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Detection of typical bipartite entanglement by local generalized measurements
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Motivated by the need for efficient local entanglement detection for applications in quantum information
processing, sufficient conditions for arbitrary-dimensional local bipartite entanglement detection based on cor-
relation matrices and joint probability distributions are investigated. In particular, their dependence on the nature
of different classes of local measurements is explored for generalized measurements based on informationally
complete (N, M ) positive-operator-valued measures (POVMs) [Siudzinska, Phys. Rev. A 105, 042209 (2022)].
It is shown that symmetry properties of (N, M ) POVMs necessarily imply that these sufficient conditions for
bipartite entanglement detection exhibit characteristic scaling properties relating equivalent sufficient conditions.
Based on these general scaling properties, the efficiency of different classes of local quantum measurement
detecting typical bipartite entanglement is investigated quantitatively. For this purpose Euclidean volume ratios
between locally detectable bipartite entangled states and all bipartite quantum states are determined numerically
with the help of a Monte Carlo algorithm. Our results demonstrate that physically realizable (N, M ) POVMs
are sufficient for optimal local entanglement detection. In particular, this implies that for this purpose the
construction of optimal (N, M ) POVMs is not necessary. As questions concerning the existence and construction
of optimal (N, M ) POVMs are still largely open, this may offer interesting perspectives for practical applications
in quantum information processing.
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I. INTRODUCTION

Entanglement [1] is not only a characteristic quantum
phenomenon of composite quantum systems distinguishing
them significantly from classical physical systems, but also a
valuable resource for quantum information science. It enables
numerous applications, particularly in quantum key distribu-
tion and more generally in quantum communication [2]. For
two-qubit and qubit-qutrit systems the Peres-Horodecki crite-
rion [3,4] yields a simple necessary and sufficient condition
for identifying bipartite entanglement based on a quantum
state’s negative partial transpose (NPT). However, the NPT
property is only sufficient and no longer necessary for bi-
partite entanglement in higher-dimensional cases due to the
intricate features of bound entanglement [1]. Nevertheless,
establishing the NPT property of a bipartite quantum state
is still an important (sufficient) method for ensuring its
entanglement. As it is not known how to implement the par-
tial transposition of an unknown bipartite quantum state, it
is interesting to develop quantum measurements that yield
sufficient conditions for efficiently detecting entanglement.
Thereby, quantum measurements which can be performed
locally, possibly even by far distant observers, are of partic-
ular interest for applications in quantum key distribution and
quantum communication. In this context, the following natu-
ral question arises: How does the efficiency of entanglement
detection by local measurements depend on the chosen quan-
tum measurements and on the dimensionality of the systems
involved for typical quantum states [5].

In this paper we address this question. The intention
of our investigation is twofold. First, we want to com-
pare sufficient conditions for bipartite entanglement detection

resulting from different classes of local measurements. Sec-
ond, we want to quantitatively explore the efficiencies of
different classes of local measurements for entanglement
detection of arbitrary bipartite quantum states. In this con-
text local measurements involving generalized measurements
based on informationally complete positive-operator-valued
measures (POVMs) [6,7] are of particular current interest.
We focus on (N, M ) POVMs, which were recently intro-
duced [8] in order to unify the theoretical description of
numerous important classes of quantum measurements, in-
cluding projective measurements involving mutually unbiased
bases (MUBs) [9], mutually unbiased measurements (MUMs)
[10], symmetric informationally complete measurements (SIC
POVMs) [11,12], and their generalizations, so-called GSIC
POVMs [13]. In principle, by measurements based on infor-
mationally complete (N, M ) POVMs, quantum states can be
reconstructed completely. Therefore, these generalized mea-
surements are expected to be particularly well suited for
detecting bipartite entangled states efficiently. For a quantita-
tive exploration of this efficiency it is necessary to determine
the fractions of bipartite entangled states which can be de-
tected in the state space of all bipartite states. Therefore, a
proper statistical exploration of the complete state space of
all bipartite quantum states is required. In particular, restric-
tions to few-parameter families of quantum states, which have
been frequently investigated in this context recently [5,14–
17], form sets of measure zero in this complete state space and
are incapable of exploring these typical statistical features.
Furthermore, we want to investigate bipartite entanglement
detection by arbitrary local (N, M ) POVMs without restricting
ourselves to (N, M ) POVMs which can be constructed by a
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particular basis of Hermitian operators, such as the general-
ized Gell-Mann matrices [8,10,13].

As a first main result it will be shown that inherent sym-
metry properties of (N, M ) POVMs necessarily imply that
recently discussed sufficient conditions for bipartite entangle-
ment [5,18–21] exhibit characteristic scaling properties which
relate different equally efficient local entanglement detection
scenarios. As a second main result, based on these sufficient
conditions, we explore the efficiency of typical bipartite en-
tanglement detection by local measurements numerically with
a hit-and-run Monte Carlo algorithm. For this purpose, we
numerically determine lower bounds on the Euclidean volume
ratios between locally detectable bipartite entangled states
and all bipartite quantum states and compare them with the
corresponding volume ratios of NPT states. This is achieved
with the help of a recently developed hit-and-run Monte Carlo
algorithm [22,23].

This paper is organized as follows. In Sec. II A basic
properties of (N, M ) POVMs, as introduced originally by
Siudzinska [8], are summarized. As a main result of Sec. II B,
general relations between arbitrary orthonormal Hermitian
operator bases and informationally complete (N, M ) POVMs
are derived. These relations have to be fulfilled necessarily
and imply general scaling relations between different local
entanglement detection scenarios of equal efficiency. These
results constitute the basis for our subsequent investigations
on the scaling relations between different local entanglement
detection scenarios. In Sec. III correlation matrix-based and
joint probability-based sufficient conditions for bipartite en-
tanglement detection by local quantum measurements are
discussed within a general framework. These results are ap-
plied to measurements based on arbitrary local orthonormal
Hermitian operator (LOO) bases and on local (N, M ) POVMs.
As a main result, based on Sec. II, the resulting scaling rela-
tions are derived for LOOs and (N, M ) POVMs. This result
also unifies previously known sufficient conditions for bipar-
tite entanglement detection which have been derived for some
special cases. The general scaling relations of this section al-
low us to identify equivalent sufficient bipartite entanglement
conditions which yield equally efficient entanglement detec-
tion scenarios. As a second main result, numerical Monte
Carlo results on lower bounds of Euclidean volume ratios of
detectable bipartite entangled states are presented in Sec. IV
for local measurements involving (N, M ) POVMs. These
lower bounds are compared to the corresponding ratios of
NPT bipartite quantum states. Based on these numerical re-
sults on locally detectable entanglement of typical bipartite
quantum states, the efficiencies of different local entangle-
ment detection procedures can be compared quantitatively.

