions in terms of orthonormal hermitian operator bases.

2.1. Basic properties
Let us consider a quantum system characterized by a d-

dimensional Hilbert space. Ignoring the properties of a quan-
tum state immediately after a measurement, the most gen-
eral quantum measurement on this quantum system is de-
scribed by a POVM [1, 2]. An M-element POVM is a set of M
positive semidefinite operators, say � = {�a � 0|a = 1, ···,
M}, which fulfill the completeness relation

M∑
a=1

�a = 1d (1)

with the unit operator 1d of the quantum system’s d-
dimensional Hilbert space. Thereby, the indices a ∈ {1, ···,
M} coordinatize the different M possible real-valued measure-
ment results, say Ma. According to Born’s rule the probabil-
ity of measuring the result Ma is given by pa = Tr {��a}, if

the quantum system has been prepared in the quantum state
� � 0 immediately before the measurement. If the positive
semidefinite operators � are linearly independent for a ∈ {1,
···, M} and M = d2, a POVM is called informationally complete.
In such a case an arbitrary quantum state � can be recon-
structed from all the d2 measurement results. In the special
case of orthogonal projection operators, i.e., �a�a′ = δaa′�a

for a, a′ ∈ {1, ···, M}, a POVM describes a von Neumann mea-
surement.

Recently (N, M)-POVMs [3] have been introduced as a uni-
fied way for describing numerous important quantum mea-
surements, such as projective measurements with MUBs [4],
MUMs [5], SIC-POVMs [6, 7], and their GSICs [8]. An (N, M)-
POVM � is a one-continuous-parameter family of N different
M-element POVMs, i.e., � = {�i(α, a)|α ∈ {1, ···, N}, a ∈ {1, ···,
M}}, defined by the following relations

Tr
{
�i(α,a)

} = d
M

, (2)

Tr
{
�i(α,a) �i(α,a′ )

} = x δa,a′ + (1 − δa,a′ )
d − Mx

M (M − 1)
, (3)

Tr
{
�i(α,a) �j(β,b)

} = d
M2

(4)

for all β �= α ∈ {1, ···, N} and a, a′, b ∈ {1, ···, M}. Thereby, for
the sake of convenience we have introduced the coordinate
function I:(α, a) → i(α, a). It maps the NM-tuples of the form
(α, a), which for each value of α identify a particular POVM
uniquely, bijectively onto the NM natural numbers i, j ∈ {1,
···, NM}. For given values of (d, N, M) the possible values of the
continuous parameter x are constrained by the relation [3]

d
M2

< x ≤ min
(

d2

M2
,

d
M

)
. (5)

An (N, M)-POVM with maximal possible value of x is called
optimal. Furthermore, an (N, M)-POVM � is information-
ally complete, if it contains d2 linearly independent posi-
tive semidefinite operators. As each of the N and M-element
POVMs involved fulfills the completeness relation (1), this is
equivalent to the requirement

(M − 1) N + 1 = d2 . (6)

For arbitrary dimensions four possible solutions of this rela-
tion are (N, M) ∈ {(1, d2), (d + 1, d), (d2 − 1, 2), (d − 1, d +
2)}. The solution (N, M) = (1, d2) describes a one-parameter
family of GSIC-POVMs [8] parameterized by the parameter x.
SIC-POVMs are special cases of GSIC-POVMs with x = 1/d2. The
solution (N, M) = (d + 1, d) describes MUMs [5]. In the special
case of x = d2/M2 = d/M = 1 these MUMs describe projective
measurements of unit rank with maximal sets of d + 1 MUBs.

2.2. Orthonormal hermitian operator bases and
informationally complete (N, M)-POVMs

In this subsection we first recapitulate the general rela-
tions between informationally complete (N, M)-POVMs and or-
thonormal hermitian operator bases, which necessarily have
to be fulfilled irrespectively of the positive semidefiniteness
of the POVM elements involved [9]. They govern the con-
struction of (N, M)-POVMs by basis expansions in terms of or-
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thonormal hermitian operator bases. Subsequently, concen-
trating on the particular example of a MUM in dimension d
= 3, it is exemplified that such a MUM can always be con-
structed for sufficiently small values of the continuous pa-
rameter x. This example demonstrates, why constructing (N,
M)-POVMs for parameters x close to their lower bounds is al-
ways possible, while constructing optimal (N, M)-POVMs is
rather difficult. These problems motivate the development of
simple sufficient and necessary conditions for the existence
of (N, M)-POVMs, which is pursued in the subsequent sections.

