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Abstract

Recently proposed correlation-matrix-based sufficient conditions for bipartite steerability from Alice
to Bob for arbitrary measurements are applied to local informationally complete positive operator
valued measures (POVMs) of the (N,M)-type. These POVMs include a large class of local generalized
measurements of current interest [Siudzifiska K 2022 Phys. Rev. A 105 042209]. Itis shown that the
trace norm of correlation matrices with local (IN,M)-POVMs is proportional to that of local
orthonormal hermitian operator bases (LOOs). This implies that all types of informationally complete
(N,M)-POVMs are equally powerful in detecting bipartite steerability from Alice to Bob and, in
addition, they are as powerful as LOOs. In order to explore the typicality of steering numerical
calculations of lower bounds on Euclidean volume ratios between steerable bipartite quantum states
from Alice to Bob and all quantum states are determined with the help of a hit-and-run Monte-Carlo
algorithm. These results demonstrate that with the single exception of two qubits this correlation-
matrix-based sufficient condition significantly underestimates these volume ratios. These results are
also compared to a recently proposed method that determines bipartite steerability from Alice’s qubit
to Bob’s arbitrary dimensional quantum system by bipartite entanglement detection. It is
demonstrated that in general this method is significantly more effective in detecting typical steerability
provided non local entanglement detection methods are used which transcend local measurements.

1. Introduction

Basic assumptions underlying classical physics, particularly in general and special relativity, require consistency
of all measurable statistical correlations with local realism [1]. As a consequence each measurement scenario
imposes particular restrictions on measurable multipartite correlations. In general these classical correlations
can be described within the framework of a local realistic theory (LRT) or local hidden variable (LHV) model [2].
These restrictions of possible classical correlations in local theories manifest themselves in Bell inequalities
associated with classical probability polytopes [3, 4]. A striking phenomenon of quantum systems is their
capability to violate these restrictions imposed by local realism, in particular in the context of measurement
scenarios [5, 6]. This phenomenon of Bell-nonlocality has been demonstrated in a series of impressive
experiments with increasing degrees of sophistication [7-9].

The possible existence of nonlocal quantum correlations has been pointed out as early as 1935 by Einstein,
Podolsky and Rosen (EPR) [10] in their discussion of nonlocal properties of a certain class of pure quantum
states. The peculiar properties of these quantum states have inspired numerous applications [11]. In his response
to EPR Schrodinger termed these quantum states entangled. In addition, he coined the notion of steering for the
characteristic quantum phenomenon underlying the physical discussion of EPR, namely the ability of one local
observer, say Alice, to influence the measurements of another local observer, say Bob, by her measurements
instantaneously [12, 13]. However, it was not until 2007 that Schrodinger’s qualitative description of steering,
frequently also termed EPR steering, was rigorously defined by Wiseman, Jones and Doherty [14, 15]. They
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based their notion of EPR steering on the existence of a local hidden state (LHS) model. These LHS models
generalize LHV models by transcending the LHV-specific theoretical state concept with the help of quantum
states thus allowing for a quantum theoretical description of the locally measurable probability distributions.
This concept of EPR steerability captures some nonlocal aspects of quantum correlations and differs from Bell
nonlocality and entanglement [16]. Although separability of quantum states is sufficient for EPR unsteerability,
or equivalently, EPR steerability is sufficient for entanglement, the precise relation between these concepts of
nonlocal quantum correlations is intricate, particularly for mixed quantum states. Contrary to entanglement,
for example, EPR steerability is an asymmetric property with respect to the local observers involved because
there are multipartite quantum states that allow one local observer to steer another observer but not vice versa.
Furthermore, in contrast to entanglement EPR steerability is a measurement dependent notion. Whether a
quantum state is EPR steerable or not depends on the local measurements which the observers can perform.
Thus, increasing the measurement capabilities of a local observer should also increase the number of EPR
steerable quantum states.