II. INFORMATIONALLY COMPLETE
GENERALIZED MEASUREMENTS

The recently introduced (N, M ) POVMs describe numer-
ous important quantum measurement procedures in a unified
way [8]. In this section we are particularly interested in infor-
mationally complete (N, M ) POVMs whose elements span the
Hilbert space of all Hermitian operators of a quantum system.
For the sake of completeness, defining general properties of
(N, M ) POVMs are summarized in Sec. II A. In Sec. II B

conditions are derived which necessarily relate orthonor-
mal Hermitian operator bases and informationally complete
(N, M ) POVMs irrespective of their positive semidefinite-
ness. For this purpose, explicit constructions of these (N, M )
POVMs are not necessary. These necessarily valid relations
are characterized by orthogonality preserving linear maps be-
tween linear Hermitian operator spaces. In the subspace of
Hermitian operators, which are orthogonal to the unit operator
of the quantum system’s Hilbert space, these linear maps act
conformally, thus scaling all elements of this subspace by the
same positive amount. This characteristic scaling property is
the main result of this section. In the subsequent section it
is used to compare the 1-norms of correlation matrices and
joint probability matrices for different measurement choices.
This allows a comparison of different measurement settings
for the sufficient bipartite entanglement conditions discussed
in Sec. III.

A. General properties

Let us consider the d-dimensional Hilbert space Hd of
a quantum system. An (N, M ) POVM, described by the
NM-tuple � = (�1, . . . , �NM ), is a set of NM positive-
semidefinite operators �i � 0 (i = 1, . . . , NM). They consti-
tute N different POVMs formed by the N possible disjoint
subsets of cardinality M. Therefore, the members �i of such
an (N, M ) POVM can be identified uniquely by ordered
pairs (α, a), with α identifying the particular POVM and
a identifying the possible classical measurement result of
this particular POVM α. Such an identification can be ob-
tained by the bijective map i : {(α, a) | α ∈ {1, . . . , N}, a ∈
{1, . . . , M}} → {1, . . . , NM} with i(α, a) = (α − 1)M + a,
for example. Therefore, each of the N POVMs fulfills the
characteristic completeness relations for the possible distin-
guishable classical measurement results a ∈ {1, . . . , M}, i.e.,

M∑
a=1

�i(α,a) = 11d (1)

for each α ∈ {1, . . . , N}. Thereby, 11d denotes the unit
operator in the Hilbert space Hd . In addition, the positive-
semidefinite operators of an (N, M ) POVM fulfill the char-
acteristic additional relations [8]

Tr{�i(α,a)} = d

M
, (2)

Tr{�i(α,a) �i(α,a′ )} = x δa,a′ + (1 − δa,a′ )
d − Mx

M(M − 1)
, (3)

Tr{�i(α,a) �i(β,b)} = d

M2
(4)

for all β �= α ∈ {1, . . . , N} and a, a′, b ∈ {1, . . . , M} if N �
2. In the degenerate case of a POVM with N = 1 the con-
straint (4) is not imposed. For given values of (d, N, M ), the
possible values of x are constrained by the relation d/M2 <

x � min(d2/M2, d/M ). The (N, M ) POVMs with maximal
possible values of x are called optimal.

By definition, an (N, M ) POVM � is informationally com-
plete if it contains d2 linearly independent positive operators.
As each of the N POVMs involved fulfills the completeness
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relation (1), this is equivalent to the requirement

(M − 1)N + 1 = d2. (5)

There are at least four classes of possible solutions of (5)
[8], namely, (N, M ) ∈ {(1, d2), (d + 1, d ), (d2 − 1, 2), (d −
1, d + 2)}. The solution (N, M ) = (1, d2) characterizes the
special case of a one-parameter family of GSIC POVMs [13]
parameterized by the parameter x. Symmetric informationally
complete POVMs correspond to the special case of GSIC
POVMs with x = 1/d2. The solution (N, M ) = (d + 1, d )
describes MUMs [10], which in the special case of x =
d2/M2 = d/M = 1 further reduce to projective measurements
of unit rank with maximal sets of (d + 1) MUBs. In the
special case of a qubit, i.e., d = 2, these four possible solu-
tions of (5) reduce to two cases, namely, GSIC POVMs for
(N, M ) = (1, 4) and MUMs for (N, M ) = (3, 2).

B. Informationally complete (N, M) POVMs and orthonormal
Hermitian operator bases

To compare the sufficient entanglement conditions dis-
cussed in Sec. III, it is necessary to relate the correlation
matrices and joint probability distributions of local infor-
mationally complete (N, M ) POVMs to those of arbitrary
orthonormal Hermitian operator bases. For this purpose, in
this section we study the linear maps between Hermitian op-
erators fulfilling the characteristic relations of (N, M ) POVMs
[cf. (3) and (4)] and arbitrary orthonormal Hermitian op-
erator bases. In a Hilbert space Hd of a d-dimensional
quantum system, an informationally complete (N, M ) POVM
can be expanded in a basis of d2 linearly independent lin-
ear operators, say, G = (G1, . . . , Gd2 )T , acting on Hd . These
operators can always be chosen as orthonormal Hermitian
operators with respect to the Hilbert-Schmidt scalar product
〈Gμ|Gν〉HS := Tr{G†

μGν} with G†
μ = Gμ. They form a basis of

the Hilbert space Hd2 = (Span(G), 〈·|·〉HS) of linear operators
in Hd over the field of real numbers. This latter space is a
Euclidean vector space.

The resulting basis expansion of an arbitrary (N, M )
POVM in such an arbitrary orthonormal Hermitian basis of
linear operators has the general form

� = GT S, (6)

with S denoting the linear operator which maps Hd2 into the
possibly higher-dimensional Hilbert space HNM of Hermitian
operators. This is a consequence of the dimensional constraint
NM = d2 + N − 1 � d2 valid for informationally complete
(N, M ) POVMs. The structure of this linear map S and its cor-
responding d2 × NM matrix Sμ,i of real-valued coefficients
is significantly constrained by the relations (3) and (4) char-
acterizing essential features of (N, M ) POVMs irrespective
of their positive semidefiniteness in a basis independent way.
This linear map is important for the subsequent discussion of
entanglement detection because it allows us to relate equiva-
lent sufficient entanglement conditions which result in equal
entanglement detection efficiencies.

Let us determine the most general form of the linear oper-
ator S : Hd2 → HNM mapping the Hilbert space Hd2 into the
Hilbert space HNM . Thereby, we will ignore the constraints
imposed by the positive semidefiniteness of the operators �

and only take into account the relations (3) and (4). This
implies that the linear operator S : Hd2 → HNM characterizes
all relations which necessarily must be fulfilled between an or-
thonormal Hermitian basis G and any possible (N, M ) POVM
�. In the Appendix it is demonstrated that one can always
choose an orthonormal Hermitian operator basis G̃ in such
a way that G̃1 = 11d/

√
d and Tr{G̃ν} = 0 for ν ∈ {2, . . . , d2}

[cf. (A11)] and that this basis implies the relation � = GT S =
G̃T S̃ with

S̃ν,i =
√

�νX T
ν,i. (7)

The orthonormal NM × d2 matrix Xi,ν is constructed by the
d2 = N (M − 1) + 1 orthonormal eigenvectors of the NM ×
NM matrix (ST S)i, j [cf. (A7)–(A9)] with nonzero eigenvalues