In a Hilbert space Hd of a d-dimensional quantum sys-
tem an informationally complete (N, M)-POVM can always
be expanded in a basis of d2 linearly independent linear
hermitian operators, say G = (G1, · · · , Gd2 )T . These hermitian
operators can be chosen as orthonormal with respect to

the Hilbert–Schmidt scalar product 〈Gμ|Gν〉HS := Tr
{

G†
μGν

}
with G†

μ = Gμ. They form a basis of the Hilbert space Hd2 =
(Span (G) , 〈 · | · 〉HS ) of linear hermitian operators in Hd over
the field of real numbers. This latter Hilbert space is a Eu-
clidean vector space. Furthermore, such an orthonormal her-
mitian operator basis G can always be chosen so that

G1 = 1d/
√

d, Tr
{
Gμ

} = 0 (7)

for μ ∈ {2, ···, d2}. The resulting basis expansion of an arbi-
trary informationally complete (N, M)-POVM in such an or-
thonormal hermitian basis has the general form

� = GT S. (8)

Thereby, S denotes the linear operator mapping Hd2 into the
Hilbert space HNM of hermitian operators, which contains all
the elements of the (N, M)-POVM. Recently, it has been shown
that for informationally complete (N, M)-POVMs the structure
of this linear map S and of its corresponding real-valued d2

× NM matrix Sμ, i is significantly constrained by the defin-
ing relations (3) and (4) [9]. In particular, these defining re-
lations imply that the linear operator STS is symmetric, pos-
itive semidefinite and its matrix elemenets are real-valued.
Therefore, its eigenvectors are orthogonal. The square root of
this matrix STS defines the linear operator S up to an orthog-
onal d2 × d2 matrix. Ignoring the positive semidefiniteness
constraints of the POVM elements, it has been shown that
the most general form of the linear operator S : Hd2 → HNM

is given by a d2 × NM matrix of the form

Sμ,i(α,a) = √
�μXT

μ,i(α,a), (9)

with the diagonal d2 × d2 matrix � and the NM × d2 ma-
trix Xi, μ. The diagonal matrix � has only two different non-
vanishing entries, which are the d2 non-zero eigenvalues of
STS. They are given by

�1 = dN
M

, �μ = 	 = xM2 − d
M (M − 1)

(10)

for μ ∈ {2, ···, d2}. Thus, the eigenvalue 	 is (d2 − 1)-fold de-
generate, and the eigenvalue �1 is non-degenerate. The real-
valued NM × d2 matrix Xi, μ consists of d2NM-dimensional or-
thonormal arrays, i.e.,

NM∑
i=1

Xi,μXi,ν = δμν (11)

for μ, ν ∈ {1, ···, d2}. They fulfill the relations

Xi,1 = 1√
NM

,

M∑
a=1

Xi(α,a),μ = 0 (12)

for μ ∈ {2, ···, d2}. As a consequence of the defining con-
straints (2) and (3) of (N, M)-POVMs these orthonormal NM-
dimensional arrays also fulfill the relation

d2∑
μ=2

(
Xi,μ

)2 = M − 1
M

. (13)

It is apparent from (9) that all basis operators Gμ with μ ∈
{2, ···, d2} are mapped conformally onto a (d2 − 1)-dimensional
subspace of HNM by stretching the norms of all its elements
by the factor

√
	. Only the basis operator G1 is stretched by

a different factor, namely
√

�1. Therefore, ignoring the pos-
itive semidefiniteness constraints the defining properties of
(N, M)-POVMs (3) and (4) imply the basis expansion

�i(α,a) = 1d

M
+

√
	

d2∑
μ=2

Xi(α,a),μGμ (14)

for each element of an informationally complete (N, M)-POVM
with i ∈ {1, ···, NM}. In view of (7) the orthonormal hermitian
operators Gμ for μ ∈ {2, ···, d2} are only determined up to an
orthogonal transformation of the orthogonal group O(d2 − 1).
Furthermore, there is an additional freedom in choosing the
N × d2 matrices Xi(., a), within the constraints imposed by re-
lation (12). From the basis expansion (14) it is apparent that
possibilities for constructing positive semidefinite POVM ele-
ments may be severely constrained by not fully taking advan-
tage of the freedom of choice of the orthonormal hermitian
operator basis.

According to relation (6) an informationally complete (N,
M)-POVM consists of d2 − 1 = N(M − 1) linear independent
POVM elements. A strategy for its construction is to partition
the orthonormal traceless hermitian operator basis {Gμ} with
μ ∈ {2, ···, d2} into N basis tuples Bα, each of which corre-
sponds to a particular value of α ∈ {1, ···, N}. This partitioning
of the basis elements ensures that condition (4) is fulfilled. Ac-
cordingly, the basis expansion (14) is restricted to an ansatz
of the form

�i(α,a) = 1d

M
+

√
	

∑
Gμ∈Bα

Xi(α,a),μGμ. (15)

Using this ansatz the allowed transformations are restricted
to the orthogonal group O (M − 1) for each value of α, thus also
restricting the achievable positive semidefinite operators for
a given basis {Gμ}. Therefore, the possible values of the con-
tinuous parameters x of such a construction depend on the
chosen basis {Gμ} and its partitioning. In order to demon-
strate this, let us consider the construction of a MUM for d
= 3 as a special example of an informationally complete (4,
3)-POVM with 1/3 < x ≤ 1. According to (15) the construction
of this MUM can be interpreted geometrically. For this pur-
pose let us identify the operator 1d/3 with the origin of an
8-dimensional Euclidean space spanned by the hermitian op-
erators Gμ for μ ∈ {2, …, 9}. Accordingly, we have to construct
N = 4 equilateral triangles with this origin as their centroids
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Fig. 1. Regions of positive semidefiniteness corresponding to four different partitions Bα, α ∈ {1, ···, 4} of the traceless, hermitian
operators for an informationally complete (4, 3)-positive operator valued measure (mutually unbiased measurements (MUM))
in dimension d = 3 with α = 1 (a), α = 2 (b), α = {3, 4} and (i, j) ∈ {(2, 5), (6, 7)} (c): Geometrically each equilateral triangle with
(0,0) as its centroid represents a set of three operators fulfilling (15). The restrictions imposed by positive semidefiniteness
are visualized by the blue regions. The yellow regions represent the constraints (5). The green region is the circle of maximal
radius r< = 1/