Apart from their significance for the foundations of quantum theory EPR steerable quantum states also have
potentially promising applications in quantum information processing, in particular in the areas of quantum
key distribution [17], quantum teleportation [18] and quantum secret sharing [19]. Because of this fundamental
and practical significance of EPR steering, it is interesting to develop tests for EPR steerability from Alice to Bob.
Although general necessary and sufficient conditions for bipartite EPR steerability of quantum states are known
[16,20, 21], these criteria involve intricate optimization procedures. In those, even the simplest case of two
qubits requires considerable numerical efforts to determine typical statistical features of bipartite EPR
steerability, such as volume ratios of EPR steerable versus all quantum states [20]. Up to now even in the simple
case of two qubits numerically feasible necessary and sufficient conditions for EPR steerability from Alice to Bob
are only known for cases in which Bob’s local measurements are restricted to projective measurements.
Although there is numerical evidence that these results also apply to general positive operator valued
measurements (POVMs) [21] a general proof of this conjecture is still missing.

In view of these difficulties numerically less demanding conditions for EPR steerability, which are only
sufficient and no longer necessary, offer a promising alternative for investigating typical statistical properties of
EPR steerable bipartite quantum states from Alice to Bob for arbitrary dimensional bipartite quantum systems.
Recently Lai and Luo [22] have developed such an approach based on the violation of an inequality which
involves the trace norm of the correlation matrix of local measurements. As a violation of this inequality can be
checked numerically in a rather straightforward manner, this approach may offer interesting perspectives for
exploring the statistical properties of bipartite EPR steerability from Alice to Bob. So far, these authors have
applied their sufficient condition to cases involving LOOs, mutually unbiased measurements (MUMSs) [23] and
general symmetric informationally complete positive operator-valued measures (GSIC) [24] for Alice and Bob.
For these measurements they have explored bipartite EPR steerability for particular families of qubit-qubit,
qubit-qutrit and qutrit-qutrit states and in addition for a particular one-parameter family of arbitrary
dimensional bipartite isotropic quantum states. In view of these investigations the natural questions arise to
which extent local measurements are capable of detecting arbitrary typical quantum states, which are not
restricted to sets of measure zero, and how does the nature of these measurements influence their detectability.

Motivated by these developments in this paper we further explore basic properties of this recently proposed
correlation-matrix-based sufficient condition for EPR steerability from Alice to Bob of Lai and Luo [22]. In
particular, we focus on two main questions. Firstly, we want to explore how the capability of detecting EPR
steerability from Alice to Bob in arbitrary dimensional bipartite quantum systems depends on the nature of the
local quantum measurements for a broader class of measurements. In this respect informationally complete
local measurements are of particular interest. For this purpose the recently introduced informationally complete
(N,M)-POVMs [25] are well suited. These families of POVMs allow for a unified description of a large class of
generalized measurements of current interest and include mutually unbiased bases (MUBs) [26], MUMs [23],
symmetric informationally complete POVMs (SIC-POVMs) [27, 28] and their generalized analogs GSICs
[24,29]. As a main result it will be demonstrated that the trace norm of correlation matrices of local (N,M)-
POVMs is proportional to that of LOOs. This scaling property implies that the sufficient condition for bipartite
EPR steerability from Alice to Bob of Lai and Luo [22] becomes independent of the local informationally
complete measurements performed within the class of (IN,M)-POVMs. Furthermore, it will be shown that LOOs
are equally powerful in determining EPR steerability from Alice to Bob aslocal informationally complete
(N,M)-POVMs. Secondly, we want to explore how many EPR steerable bipartite quantum states from Alice to
Bob can be detected by this correlation-matrix-based sufficient condition. For this purpose we sample random
bipartite quantum states by a recently developed hit-and-run Monte-Carlo procedure [30]. In particular, we
determine the resulting relative Euclidean volume ratios between EPR steerable states from Alice to Bob and all
possible bipartite quantum states for different dimensions of Alice’s and Bob’s quantum systems. This way we
are capable of exploring typical statistical features of EPR steerability from Alice to Bob.
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This paper is organized as follows. For the sake of completeness in section 2 we summarize basic facts about
the concepts of local realism and bipartite EPR steerability from Alice to Bob. Basic features of the recently
introduced (N,M)-POVMs [25], which are the local measurements we will use for our subsequent investigation,
are summarized in section 3. In section 4 the correlation-matrix-based sufficient condition for bipartite EPR
steerability from Alice to Bob of Lai and Luo [22] is introduced and applied to local measurements based on
(N,M)-POVMs in arbitrary dimensional bipartite quantum systems. In section 5 it is demonstrated that within
the class of local informationally complete (N,M)-POVM:s this sufficient EPR steerability condition exhibits a
characteristic scaling property. This implies that this sufficient condition becomes independent of the particular
informationally complete local measurements testing for EPR steerability. Furthermore, it becomes identical
with the corresponding sufficient condition for LOOs. In section 6 numerical results of Monte-Carlo
simulations are presented exploring Euclidean volume ratios of steerable bipartite quantum states from Alice to
Bob and all bipartite quantum states for different dimensions of Alice’s and Bob’s quantum systems.
Furthermore, these results are compared to the corresponding volume ratios based on a method recently
proposed by Das et al [31], which reduces the determination of bipartite steerability from Alice to Bob to the
determination of bipartite entanglement.