�1 = dN

M
,

�ν = � = xM2 − d

M(M − 1)
(8)

for i ∈ {1, . . . , NM} and ν ∈ {2, . . . , d2}. This latter matrix
encodes the constraints (3) and (4) characterizing essential
features of (N, M ) POVMs without taking into account their
positive semidefiniteness. From (7) it is apparent that all basis
operators G̃ν with ν ∈ {2, . . . , d2} are mapped conformally
onto a (d2 − 1)-dimensional subspace of HNM by scaling the
norms of all these operators by a factor of

√
�. Only the basis

operator G̃1 is scaled by a different factor, namely,
√

�1. In the
subsequent section, it will be demonstrated that this special
property, relating the orthonormal Hermitian operator basis
G̃ to an existing arbitrary informationally complete (N, M )
POVM �, manifests in characteristic scaling relations for
sufficient conditions of bipartite entanglement. We want to
stress once again that, in view of the arguments leading to
(7), for the derivation of these scaling relations the positive
semidefiniteness of POVM operators is irrelevant. In this con-
text it is worth mentioning that a recent construction of a
family of entanglement witnesses also relies on a linear but
different map between (N, M ) POVMs and the witnesses for
which the positive semidefiniteness of the POVM elements
is irrelevant [24]. In the next section these scaling relations
are used to compare the detection efficiencies of different
sufficient bipartite entanglement conditions.

III. CORRELATIONS OF SEPARABLE
BIPARTITE QUANTUM STATES

In this section recently discussed constraints imposed on
local correlations of separable bipartite quantum states are
summarized and generalized to (N, M ) POVMs. Violating
these constraints yields sufficient conditions for bipartite
entanglement of arbitrary-dimensional quantum systems. In
particular, we concentrate on inequalities for the 1-norms
of local correlation matrices and joint local probability dis-
tributions, the strongest sufficient conditions for bipartite
entanglement detection with (N, M ) POVMs [5]. We explore
the dependence of these sufficient bipartite entanglement
conditions on the types of local measurements performed,
including arbitrary (N, M ) POVMs. As a main result it will
be shown that, as far as correlation matrix-based sufficient
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entanglement conditions are concerned, LOOs are as powerful
in detecting bipartite entanglement as any locally applied in-
formationally complete (N, M ) POVM. This is a consequence
of the characteristic scaling properties presented in Sec. II B,
which necessarily have to be fulfilled by informationally
complete (N, M ) POVMs. For joint bipartite probability dis-
tributions of informationally complete local (N, M ) POVMs,
these scaling properties manifest themselves more subtly. It
will be shown that, for given dimensions of the local quan-
tum systems, the resulting sufficient conditions for bipartite
entanglement are identical for informationally complete local
(N, M ) POVMs characterized by the same rescaled x parame-
ters [cf. (3) and (34)].

A. Correlation matrices of general
local quantum measurements

Let us consider arbitrary sets of Hermitian operators,
say, A = {Ai; i = 1, . . . , NA} and B = {Bj ; j = 1, . . . , NB},
of two local observers, say, Alice and Bob. These operators
are supposed to describe local observables, i.e., Hermitian op-
erators or local POVMs. The correlation matrix of a quantum
state 	 associated with these local measurements is defined as

[C(A,B|	)]i j = Tr{Ai ⊗ Bj (	 − 	A ⊗ 	B)}, (9)

with the reduced local quantum states of Alice and Bob, 	A =
TrB{	} and 	B = TrA{	}.

An arbitrary bipartite quantum state 	 is separable if and
only if it can be represented in the form of a convex combi-
nation of an ensemble of local quantum states of Alice and
Bob, i.e.,

	 =
∑

m

pm	A
m ⊗ 	B

m, (10)

with the probabilities pm � 0 and
∑

m pm = 1. The matrix
elements of the correlation matrix of such a general separable
quantum state 	 are given by

[C(A,B|	)]i j =
∑
nm

(Vnm)i(Wnm) j, (11)

with the NA- and NB-dimensional correlation vectors Vnm and
Wnm. The components of these correlation vectors are defined
by

(Vnm)i =
√

pn pm

2
Tr

{
Ai	

A
n − Ai	

A
m

}
(12)

for i = 1, . . . , NA and by an analogous expression for
(Wnm) j ( j = 1, . . . , NB). Using the triangular and the Cauchy-
Schwarz inequalities, the 1-norm of this correlation matrix,
i.e., ‖C(A,B|	)‖1 = Tr{

√
C†(A,B|	)C(A,B|	)}, can be up-

per bounded by the relation [5,25]

‖C(A,B|	)‖1 �
∑
nm

‖Vnm‖2‖Wnm‖2

�
√∑

nm

‖Vnm‖2
2

√∑
nm

‖Wnm‖2
2 �

√

A
B,

(13)

with

∑
nm

‖Vnm‖2
2 =

NA∑
i=1

∑
m

pm
(

Tr
{
Ai	

A
m

})2 −
NA∑
i=1

(Tr{Ai	
A})2,


A = max
σ A

NA∑
i=1

[(Tr{Aiσ
A})2 − (Tr{Ai	

A})2], (14)

and analogous expressions for
∑

nm ‖Wnm‖2
2 and 
B. Ac-

cordingly, the upper bounds 
A and 
B involve a generally
complicated maximization over all local quantum states of
Alice and Bob, σ A and σ B. In particular, they depend on the
chosen local Hermitian operators A and B. The inequality
(13) is a general consequence of bipartite separability of the
quantum state 	. It applies to correlation matrices of arbi-
trary local measurements performed on arbitrary-dimensional
separable bipartite quantum states. For the special cases of
MUMs and GSIC POVMs, these inequalities have already
been derived previously [20]. A violation of the inequality
(13) is a sufficient condition for bipartite entanglement.

B. Correlation matrices of local orthonormal
Hermitian operators

Let us specialize the inequality (13) to the correlation ma-
trix of two arbitrary LOOs, say, GA = (GA

1 , . . . , GA
d2

A
)T and

GB = (GB
1 , . . . , GB

d2
B
)T , with d2

A = NA and d2
B = NB. For this

purpose the quantities 
A and 
B on the right-hand side of
(13) have to be evaluated explicitly by maximizing over all
possible quantum states of Alice and Bob. For LOOs the
maximizations involved in the evaluation of the right-hand
sides of (14) can be performed easily and are given by


A = max
σ A

Tr{(σ A)2} − Tr{(	A)2} = 1 − Tr{(	A)2},


B = max
σ B

Tr{(σ B)2} − Tr{(	B)2} = 1 − Tr{(	B)2}. (15)

Therefore, the inequality (13) reduces to the known form
[18,19]

‖C(GA, GB|	)‖2
1 � [1 − Tr{(	A)2}][1 − Tr{(	B)2}]. (16)

A violation of this inequality is a sufficient condition for
entanglement of an arbitrary-dimensional bipartite quantum
state 	. This sufficient condition involves the correlation ma-
trix of LOOs and the purities of Alice’s and Bob’s reduced
quantum states. It is identical to the enhanced realignment
criterion of Zhang et al. [26].