√
6 with center (0, 0) located within the intersection of all blue regions of all four partitions. Within this circle

equilateral triangles with centroid (0, 0) can be rotated by arbitrary angles. The two red equilateral triangles of Figs. 1a and 1b
and the two equilateral triangles of Fig. 1c represent a possible maximal MUM with x = 5/9. Their vertices lie outside of the
green circles.

to fulfill the characteristic completeness relation of POVMs
(12) for each α. Furthermore, condition (5) implies that

	
∑

Gμ∈Bα

(
Xi(α,a),μ

)2 ≤ r2
> := 2/3. (16)

An (N, M)-POVM is optimal if the two sides of inequality (16)
are equal.

In Fig. 1 the constraints imposed by the positive semidef-
initeness of all POVM elements of this MUM are visualized
graphically for the different partitions Bα . Thereby, the Gell-
Mann matrices {g1, ···, g8}, as defined in appendix A, have
been used as an orthonormal basis of traceless, hermitian op-
erators. Accordingly, the four partitions have been chosen as
B1 = {g1, g8}, B2 = {g3, g4}, B3 = {g2, g5}, B4 = {g6, g7}. For
arbitrary partitionings the corresponding positive semidef-
inite regions have already been discussed recently [13]. In
Fig. 1a the two-dimensional (2D) Euclidean subspace spanned
by the unit vectors of partition B1 is depicted. All points in-
side the blue triangle correspond to the convex set of positive
semidefinite matrices according to (15). The vertices of any
equilateral triangle within this blue triangle with the origin
as its centroid constitute a triple of possible POVMs with a ∈
{1, 2, 3} and α = 1. The points inside the yellow circle corre-
spond to all hermitian operators, which fulfill the necessary
constraint (5). From inequality (16) it follows that an optimal
POVM is an equilateral triangle, whose vertices are on the
boundary of the yellow area so that they have maximal dis-
tance to the origin. The blue triangle itself constitutes a sin-
gle optimal POVM, which can be constructed with the help
of the partitioning B1 of the Gell-Mann basis. The green circle
is the maximal circle around the origin, which can be con-
structed inside the triangle of positive semidefinite elements.
Its radius is given by r< = 1/

√
6. The blue region of Fig. 1b

shows the convex set of positive semidefinite hermitian ma-
trices, which can be constructed in the 2D Euclidean subspace
spanned by unit vectors of partition B2. The vertices of any
equilateral triangle constructed within this blue region with
the origin as its centroid constitute a triple of possible POVM
elements with a ∈ {1, ···, 3} and α = 2. Again, the points in-
side the yellow circle correspond to all hermitian matrices,
which fulfill the necessary constraint (5). The two points of
the blue area intersecting with the yellow area’s boundary
cannot be used for constructing an optimal POVM for α = 2.
The green circle is the maximal circle around the origin again
with radius r< = 1/

√
6, which can be constructed inside the

blue region of positive semidefinite elements. The blue re-
gion of Fig. 1c shows the convex set of positive, semidefinite,
hermitian matrices, which can be constructed in the 2D Eu-
clidean subspace spanned by unit vectors of partitions B3 or
B4. The vertices of any equilateral triangle constructed within
this blue region with the origin as its centroid constitute a
triple of possible POVMs with a ∈ {1, ···, 3} and α = 3 or α

= 4. Again the points inside the yellow circle correspond to
all hermitian matrices fulfilling the necessary constraint (5).
A MUM is given by four equilateral triangles of identical size
inside the positive semidefinite area of each partition with
the origin as its centroid. The red triangles in Figs. 1a and 1b
and the two triangles in Fig. 1c show four equilateral trian-
gles of maximal sizes, which can be constructed inside the
blue regions of Figs. 1a–1c. These four triangles constitute an
informationally complete MUM in dimension d = 3 with the
maximal possible value of x = 5/9. The directions of some
of these triangles with respect to the chosen partitioning of
the Gell-Mann basis are not determined uniquely. In Fig. 1a,
for example the red triangle can be rotated around its cen-
troid continuously as long as it stays within the blue region
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of positive semidefiniteness. In particular, this implies that
not all rotation angles are possible. However, in Fig. 1c rota-
tions of the two triangles around the origin are possible for
arbitrary angles. But in Fig. 1b the shape of the blue region
implies that the position of the red triangle is fixed uniquely.
From Figs. 1a–1c it is apparent that the vertices of the equi-
lateral triangles representing the maximal informationally
complete MUM are located outside of the green circle of ra-
dius r< = 1/

√
6. In contrast, all POVM elements, whose equi-

lateral triangles are constructed inside this green circle, can
be rotated arbitrarily around the origin without affecting the
positive semidefiniteness of their corresponding POVM ele-
ments.

In general it is a cumbersome task to determine criteria,
under which all POVM elements of an (N, M)-POVM are posi-
tive semidefinite. This example demonstrates that, although
for sufficiently small regions around the minimal possible
value of x = d/M2 (N, M)-POVMs can be constructed, difficul-
ties increase with increasing values of x. Typically, the most
complicated situations arise for constructions of optimal (N,
M)-POVMs. In view of these problems it is of interest to de-
velop conditions for the existence of optimal (N, M)-POVMs.
Motivated by this need in the following such conditions will
be developed.

3. A sufficient condition for the
construction of (N, M)-POVMs

In this section a sufficient condition is derived, under
which for a d-dimensional quantum system (N, M)-POVMs can
always be constructed. This sufficient condition yields a sim-
ple upper bound on the continuous x-parameter (cf. inequal-
ity (21)), within which this can be achieved.

A general sufficient condition for positivity can be derived
by using basic properties of positive semidefinite linear op-
erators [14, 15]. For this purpose let us consider an arbitrary
POVM element of an (N, M)-POVM in a d-dimensional Hilbert
space. Its spectral representation is given by

�i(α,a) =
d∑

σ=1

λσ Pσ (17)

with its non-negative eigenvalues λσ and with the associated
one-dimensional orthogonal projection operators Pσ fulfill-
ing the completeness and orthogonality relations

∑d
σ=1Pσ =

1d and Pσ Pσ ′ = δσ,σ ′ Pσ . The constraint (2) yields the relation

Tr
{
�i(α,a)

} = d
M

=
d∑

σ=1

λσ . (18)

Therefore, for given projection operators Pσ the set of all pos-
itive semidefinite POVM elements of this (N, M)-POVM consti-
tute a (d − 1)-dimensional simplex �d − 1 in the d-dimensional
Hilbert space (compare with Fig. 2). The centroid of this (d −
1)-simplex is given by

Cd−1 = Tr
{
�i(α,a)

}
d

d∑
σ=1

Pσ = 1
M

1d. (19)

The boundary of this (d − 1)-simplex, i.e., ∂�d − 1, is the union
of d different (d − 2)-simplices �d − 2. It consists of all possible

Fig. 2. Visualization of the simpex �d − 1 and its boundary
∂�d − 1 and of their corresponding centroids in the elemen-
tary case d = 3 for M � d: The orthogonal axes are defined by
the one-dimensional orthogonal projection operators {Pσ |σ
∈ {1, 2, 3}} and their corresponding coordinates are the pa-
rameters λσ of (17) with p = Tr

{
�i(α,a)

} = d/M. The simplex
�2 is a triangle (red area). Its centroid C2 is represented by
the green point. The boundary of the red triangle ∂�2 con-
sists of three 1-simplices �1. The dark blue circle centered
around C2 with radius rin is the maximal circle, which can be
constructed inside �2. It touches ∂�2 in the centroids of its
three constituting simplices �1. The light blue circle centered
around C2 with radius rout represents the constraint (5).

elements of the form (17) with at least one of the d eigenval-
ues vanishing. The centroid Cd − 1 has equal distances rin to
the centroids of all the d parts of ∂�d − 1. This distance rin

defines the radius of the largest possible circle with center
Cd − 1, which lies within �d − 1 and touches ∂�d − 1 in one of
its d centroids Cd − 2. It is determined by the relation

r2
in = Tr

{
(Cd−1 − Cd−2)2

}
= (

Tr
{
�i(α,a)

})2

[
(d − 1)

(
1
d

− 1
d − 1

)2

+ 1
d2

]

=
(
Tr

{
�i(α,a)

})2

d (d − 1)
= d

M2 (d − 1)
. (20)

Using (2) and (3) we arrive at the inequality

0 < Tr
{(

�i(α,a) − 1d/M
)2

}
= x − d

M2
≤ r2

in = d
M2 (d − 1)

. (21)

According to (19) and (20) the centroid Cd − 1 as well as the ra-
dius rin are independent of the choice of the orthonormal pro-
jection operators Pσ so that (21) applies to all POVM elements.
Therefore, it can be concluded that fulfillment of inequality
(21) is sufficient for the existence of an (N, M)-POVM. It guar-
antees the positive semidefiniteness of all its POVM elements.
Note that in the special cases considered in Fig. 1a–1c, i.e., M =
3, d = 3, the distance rin reduces to the value rin = 1/

√
6 = r<,

which is a basis and partition independent value.
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Fig. 3. Dimensional dependence of R(d) according to (23) for
M � d (blue points) and for 2 = M < d (orange points): Cases
with 2 < M < d are located between these two series of points
and also rapidly converge to zero with increasing dimensions
d.