C. Correlation matrices of local informationally
complete (N, M) POVMs

Let us now specialize the inequality (13) to two lo-
cal (N, M ) POVMs, say, �A = (�A

1 , . . . ,�A
NAMA

) and �B =
(�B

1 , . . . , �B
NBMB

), performed by Alice and Bob. For the
sake of convenience, we introduce the indexing of the
POVM elements by the mappings i(α, a) = (α − 1)MA + a
and j(β, b) = (β − 1)MB + b. In the following, we concen-
trate on local (N, M ) POVMs which are informationally
complete so that relation (5) applies, i.e., NA(MA − 1) + 1 =
d2

A and NB(MB − 1) + 1 = d2
B.
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With the help of the constraints (2)–(4) characterizing local
(N, M ) POVMs, also the maximizations determining the rele-
vant upper bounds entering the inequality (13) can be worked
out straightforwardly, yielding the result


A = max
σ A

NAMA∑
i=1

[(
Tr

{
�A

i(α,a)σ
A
})2 − (

Tr
{
�A

i(α,a)	
A
})2]

= �A
[

max
σ A

Tr{(σ A)2} − Tr{(	A)2}] = �A[1 − Tr{(	A)2}]
(17)

and an analogous expression for 
B. As a consequence, the
correlation matrix of informationally complete local (N, M )
POVMs obeys the inequality

‖C(�A,�B|	)‖2
1

� �A�B[1 − Tr{(	A)2}][1 − Tr{(	B)2}], (18)

with

�A = xAM2
A − dA

MA(MA − 1)
, �B = xBM2

B − dB

MB(MB − 1)
(19)

for all separable bipartite quantum states [5]. Special instances
of the inequality (18) involving MUMs and GSIC POVMs
as local measurements have been discussed recently [20]. It
is worth mentioning that both sides of this inequality de-
pend on the parameters xA, xB, MA, MB, NA, and NB. The
dependence of the correlation matrix C(�A,�B|	) on these
parameters complicates a direct comparison of the bipartite
entanglement detectable by different measurement settings
based on violations of the inequality (18). However, this
apparent complication can be circumvented by relating the
correlation matrix of (N, M ) POVMs to those of LOOs with
the help of the linear map S discussed in Sec. II B.

For this purpose, let us expand each of these local (N, M )
POVMs in arbitrary LOOs, say, GA for Alice and GB for Bob,
i.e., �A = (GA)T SA and �B = (GB)T SB. Thereby, SA denotes
the d2

A × NAMA matrix of real-valued expansion coefficients of
�A for Alice and analogously for Bob. With the help of this
basis expansion the correlation matrix of local informationally
complete (N, M ) POVMs can be related to the correlation
matrix of these LOOs by

C(�A,�B|	) = (SA)T C(GA, GB|	)SB. (20)

In addition, using the results of Sec. II B and Appendix [cf.
(A9)–(A11)], it is found that the 1-norms of both correlation
matrices are related by

‖C(�A,�B|	)‖1 = ‖
√

�AC(G̃A, G̃B|	)
√

�B‖1 (21)

with the transformed LOOs G̃A = OAGA and G̃B = OBGB and
with the diagonal matrices �A and �B of the nonzero eigen-
values of (SA)T SA and (SB)T SB [cf. (A7)]. For an arbitrary
bipartite quantum state 	, the correlation matrix fulfills the
relations

[C(G̃A, G̃B|	)]1ν = [C(G̃A, G̃B|	)]μ1 = 0 (22)

for μ ∈ {1, . . . , d2
A} and ν ∈ {1, . . . , d2

B}. As a result, the rela-
tion between the 1-norms of these correlation matrices obeys

the simple scaling relation

‖C(�A,�B|	)‖1 =
√

�A�B‖C(GA, GB|	)‖1 (23)

and the sufficient entanglement condition (18) simplifies to

‖C(GA, GB|	)‖2
1 = 1

�A�B
‖C(�A,�B|	)‖2

1

� [1 − Tr{(	A)2}][1 − Tr{(	B)2}]. (24)

This inequality is the main result of this section. Its violation
is a sufficient condition for bipartite entanglement detectable
by local (N, M ) POVMs. Thus, it is apparent that this suf-
ficient entanglement condition is completely independent of
the chosen local (N, M ) POVMs and is identical to the one
for LOOs [cf. the inequality (16)]. Therefore, concerning vio-
lations of the general inequality (13), LOOs are as powerful
in detecting bipartite entanglement as local informationally
complete (N, M ) POVMs. This is a direct consequence of the
symmetry of the relations defining (N, M ) POVMs and the
resulting scaling relation (23). Exploiting this scaling property
offers interesting perspectives for practical applications. In
particular, it may offer the possibility to circumvent possi-
ble problems concerning physical realizations of particular
classes of local (N, M ) POVMs by the use of known and easy-
to-realize LOOs or local (N, M ) POVMs without affecting the
efficiency of bipartite entanglement detection.

D. Joint probability distributions

Based on the inequality (24) and its violation, sufficient
conditions for bipartite entanglement can be derived, which
involve the joint probability distribution of measurement re-
sults of local informationally complete (N, M ) POVMs. For
this purpose, let us consider the joint probability distribution

P(�A,�B|	) = Tr{(�A)T ⊗ �B	} (25)

resulting from local measurements of informationally com-
plete (NA, MA) and (NB, MB) POVMs �A and �B. Applying
the triangular inequality to the 1-norm of this joint probability
distribution, we obtain the inequality

‖P(�A,�B|	)‖1 � ‖C(�A,�B|	)‖1

+ ‖Tr{(�A)T ⊗ �B	A ⊗ 	B}‖1. (26)

From the defining properties of informationally complete
(N, M ) POVMs (cf. Sec. II) we obtain the relation

‖Tr{(�A)T ⊗ �B	A ⊗ 	B}‖1 = √
UAUB,

UA = Tr{(	A)2}�A + dANA/MA − �A

dA
,

UB = Tr{(	B)2}�B + dBNB/MB − �B

dB
. (27)

Thus, using the upper bounds of the correlation matrix (17),
we find

‖P(�A,�B|	)‖1 �
√


A
B + √
UAUB. (28)

For separable bipartite quantum states 	 this inequality con-
strains the joint probabilities of the local measurement results
and relates them to the purities of the reduced quantum states
of Alice and Bob, i.e., Tr{(	A)2} and Tr{(	B)2}. Violating this
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inequality by a bipartite quantum state 	 yields a sufficient
condition for its entanglement. With the help of the general
inequality

√

A
B + √

UAUB �
√


A + UA

√

B + UB, (29)

a new upper bound can be derived on the right-hand side of
(28), yielding the inequality

‖P(�A,�B|	)‖1 �
√


A + UA

√

B + UB, (30)

with


A + UA = dA − 1

dA

d2
A + M2

AxA

MA(MA − 1)
,


B + UB = dB − 1

dB

d2
B + M2

BxB

MB(MB − 1)
. (31)

This sufficient entanglement condition has already been de-
rived [8]. A violation of this inequality by a bipartite quantum
state 	 yields a sufficient condition for its entanglement.
However, in view of (29), this sufficient condition for bi-
partite entanglement is generally weaker than the sufficient
condition based on a violation of the inequality (28). It is
apparent that the inequality (30) is independent of the pu-
rities of the reduced density operators of Alice and Bob.
For special cases, namely, for SIC POVMs [21] and GSIC
POVMs [14], the inequality (30) has already been derived.
The joint probability distribution P(�A,�B|	) is a matrix
of dimension NAMA × NBMB. Its intricate dependence on all
local (N, M ) POVM parameters complicates a direct com-
parison of the bipartite entanglement detectable by different
measurement settings. However, this apparent complication
can be circumvented by relating the joint probability distri-
bution P(�A,�B|	) of the local (N, M ) POVMs to those
of LOOs with the help of the linear map S discussed in
Sec. II B.