One can also define a circle with center Cd − 1 and radius
rout, within which all possible (N, M)-POVMs are located ac-
cording to the constraint (5). It is defined by

r2
out = min

(
d (M − 1)

M2
,

d (d − 1)
M2

)
(22)

so that (5) reduces to the relation 0 < x − d/M2 ≤ r2
out. An (N,

M)-POVM with x − d/M2 = r2
out is called optimal. The ratio be-

tween the range of x-values around its minimal value of d/M2,
for which an (N, M)-POVM can always be constructed, i.e., r2

in,
and the corresponding maximal possible range, i.e., r2

out, is
given by

R (d) = r2
in

r2
out

=

⎧⎪⎪⎨
⎪⎪⎩

1

(d − 1)2
M ≥ d,

1
(M − 1) (d − 1)

2 ≤ M < d.

(23)

In Fig. 3 the dependence of this ratio R(d) is depicted for
cases with M � d (blue points) and for 2 = M < d (orange
points). It is apparent that this ratio converges to zero rapidly
with increasing dimensions of the quantum system’s Hilbert
space d. Correspondingly, the size of the interval of x-values,
for which (N, M)-POVMs can be constructed with arbitrary
choices of traceless, orthonormal, and hermitian operator
bases, rapidly tends to zero. For cases with 2 < M < d the
values of R(d) are located inside the region between the two
series of dotted points of Fig. 3. In the exceptional case of a
qubit, i.e., d = 2, the inner and outer radius are identical, i.e.,
r2

in = r2
out = 2/M2, and for M = 4 the set of positive semidefi-

nite operators forms the Bloch sphere.
Fulfillment of the sufficient condition (21) allows the con-

struction of (N, M)-POVMs for arbitrary choices of the (d2 − 1)
traceless elements of the hermitian operator basis of Hd2 ac-
cording to the ansatz (14). However, from the explicit expres-
sion of r2

in (cf. (20) and Fig. 3)) it is also apparent that the range
of x-values, for which this sufficient condition can be fulfilled,
decreases rapidly with increasing values of M. Thus, in gen-
eral it is an intricate problem to construct (N, M)-POVMs, if the

sufficient condition of (21) is not applicable. In particular, in
these cases the choice of the traceless hermitian operator ba-
sis elements entering (14) can be crucial for the construction.
Typically the most complicated situations arise for the con-
struction of optimal (N, M)-POVMs. Motivated by these prob-
lems in the subsequent section we explore conditions for the
construction of optimal (N, M)-POVMs.

4. Conditions for the existence of
optimal (N, M)-POVMs

In this section conditions for the existence of optimal (N,
M)-POVMs of a d-dimensional quantum system are presented.
As a first main result it is shown that for M � d the existence
of (M − 1)N isospectral, traceless, orthonormal, and hermitian
operators with a special common spectrum is necessary for
the existence of an optimal (N, M)-POVM. As a second main
result it is demonstrated that in cases with 2 < M < d the
existence of an optimal (N, M)-POVM is even necessary and
sufficient for the existence of (M − 1)N isospectral, traceless,
orthonormal, and hermitian operators with a special but dif-
ferent form of their common spectrum.

4.1. Optimal (N, M)-POVMs for M � d
Let us consider an optimal (N, M)-POVM � of a d-

dimensional quantum system with M � d with x = d2/M2.
According to the defining relations (2) and (3), each element
�i(α, a) of this (N, M)-POVM fulfills the relations

Tr
{
�i(α,a)

} =
d∑

σ=1

λσ = d
M

, Tr
{(

�i(α,a)
)2

}
=

d∑
σ=1

λ2
σ = d2

M2
(24)

with non-negative eigenvalues λσ for σ ∈ {1, ···, d}. Both rela-
tions constrain the possible values of these eigenvalues, be-
cause they imply

∑d
1=σ<σ

′ λσ λσ
′ = 0. Therefore, the positive

semidefiniteness of all eigenvalues λσ for σ ∈ {1, ···, d} implies
that there is only one non-zero eigenvalue of magnitude d/M.
Correspondingly, an arbitrary POVM element of the optimal
(N, M)-POVM � has to be of the general form

�i(α,a) = d
M

|i (α, a)〉〈i (α, a) | (25)

The defining relations (2), (3), and (4) constrain the scalar
products of the generally non-orthogonal but normalized
eigenstates |i(α, a)〉 by the relations

| 〈i (α, a) |i (α, a′)〉 | =
√

M/d − 1
M − 1

, | 〈i (α, a) |i (β, b)〉 | =
√

1
d

(26)

for α �= β ∈ {1, ···, N}, a �= a′ ∈ {1, ···, M} and a, a′, b ∈ {1, ···, M}.
For each α ∈ {1, ···, N} and a ∈ {1, ···, M − 1}

one can construct the following traceless, hermitian
operators

Gi(α,a) =
√

M − 1(√
M + 1

)√
M2x − d

(
1d + Ai(α,a)

)
with

Ai(α,a) =
√

M�i(α,M) −
√

M
(√

M + 1
)

�i(α,a). (27)

It is straightforward to demonstrate that for an arbitrary
(N, M)-POVM these (M − 1)N traceless hermitian operators

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
G

er
no

t A
lb

er
 o

n 
03

/1
4/

25
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cjp-2023-0281


Canadian Science Publishing

170 Can. J. Phys. 103: 164–173 (2025) | dx.doi.org/10.1139/cjp-2023-0281

Gi(α, a) are orthonormal. For an optimal (N, M)-POVM we have
x = d2/M2. In this special case, according to (25) and (27) each
hermitian operator Ai(α, a) has a maximal rank of two. There-
fore, the characteristic polynomials determining the eigen-
values � of Ai(α, a) have the general form

�d + cd−1�
d−1 + cd−2�

d−2 = 0 (28)

Using the Cayley-Hamilton theorem [16] it is easily found
that

cd−1 = −Tr
{
Ai(α,a)

} = d,

cd−2 = 1
2

((
Tr

{
Ai(α,a)

})2 − Tr
{

A2
i(α,a)

})
= d − d2

√
M − 1

. (29)

Consequently, all (M − 1)N traceless, orthonormal, hermitian
operators {Gi(α, a)|α = 1, ···, N, a = 1, ···, M − 1} have the same
spectrum Sp(Gi(α, a)) determined by the solutions of (28), i.e.,

Sp
(
Gi(α,a)

) =

⎧⎪⎨
⎪⎩

⎛
⎝ √

M − 1(√
M + 1

)√
d2 − d

(1 + �+ )

⎞
⎠

(1)

,

⎛
⎝ √

M − 1(√
M + 1

)√
d2 − d

(1 + �− )

⎞
⎠

(1)

,

⎛
⎝ √

M − 1(√
M + 1

)√
d2 − d

⎞
⎠

(d−2)
⎫⎪⎬
⎪⎭ (30)

with

�± = 1
2

(
−d ±

√
d2 + 4

d2 − d√
M − 1

)
. (31)

The numbers in brackets in the exponents of (30) indicate the
multiplicities of the corresponding eigenvalues.

Therefore, it can be concluded that for M � d the existence
of an optimal (N, M)-POVM � implies the existence of a set of
(M − 1)N isospectral, traceless, and orthonormal hermitian
operators Gi(α, a) defined by (27), whose common spectrum is
given by (30). Stated differently, the existence of a set of (M −
1)N isospectral, traceless, orthonormal, hermitian operators
Gi(α, a), whose common spectrum is given by (30), is necessary
for the existence of an optimal (N, M)-POVM. This result gen-
eralizes an already known property of GSICs [8], i.e., optimal
informationally complete (1, d2)-POVMs, to all optimal (N, M)-
POVMs with M � d.

4.2. Optimal (N, M)-POVMs for 2 < M < d
In this subsection we prove a necessary and sufficient con-

dition for the existence of optimal (N, M)-POVMs. It is shown
that the existence of (M − 1)N isospectral, traceless, orthonor-
mal, hermitian operators with a special form of their com-
mon spectrum is equivalent to the existence of an optimal
(N, M)-POVM. Although the discussion of this subsection also
applies to cases with M = 2, these latter cases will be discussed
separately in Section 5.

Let us consider an optimal (N, M)-POVM of a d-dimensional
quantum system with 2 < M < d. According to (5) it is charac-
terized by the parameter x = d/M. Furthermore, the defining
condition (3) implies that each pair of different elements of a
single POVM α has to fulfill the relation (cf. (17))

0 = Tr
{
�i(α,a)�i(α,b)

} = Tr
{√

�i(α,a)

√
�i(α,b)

√
�i(α,b)

√
�i(α,a)

}
= ‖

√
�i(α,b)

√
�i(α,a) ‖2

HS (32)

for all α ∈ {1, …, N}, a, b ∈ {1, …, M} with a �= b. Thus, within
a single POVM any two different elements are orthogonal,
i.e., �i(α, a)�i(α, b) = 0 for a �= b. Furthermore, as a consequence
of the completeness relation (1), within a single POVM α all
POVM elements are orthogonal projections of rank d/M (cf.

(2)), i.e.,

�i(α,a) = �i(α,a)

M∑
b=1

�i(α,b) = �2
i(α,a) =

ad/M∑
k=(a−1)d/M+1

|α, k〉〈α, k| (33)

with a common orthonormal eigenbasis
{|α, k〉 |

k = 1, · · · , d
}

of the elements of a single POVM α. Neces-
sarily, in dimension d an optimal (N, M)-POVM can only exist,
if d is an integer multiple of M, i.e., d/M ∈ N. Therefore, we
conclude that for 2 < M < d condition (3) is equivalent to

�i(α,a)�i(α,a′ ) = �i(α,a)δaa′ (34)

for optimal (N, M)-POVMs and α ∈ {1, …, N} and a ∈ {1, …,
M}. According to this necessary condition the smallest dimen-
sion d, for example, for which an optimal informationally
complete (N, M)-POVM can possibly be constructed, is given
by d = 8. It is a (21, 4)-POVM with x = 2 and all its POVM
elements are of rank two. According to (27) for 2 < M < d
for each optimal (N, M)-POVM a set of (M − 1)N orthonormal,
traceless, hermitian operators can be constructed. With the
help of (33) its spectrum can be obtained easily yielding the
result

Sp
(
Gi(α,a)