The sufficient conditions for entanglement resulting from
violations of (28) or (30) for the joint probability distribu-
tions of local (N, M ) POVMs also exhibit scaling properties
which allow us to relate them to the corresponding (d2

A × d2
B)-

dimensional joint probability distribution P(G̃A, G̃B|	) of the
local Hermitian bases G̃A and G̃B. However, they differ from
the scaling properties of the correlation matrix as discussed in
Sec. III C. To derive these scaling relations, we first consider
the common left-hand sides of the inequalities (28) and (30).
Expanding the local (N, M ) POVMs in the LOOs G̃A and
G̃B, we find with the help of the results of Sec. II B and the
Appendix the relation

‖P(�A,�B|	)‖1 = ‖
√

�AP(G̃A, G̃B|	)
√

�B‖1, (32)

with the diagonal matrices �A and �B [cf. Eq. (A10)].
According to (A8), the common factors γA = dA(dA −
1)/MA(MA − 1) and γB = dB(dB − 1)/MB(MB − 1) can be
extracted from the eigenvalues entering the diagonal matrices

�A and �B, i.e.,

(�A)11 = γA(dA + 1),

(�A)νν = �A = γA
dAx̃A − 1

dA − 1
,

(�B)11 = γB(dB + 1),

(�B)μμ = �B = γB
dBx̃B − 1

dB − 1
(33)

for ν ∈ {2, . . . , NA(MA − 1) + 1} and μ ∈ {2, . . . , NB(MB −
1) + 1} with the rescaled parameters

x̃A = xAM2
A

d2
A

, x̃B = xBM2
B

d2
B

. (34)

The same factors γA and γB can also be extracted from
the quantities UA, UB, 
A, and 
B of (17) and (27) enter-
ing the right-hand sides of the inequalities (28) and (30).
Consequently defining the (d2

A × d2
B)-dimensional scaled joint

probability distribution

P̃(x̃A, x̃B|	) =
√

�A

γA
P(G̃A, G̃B|	)

√
�B

γB
, (35)

which only depends on the scaled parameters x̃A and x̃B, the
inequality (28) can be rewritten in the rescaled form

‖P̃(x̃A, x̃B|	)‖1 �
√


A

γA

√

B

γB
+

√
UA

γA

√
UB

γB
(36)

and the inequality (30) becomes

‖P̃(x̃A, x̃B|	)‖1 �
√

1 + x̃A

√
1 + x̃B. (37)

These inequalities are the main results of this section. It is
apparent that for given dimensions dA and dB of Alice’s and
Bob’s quantum systems these inequalities depend only on the
scaled parameters x̃A and x̃B of (34) characterizing Alice’s
and Bob’s local informationally complete (N, M ) POVMs.
For given dimensions dA and dB this implies that testing for
violations of the inequalities (36) and (37) yields the same
results for informationally complete (N, M ) POVMs with
the parameters MA, xA, MB, and xB and with the parameters
M ′

A, x′
A = M2

AxA/M ′
A

2 and M ′
B, x′

B = M2
BxB/M ′

B
2. Therefore,

according to (36) and (37), sufficient conditions for bipar-
tite entanglement involving local MUMs with the parameters
MA = dA, xA and MB = dB, xB, for example, are identical to
the sufficient conditions involving local GSIC POVMs with
M ′

A = d2
A, x′

A = xA/d2
A, M ′

B = d2
B, and x′

B = xB/d2
B. The suf-

ficient conditions (36) and (37) have been derived solely
with the help of the eigenvalues of the linear operators
SA and SB. Constraints on the local operators �A and �B

due to positive semidefiniteness are not required for relat-
ing equivalent sufficient entanglement conditions and thus
equally efficient entanglement detection scenarios. Thus, for
this purpose an explicit construction of (N, M ) POVMs is not
required.

Let us conclude by comparing the sufficient bipartite
entanglement conditions resulting from violations of our main
results, i.e., the inequalities (24), (36), and (37), with other ex-
isting sufficient entanglement conditions for (N, M ) POVMs.

042424-6



DETECTION OF TYPICAL BIPARTITE ENTANGLEMENT … PHYSICAL REVIEW A 108, 042424 (2023)

FIG. 1. Dependence of volume ratios RNM (x̃A, x̃B ) between detected entangled and all bipartite quantum states on the scaled parameters x̃A

and x̃B of Alice’s and Bob’s informationally complete local (N, M ) POVMs as obtained from a violation of inequality (37) for (dA, dB ) = (2, 3).
The horizontal dashed line indicates the upper bound for x̃B for (N, M ) POVMs with MB = 2. All (N, M ) POVMs with these values of dA and
dB yield the same results.

The sufficient bipartite entanglement conditions based on the
inequalities (28) and (30) for joint probability distributions of
local (N, M ) POVMs have already been discussed in [8,16].
However, these investigations do not address the dependence
of these inequalities on the parameters characterizing the
local measurements chosen for entanglement detection.
Thus, from these investigations it is not apparent which
local (N, M ) POVMs are more efficient in detecting bipartite
entanglement than others. This aspect is addressed by our
inequalities (36) and (37) analytically. The related aspects
concerning efficiencies of bipartite entanglement detection
are addressed by our numerical results presented in Figs. 1
and 2. The inequalities (36) and (37) explicitly show that,
for given dimensions of the local quantum systems, local
measurements involving informationally complete (N, M )
POVMs with the same scaled parameters x̃A and x̃B [cf. (34)]
are equally powerful in detecting bipartite entanglement.
The correlation matrix-based sufficient condition derived
by Lai and Luo [5] is identical to our Eq. (18). However,
also this investigation does not address the issue of which
local (N, M ) POVMs are more efficient in detecting bipartite
entanglement than others. Our inequality (24) addresses this
issue by showing explicitly that informationally complete
(N, M ) POVMs are as powerful in detecting bipartite
entanglement locally as LOOs. Finally, we want to mention
that in some cases the inequalities (18) and (30) can also be
replaced by weaker inequalities with the help of the relation∑d

i=1 |Mii| � ‖M‖1, valid for arbitrary d × d square
matrices M. Therefore, if we consider two informationally
complete (N, M ) POVMs with identical parameters, for

example, the inequalities (18) and (30) imply the weaker
inequalities

NM∑
i=1

Tr
{
�A

i(α,a) ⊗ �B
i(α,a)	

}
� d − 1

d

d2 + M2x

M(M − 1)
, (38)

NM∑
i=1

∣∣Tr
{
�A

i(α,a) ⊗ �B
i(α,a)(	 − 	A ⊗ 	B)

}∣∣
� �

√(
1 − Tr

{
	2

A

})(
1 − Tr

{
	2

A

})
, (39)

with dA = dB = d . These sufficient conditions have already
been discussed in [8,15,17]. However, sufficient conditions
based on inequalities involving 1-norms, such as (18) and
(30), can detect more entangled states than violations of the
inequalities (38) and (39).

IV. NUMERICAL RESULTS

In this section, numerical results are presented exploring
statistical features of the local detection of typical bipar-
tite entanglement by violations of the inequalities (24), (36),
and (37). Based on these sufficient conditions for bipartite
entanglement detection, we determine lower bounds on the
Euclidean volume ratios between entangled bipartite states
and all quantum states for different dimensions dA and dB

of Alice’s and Bob’s quantum systems. These volume ratios
establish quantitative measures of the efficiencies with which
different local entanglement detection procedures can detect
unknown bipartite entangled states. For this purpose also the
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FIG. 2. Dependence of volume ratios RNM (x̃A, x̃B ) between detected entangled and all bipartite quantum states on the scaled parameters x̃A

and x̃B of Alice’s and Bob’s informationally complete local (N, M ) POVMs as obtained from a violation of inequality (37) for (dA, dB ) = (3, 3).
The vertical and horizontal dashed lines indicate the upper bounds for x̃A and x̃B for (N, M ) POVMs with MA = 2 and MB = 2. All (N, M )
POVMs with these values of dA and dB yield the same results.

dependence of the inequality (37) on the rescaled x̃ parameters
[cf. (34)] is investigated.

Starting from the dAdB-dimensional Hilbert space HdAdB

describing Alice’s and Bob’s joint quantum system, one can
construct the (dAdB)2-dimensional Hilbert space H(dAdB )2 of
Hermitian linear operators acting on elements of HdAdB . This
is a Hilbert space over the field of real numbers equipped with
the Hilbert-Schmidt scalar product 〈A|B〉HS := TrAB{A†B} for
A, B ∈ H(dAdB )2 . Thus, it is a Euclidean vector space. On
this Euclidean vector space volumes of convex sets of linear
Hermitian operators, and thus quantum states 	 � 0, can be
defined naturally. The Euclidean volumes of quantum states
can be estimated numerically with the help of Monte Carlo
methods. We have developed a hit-and-run Monte Carlo al-
gorithm [22] for estimating the volumes of convex sets of
quantum states according to this Euclidean measure. Hit-

and-run Monte Carlo methods were introduced originally by
Smith [27]. They take advantage of a random walk inside a
convex set to efficiently generate a uniform distribution over
this convex set by iteration so that this distribution eventually
becomes independent of the starting point, the completely
mixed quantum state [28].

We randomly sampled N = 108 bipartite quantum states
for different values of dA and dB with the help of this re-
cently developed hit-and-run Monte Carlo algorithm [22,23]
to determine lower bounds on Euclidean volumes of detected
entangled states. In Table I the obtained lower bounds of the
ratios R between the Euclidean volumes of entangled states
and all bipartite quantum states are presented together with
their estimated statistical errors. These errors have been esti-
mated with the help of the procedure described in Ref. [22].
Thereby, for each pair of dimensions (dA, dB) four different

TABLE I. Lower bounds on volume ratios between entangled and all bipartite quantum states for different dimensions dA and dB of Alice’s
and Bob’s quantum systems: bipartite NPT states (RNPT) and bipartite states detectable by violations of (37) (RSIC1), of (36) (RSIC2), and of
(24) (Rcor). The numbers in square brackets after the estimated statistical errors [22] (square roots of variances) indicate the relevant powers of
10−1. For dimensions (3,4) and (4,4) the algorithm generated only NPT states. Therefore, the corresponding values of RNPT do not involve any
statistical uncertainties.

(dA, dB ) RNPT RSIC1 RSIC2 Rcor

(2,2) 0.75784 ± 1.7[4] 0.67060 ± 2.2[4] 0.67947 ± 2.1[4] 0.68860 ± 2.1[4]
(2,3) 0.97303 ± 7[5] 0.39732 ± 5.6[4] 0.42998 ± 5.5[4] 0.43853 ± 5.5[4]
(2,4) 0.998696 ± 1.6[5] 0.02710 ± 2.7[4] 0.04361 ± 3.4[4] 0.04504 ± 3.5[4]
(3,3) 0.999895 ± 4[6] 0.75680 ± 8.2[4] 0.75754 ± 8.2[4] 0.76364 ± 8.1[4]
(3,4) 1 0.3605 ± 1.8[3] 0.3742 ± 1.8[3] 0.3795 ± 1.8[3]
(4,4) 1 0.6378 ± 7.7[3] 0.6380 ± 7.7[3] 0.6419 ± 7.7[3]
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lower bounds are presented, namely, the volume ratio result-
ing from bipartite NPT states (RNPT) and the volume ratios
resulting from bipartite entangled states detectable by viola-
tions of inequalities (37) (RSIC1), (36) (RSIC2), and (24) (Rcor).
Because of the scaling relations discussed in the previous
section, selecting a single class of (N, M ) POVMs is sufficient
for assessing the efficiency of local entanglement detection by
different inequalities. For the results presented in Table I, we
have chosen GSICs, i.e., NA = NB = 1, MA = d2

A, and MB =
d2

B. The ratios RSIC1 and RSIC2 describe bipartite entangle-
ment detection by local SIC POVMs performed by Alice and
Bob with the maximal parameters xA = 1/d2

A and xB = 1/d2
B

which corresponds to the scaled parameters x̃A = x̃B = 1. It
is apparent from Table I that for dA = dB the values of RSIC1

are consistent with the recently obtained results of Ref. [21].
The ratios Rcor describe bipartite entanglement detectable by
correlation matrices of (N, M ) POVMs, which, according to
Sec. III C, are identical to the results of LOOs. These results
show that all lower bounds on the ratios R based on local
measurements are always smaller than the ratios RNPT of bi-
partite NPT states. Furthermore, with increasing dimensions
of Alice’s and Bob’s quantum systems, the ratios between
bipartite entangled states, which are lower bounded by the
ratios of NPT states, and all quantum states rapidly approach
unity within our numerical accuracy. However, the lower
bounds on these ratios detectable by local measurements do
not reflect this tendency and increasingly underestimate the
volume ratios of NPT states with increasing dimensions of the
local quantum systems. Nevertheless, as expected from our
discussion in Sec. III, the latter lower bounds always fulfill
the relation RSIC1 � RSIC2 � Rcor consistent with our results
(24), (26), (36), (29), and (37).