) ==

⎧⎪⎨
⎪⎩

(
1√
d

)(d/M)

,

⎛
⎝1 − √

M
(√

M + 1
)

(√
M + 1

)√
d

⎞
⎠

(d/M)

,

⎛
⎝ 1(√

M + 1
)√

d

⎞
⎠

(d−2d/M)
⎫⎪⎬
⎪⎭ . (35)

Thereby, the relations

Gi(α,a)|α, k〉 = 1√
d

|α, k〉,

Gi(α,a)|α, l〉 =
(

1 − √
M

(√
M + 1

))
(√

M + 1
)√

d
|α, l〉,

[
Gi(α,a), Gi(α,b)

] = 0 (36)

with a, b ∈ {1, …, M − 1}, α ∈ {1, …, N}, k ∈ {(M − 1)d/M
+ 1, …, d} and l ∈ {(a − 1)d/M + 1, …, ad/M} have been used.
Therefore, it can be concluded that for 2 < M < d the existence
of an optimal (N, M)-POVM implies the existence of a set of (M
− 1)N isospectral, traceless, orthonormal hermitian operators
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Gi(α, a) defined by (27) with x = d/M, whose common spectrum
is given by (35) and fulfills the relations (36).

However, for optimal (N, M)-POVMs with 2 < M < d this con-
dition is also sufficient. In order to demonstrate this we start
from rewriting (27) in the equivalent form

�i(α,M) = 1d

M
+

√
M2x − d

M
√

M − 1

M−1∑
b′=1

Gi(α,b′ ),

�i(α,b) = 1d

M
+

√
M2x − d

M
√

M − 1
(√

M + 1
) M−1∑

b′=1

Gi(α,b′ )

−
√

M2x − d√
M − 1

√
M

Gi(α,b) (37)

with α ∈ {1, ···, N} and b ∈ {1, ···, M − 1}. Although these oper-
ators �i(α, b) fulfill the relations (2), (3), and (4), in general they
are not positive semidefinite. However, in the case we are con-
sidering here, i.e., x = d/M and 2 < M < d, it is straightforward
to demonstrate that for a set of (M − 1)N orthonormal, trace-
less, hermitian operators {Gi(α, b)|α = 1, ···, N, b = 1, ···, M −
1} of a d dimensional quantum system, which commute (cf.
(36)) and whose common spectrum in given by (35), these op-
erators �i(α, b) of (37) constitute an optimal (N, M)-POVM.

Therefore, for 2 < M < d the existence of a set of (M −
1)N isospectral, traceless, orthonormal, hermitian operators
Gi(α, a), whose common spectrum is given by (35) and which
fulfill the relations (36), is equivalent with the existence of
an optimal (N, M)-POVM.

5. Optimal (N, 2)-POVMs
In this section optimal (N, 2)-POVMs of d-dimensional quan-

tum systems are investigated. For them additional properties
can be derived, which transcend the conditions discussed in
Section 4.2.

Let us consider an arbitrary POVM element of an optimal
(N, 2)-POVM as given by (17) with x = d/2 and positive semidef-
inite eigenvalues of the form λσ = 1/2 + ησ for σ ∈ {1, ···, d}.
According to the arguments of Section 4.2 λσ ∈ {0, 1} so that
|ησ | = 1/2. In addition, we have d/2 ∈ N so that the dimension
d has to be even. Therefore, relation (3) can only be fulfilled,
if the spectrum of the traceless, normalized and hermitian
operators

Ki(α,a) = �i(α,a) − 1d/2√
d/4

(38)

is given by

Sp
(
Ki(α,a)

) =
{

+ 1√
d

(d/2)

,− 1√
d

(d/2)
}

(39)

for each i(α, a) ∈ {1, ···, 2N}. The numbers in brackets in the ex-
ponents of (39) indicate the multiplicities of the correspond-
ing eigenvalues. In view of relation (4) the operators Ki(α, a)

and Ki(β, b) are also orthogonal for α �= β ∈ {1, ···, N ≤ d2 −
1} and a, b ∈ {1, 2}. Thereby, we have taken into account that
for a d-dimensional quantum system the number of traceless,
orthogonal, hermitian operators cannot exceed d2 − 1. How-
ever, these operators Ki(α, a) and Ki(β, b) are not orthogonal for
α = β and a �= b and fulfill the relation

Ki(α,2) = −Ki(α,1). (40)

Therefore, for N ≤ d2 − 1 the existence of an optimal (N,
2)-POVM implies the existence of N isospectral, traceless, or-
thonormal, hermitian operators {Ki(α, 1)|α ∈ {1, ···, N}}, whose
common spectrum is given by (39). However, in view of (38)
and (40) this conclusion can also be turned around. Thus, for
N ≤ d2 − 1 the existence of an optimal (N, 2)-POVM is sufficient
and necessary for the existence of N isospectral, traceless, or-
thonormal, hermitian operators {Ki(α, 1)|α ∈ {1, ···, N}}, whose
common spectrum is given by (39). Thereby, the case N = d2

− 1 covers optimal informationally complete (N, 2)-POVMs.
It should be mentioned that this existence criterion for opti-
mal (N, 2)-POVMs with N ≤ d2 − 1 generalizes a recent weaker
result [3], which was based on the weaker assumption |ησ | ≤
1/2. This criterion is the special case of M = 2 of the results
presented in Section 4.2.