So far our numerical results have concentrated on opti-
mal (N, M ) POVMs with x̃A = x̃B = 1 for cases with d � M.
Now we investigate characteristic features of arbitrary val-
ues of these parameters. In Figs. 1 and 2 the volume ratios
of bipartite entangled states detectable by violations of the
inequality (37) and their dependence on the scaled param-
eters x̃A and x̃B of Alice’s and Bob’s local informationally
complete (N, M ) POVM measurements [cf. (34)] are depicted
for a qubit-qutrit and a qutrit-qutrit system. These results
are based on a statistical ensemble of 107 randomly sampled
bipartite quantum states. According to the scaling proper-
ties discussed in Sec. III D and the discussion of Sec. II,
these results describe the volume ratios of all local (N, M )
POVMs of Alice and Bob with scaled parameters in the
maximally allowed ranges 1/dA < x̃A � min(1, MA/dA) and
1/dB � x̃B � min(1, MB/dB). For dA = 2 the possible infor-
mationally complete (N, M ) POVMs are characterized by the
values (NA, MA) ∈ {(1, 4), (3, 2)} so that the corresponding
possible range of scaled x parameters is given by 1

2 < x̃A � 1
for all these possible (N, M ) POVMs. For dB = 3 the possible
informationally complete (N, M ) POVMs are characterized
by the values (NB, MB) ∈ {(1, 9), (2, 5), (4, 3), (8, 2)} so that
the corresponding possible range of scaled x parameters is
given by 1

3 < x̃B � 1 for MB � 3 and 1
3 < x̃B � 2

3 for MB = 2.
The black dashed straight horizontal line in Fig. 1 marks this
upper bound of 2

3 for x̃B for the case of MB = 2 and dB = 3.
The values above this black dashed horizontal line describe
cases in which dB � MB so that the upper limit of the scaled

parameter x̃B is given by unity. In the case depicted in Fig. 2
(dA = dB = 3) the corresponding upper bounds for (N, M )
POVMS with MA = 2 and MB = 2 are also indicated by black
dashed straight vertical and horizontal lines. The values out-
side these black dashed lines describe cases in which either
dA < MA or dB < MB so that the upper limit of the scaled
parameters x̃A or x̃B is given by unity.

Symmetric informationally complete POVMs are charac-
terized by the parameter values x̃A = 1 and x̃B = 1 [21]. It
is apparent from Fig. 1 that the volume ratios detectable by
SIC POVMs are not close to the maximal possible amounts of
entanglement which can be detected by local measurements.
This is consistent with the gaps between the values of RSIC1

and Rcor for unequal dimensions of the subsystems in Table I.
Every pair of local (N, M ) POVMs with rescaled parameters
(x̃A, x̃B) belonging to the dark red area of Fig. 1 detects more
entangled states than local SIC POVMs. For subsystems with
identical dimensions and local (N, M ) POVMs with identi-
cal rescaled parameters x̃ the volume ratios increase slightly
with decreasing values of x̃. For d = 3 and x̃ = 0.35, for
example, the volume ratio of the entangled states is given
by R(x̃) = 0.76296 ± 8.2 × 10−4 > RSIC1 (cf. Table I). This
demonstrates that (N, M ) POVMs with well-chosen param-
eters x̃A and x̃B can detect more entangled states than SIC
POVMs. Furthermore, there are always parameter values of
x̃A and x̃B close to the lower bounds, i.e., the lower left corners
of Figs. 1 and 2, for which the volume ratios are close to their
maximal values. Thus, (N, M ) POVMs with x values close to
their lower bounds can always be used for close to maximal
local bipartite entanglement detection. The upper bounds on
the scaled x̃ parameters, i.e., min(M/d, 1), are irrelevant for
achieving this goal. In particular, optimal (N, M ) POVMs
are not necessary for this purpose. This observation offers
interesting perspectives for physical realizations of efficient
local bipartite entanglement detection as (N, M ) POVMs with
sufficiently small x values close to their lower bounds can
always be constructed [8,10,13].

V. CONCLUSION

Basic properties of sufficient conditions for arbitrary-
dimensional bipartite entanglement detection based on cor-
relation matrices and joint probability distributions of local
measurements have been investigated. On the one hand, the
dependence of these sufficient conditions on the nature of the
local measurements was explored for generalized measure-
ments based on informationally complete (N, M ) POVMs.
On the other hand, the efficiency of these classes of local
measurements for typical bipartite entanglement detection
was investigated quantitatively by numerically determining
volumes of detectable entangled states in the state space of all
possible bipartite quantum states with the help of a hit-and-run
Monte Carlo algorithm.

As a first main result it was shown in Sec. III that
inherent symmetry properties of informationally complete
(N, M ) POVMs imply that sufficient conditions for bipar-
tite entanglement exhibit characteristic scaling properties.
These necessarily valid conditions relate equivalent sufficient
entanglement conditions and thus also equally efficient entan-
glement detection scenarios. Their derivation is solely based
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on the validity of the constraints (3) and (4) characterizing
(N, M ) POVMs. Therefore, explicit constructions of (N, M )
POVMs are not required to establish these scaling properties.
They imply, for example, that for given dimensions of the
quantum systems involved local entanglement detection by
joint probability distributions of such (N, M ) POVMs with
a given efficiency can always be achieved by GSICs with
NA = NB = 1, MA = d2

A, and MB = d2
B. This general aspect

is of interest for realizations of local entanglement measure-
ments as even the construction of optimal GSICs, i.e., SICs, is
relatively well understood for quantum systems of dimensions
of at least up to 151 [29], whereas questions concerning the
explicit construction of optimal (N, M ) POVMs for arbitrary
values of N and M are still largely open. Furthermore, as a
result of these characteristic scaling properties, local entan-
glement detection by correlation matrices of informationally
complete (N, M ) POVMs is entirely independent of all their
parameters and is identical to the corresponding results of
LOOs [cf. (24)]. Thus, concerning correlation matrices, lo-
cal bipartite entanglement detection by (N, M ) POVMs is as
powerful as its detection by LOOs.

Based on a hit-and-run Monte Carlo algorithm, as a second
main result the potential of informationally complete (N, M )
POVMs for local bipartite entanglement detection was ex-
plored quantitatively. Our numerical results demonstrate that
with increasing dimensions of the local quantum systems,
detection of entangled bipartite states by such (N, M ) POVMs
becomes less and less efficient. However, the total number
of bipartite entangled states increases (cf. Table I). With
our Monte Carlo algorithm also the x dependence of joint
probability distributions was explored numerically for low-
dimensional local quantum systems. These results (cf. Figs. 1
and 2) demonstrate that for bipartite entanglement, detection
maximal efficiency can always be achieved by (N, M ) POVMs
whose x values are close to their lower possible bounds of
dA/M2

A and dB/M2
B for xA and xB. Furthermore, for well-chosen

x values (N, M ) POVMs can detect more entangled states
than SIC POVMs or other optimal (N, M ) POVMs. Contrary
to optimal (N, M ) POVMs, for which questions concerning
their existence and construction in arbitrary dimensions are
still largely open, (N, M ) POVMs with x values close to their
lower possible bounds can always be constructed [8,10,13].
This observation offers interesting perspectives for practi-
cal applications of efficient local entanglement detection by
(N, M ) POVMs, particularly in the areas of quantum commu-
nication and quantum key distribution.