In the special cases of even dimensions of the form d = 2k

with k ∈ N, N ≤ d2 − 1 isospectral, traceless, orthonormal, and
hermitian operators can easily be constructed with the help
of the Clifford algebra generated by tensor products of Pauli
operators. Accordingly, these operators are given by

1√
2k

σi1 ⊗ σi2 ⊗ · · · σik (41)

with (i1, ···, ik) �= (0, ···, 0) and with the Pauli operators

σ0 =
(

1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
(42)

Therefore, for N ≤ d2 − 1 optimal (N, 2)-POVMs in dimension
d = 2k can easily be constructed. Their 2N elements are given
by

�i((i1,··· ,ik ),1) = 1d

2
+ 1

2
σi1 ⊗ σi2 ⊗ · · · σik ,

�i((i1,··· ,ik ),2) = 1d

2
− 1

2
σi1 ⊗ σi2 ⊗ · · · σik (43)

with (i1, ···, ik) �= (0, ···, 0). Nevertheless, this explicit basis con-
struction still leaves the question open, to which extent such
optimal informationally complete (N, 2)-POVMs also exist in
other even dimensions d �= 2k.

6. Summary and conclusions
Motivated by the recent interest in basic theoretical prop-

erties of (N, M)-POVMs, we have explored general features of
their existence and construction with the help of orthonor-
mal, hermitian operator bases for arbitrary d-dimensional
quantum systems. A sufficient condition has been derived
for the existence of an arbitrary (N, M)-POVM. It generalizes
the already known property, that (N, M)-POVMs can always
be constructed for sufficiently small values of their continu-
ous x-parameter [3]. In particular, it yields an explicit expres-
sion for an upper bound on this continuous x-parameter, be-
low which all POVM elements are guaranteed to be positive
semidefinite. Furthermore, conditions on the existence of op-
timal (N, M)-POVMs have been presented. They exhibit a close
connection to the existence of sets of (M − 1)N isospectral,
traceless, orthonormal, hermitian operators with particular
forms of their common spectra. The particular form of the
two possible types of common spectra depends on whether M
is smaller than the dimension of the quantum system under
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consideration or not. These conditions generalize a property,
recently found for the special case of GSICs [8], to arbitrary
optimal (N, M)-POVMs. This connection motivates further re-
search on the construction of such sets of isospectral, trace-
less, orthonormal hermitian operators in order to shed new
light on the construction of optimal (N, M)-POVMs. For the
special cases with M = 2 a necessary and sufficient condition
has been derived for the existence of optimal (N, 2)-POVMs
with N ≤ d2 − 1. Thereby, also a relation to the existence
of a set of N isospectral, traceless, orthonormal, hermitian
operators has been established. Such operators with the re-
quired common spectrum can only exist in even dimensions.
For dimensions d = 2k, k ∈ N these operators can easily be
constructed with the help of the Clifford algebra generated
by the k-fold tensor products of the Pauli operators.

The recently introduced (N, M)-POVMs [3] are potentially
interesting for numerous tasks of quantum information pro-
cessing, such as the exploration of provable entanglement
in quantum communication or quantum state tomography.
Our presented sufficient and necessary conditions do not
only shed new light on currently open questions concerning
their existence and construction but also concerning their
application for practical purposes. Our presented sufficient
condition for their existence, for example, has established
an explicit upper bound on the continuous x-parameters
guaranteeing their existence. Combining this result with
the recent observation [9], that typical bipartite entangle-
ment can be detected locally in an optimal way by local
(N, M)-POVMs fulfilling this sufficient condition, suggests
interesting applications of (N, M)-POVMs for the detection of
provable entanglement in quantum communication proto-
cols. In view of these promising aspects also for applications
we are confident that (N, M)-POVMs will play an interesting
and practically useful role in future work exploring the
intricacies of quantum correlations.
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Appendix A. Gell-Mann basis for d = 3
The Gell-Mann basis, which has been used in obtaining Figs. 1a–1c, is defined by the matrices

g1 = 1√
2

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎟⎠ , g2 = 1√

2

⎛
⎜⎜⎝

0 −i 0

i 0 0

0 0 0

⎞
⎟⎟⎠ ,

g3 = 1√
2

⎛
⎜⎜⎝

1 0 0

0 −1 0

0 0 0

⎞
⎟⎟⎠ , g4 = 1√

2

⎛
⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎟⎠ ,

g5 = 1√
2

⎛
⎜⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎟⎠ , g6 = 1√

2

⎛
⎜⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠ ,

g7 = 1√
2

⎛
⎜⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎟⎠ , g8 = 1√

6

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 −2

⎞
⎟⎟⎠ . (A1)

These (d2 − 1) = 8 hermitian matrices have vanishing traces and are orthogonal with respect to the Hilbert–Schmidt scalar
product. Together with the properly normalized unit matrix they form an orthonormal basis of the Hilbert space Hd2 for
d = 3.
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