Although these results already shed light on characteristic
features concerning the potential of local measurements for
bipartite entanglement detection and its dependence on differ-
ent classes of local quantum measurements, they also trigger
questions of interest for subsequent research. For example, our
numerical results have established that in bipartite scenarios
with increasing dimensions of the quantum systems, local
measurements significantly underestimate even the amount
of NPT entangled states. It would be interesting to explore
whether a similar tendency is also observable in multipartite
scenarios and how locally detectable multipartite entangle-
ment depends on the local quantum systems’ dimensions and
on the quantum measurements’ character. Nevertheless, open
questions even remain in the significantly simpler context of

bipartite quantum systems. For practical applications it would
be interesting to find more efficient methods for bipartite en-
tanglement detection, which are at least capable of detecting a
significant fraction of all NPT entangled states. In this context
the additional use of local operations and classical commu-
nication may be useful. From the theoretical point of view,
investigations concerning the explicit construction of arbitrary
optimal (N, M ) POVMs or proofs of their nonexistence in
particular dimensions constitute natural next steps for future
research.
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APPENDIX: SPECTRAL REPRESENTATION OF S

In this Appendix, the most general form of the lin-
ear operator S : Hd2 → HNM is determined, which relates
NM Hermitian linear operators �, not necessarily positive
semidefinite, to an arbitrary orthonormal Hermitian operator
basis, say, G, i.e., � = GT S, so that the basic properties (3)
and (4), also characterizing (N, M ) POVMs, are fulfilled.
Thus, the linear operator S : Hd2 → HNM characterizes all
relations which necessarily have to be fulfilled between an
arbitrary orthonormal Hermitian basis G and any possible
(N, M ) POVM � irrespective of the positive semidefiniteness.
In order to determine this linear operator S : Hd2 → HNM , we
start from (6) and from the constraints (3) and (4). For N � 2
these constraints can be rewritten in the form

(ST S)i(α,a), j(α′,a′ ) = �δi(α,a), j(α′,a′ ) − �

M

(
N⊕

α=1

Jα

)
i(α,a), j(α′,a′ )

+ d

M2
Ji(α,a), j(α′,a′ ), (A1)

with

� = xM2 − d

M(M − 1)
, (A2)

the NM × NM matrix J of all ones, i.e., Ji(α,a), j(α′,a′ ) = 1,
and the M × M matrices Jα of all ones, i.e., (Jα )i(α,a), j(α′,a′ ) =
δα,α′ . In the degenerate case of N = 1 Eq. (A1) has to be
replaced by

(ST S)i(1,a), j(1,a′ ) = �δi(1,a), j(1,a′ ) + d − Mx

M(M − 1)
(J1)i(1,a), j(1,a′ ).

(A3)

Let us first consider cases with N � 2. It is apparent from (A1)
that for N � 2,

ST SJ = dN

M
J. (A4)

Therefore, Xi,1 = 1/
√

NM with components i ∈ {1, . . . , NM}
is a normalized eigenvector with eigenvalue �1 = dN/M. As
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(ST S)i, j is a symmetric real-valued matrix it can be diagonal-
ized and all its other eigenvectors have to be orthogonal to this
particular eigenvector. From the form of (A1) it is also appar-
ent that all orthonormal vectors Xi,ν with

∑M
a=1 Xi(α,a),ν = 0

have the same eigenvalue � [cf. (A2)] because (JαX )i,ν =
(JX )i,ν = 0 for α ∈ {1, . . . , N}. For each α, constructing M −
1 such vectors is possible. Therefore, the eigenvalue � is
N (M − 1)-fold degenerate. There are N − 1 additional linear
independent orthonormal vectors Xi(α,a),ν with the properties
(⊕N

α=1JαX )i,ν = MXi,ν and (JX )i,ν = 0. They all have the
same eigenvalue 0. All in all, there are 1 + N (M − 1) + (N −
1) = NM orthogonal eigenvectors and we obtain the spectrum
of the symmetric linear operator ST S,

Sp(ST S) =
{

�[N (M−1)],
dN

M

(1)

, 0(N−1)

}
, (A5)

with the exponents indicating the multiplicities of the eigen-
values. In the degenerate case with N = 1, the zero eigenvalue
disappears. Thus, provided the relation (5) characterizing
informationally complete (N, M ) POVMs is fulfilled, the di-
mension D of the eigenspace of the nonzero eigenvalues of
ST S is given by

D = N (M − 1) + 1 = d2. (A6)

As a result, the spectral representation of the symmetric linear
operator ST S is given by

(ST S)i, j =
d2∑

μ=1

Xi,μ�μX T
μ, j, (A7)

with

�1 = dNM

M2
, Xi,1 = 1√

NM
,

�ν = �,

M∑
a=1

Xi(α,a),ν = 0 (A8)

for each α ∈ {1, . . . , N}, i ∈ {1, . . . , NM}, and ν ∈
{2, . . . , d2}. The NM × d2 matrix Xi,μ fulfills the
orthogonality condition

NM∑
i=1

(X T )μ,iXi,ν = δμ,ν (A9)

for μ, ν ∈ {1, . . . , d2}. As a consequence of (5), the most
general form of the d2 × NM matrix Sμ,i, which is consistent
with (3) and (4), is given by

Sμ,i =
d2∑

μ′=1

OT
μ,μ′

√
�μ′X T

μ′,i, (A10)

with the arbitrary real-valued orthogonal d2 × d2 matrix O,
i.e., OOT = OT O = Pd2 . Thereby, Pd2 denotes the projec-
tion operator onto the d2-dimensional eigenspace of nonzero
eigenvalues of the linear operator ST S acting in the Hilbert
space HNM . The additional constraint (1) characterizing any
POVM implies the additional relation

11d =
M∑

a=1

�i(α,a) =
√

d
d2∑

μ=1

GμOT
μ,1, (A11)

where we have taken into account the property (A8) of
the eigenvectors of ST S. This property together with (A11)
implies that also condition (2) is fulfilled. All these considera-
tions concerning the spectral representation of ST S also apply
to the degenerate case of N = 1. However, in this latter case,
all eigenvalues are nonzero. Therefore, the map S : Hd2 →
HNM as defined by (A10) fulfills both relations (3) and (4)
and the additional dimensional constraint (5). In a new basis
of orthonormal Hermitian operators defined by G̃ = OG [cf.
(A10)], we obtain the relation � = GT S = G̃T S̃ with

S̃ν,i =
√

�νX T
ν,i (A12)

and G̃1 = 11d/
√

d and Tr{G̃ν} = 0 for ν ∈ {2, . . . , d2} [cf.
(A11)]. In this new basis G̃, it is apparent that, according to
(A5), the map S maps Hd2 injectively onto a d2-dimensional
subspace of HNM by preserving orthogonality in such a way
that all basis operators G̃ν with ν ∈ {2, . . . , d2} are mapped
conformally onto a (d2 − 1)-dimensional subspace of HNM

by scaling the norms of all operators by a factor of
√

�. As
these basis operators are orthogonal to G̃1, they are charac-
terized by the basis-independent property Tr{G̃ν} = 0 for ν ∈
{2, . . . , d2}. It is only the basis operator G̃1 which is scaled by
a different factor, namely,

√
�1 = √

dN/M. In Secs. III C and
III D it was demonstrated that this special property relating
an arbitrary basis of orthonormal Hermitian operators, G or
G̃, to an arbitrary informationally complete (N, M ) POVM �

manifests in general scaling relations for sufficient conditions
of bipartite entanglement.
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