2. Local realism and bipartite steerability

Classical physical theories which are consistent with the physical laws of special relativity and its fundamental
distinction between time-like and space-like events are governed by local realism [1]. As a consequence classical
correlations between two space-like separated observers, say Alice and Bob, obey locality constraints. They can
be expressed in terms of generalized Bell inequalities which describe probability polytopes [4]. Consider a simple
bipartite scenario in which two space-like separated observers, Alice and Bob, perform random measurements
oflocal observables, say « € Oy and 5 € Op with O, and Op describing sets of local observables of Alice and
Bob. Each of these local observables has different possible measurement results, saya € My and b € Mg.Ina
local realistic classical theory (LRT) the bipartite probability distribution P(a, b| v, 3) of a possible joint local
measurement, in which Alice and Bob randomly select observables o and 3 and obtain measurement results a
and b, has the characteristic structure

P(a> blOé, 6) = Z PO\)PA(ﬂW» )\)PB(b|ﬂ> >\))
A€l

> PN =1 M

AcA
with the characteristic normalization 3 1, PA(ala, N) = 3, Mp PB(b|3, \) = 1. Upper indices, such as A
and B, refer to local observers, such as Alice (A) and Bob (B), small Greek letters symbolize measurements and
small Latin letters symbolize measurement results. According to (1), for each random selection of local
observables the joint probability distribution is a convex sum of local (conditional) probability distributions of
Alice and Bob, i.e. PA(a\a, A) > 0andP B(b| B, A) = 0, which depend on a random variable A € A with probability
distribution p(\) > 0. In this description this hidden variable’ A € A characterizes uniquely the classical state of
the bipartite physical system in a classical state space A. According to Bells theorem [1], the constraints imposed
on physical theories by local realism, as expressed by equation (1) in a bipartite scenario, can be violated by
quantum correlations. In particular, the quantum correlations originating from entangled quantum states can
violate local realism for particular choices of measurements. Recently violations of local realism by quantum
systems have been demonstrated by impressive experiments with increasing degrees of sophistication [7-9].

Another characteristic quantum concept is steering [ 16]. It has been introduced originally by Schrodinger in
1935[12, 13], in the same year in which Einstein, Podolsky and Rosen (EPR) have published their work
questioning the completeness of quantum mechanical description and describing the well-known EPR
paradoxon [10]. Steering, sometimes also called EPR steering, may be viewed as a generalization of the
experimental scenario which forms the basic scenario discussed in the EPR paradoxon and which is described by
(1) within the framework of a local realistic theory.

Bipartite scenarios are among the simplest ones for which the concept of EPR steering can be formulated.
Accordingly, let us again consider two observers, Alice and Bob, performing general local measurements which
can be described by local positive operator valued measures (POVMs) [32, 33], say {Hg)u > 0} for Alice and
{Hg) » = 0} for Bob. Thereby avand (3 denote the different measurements and a and b denote their
corresponding measurement results. These POVMs obey the characteristic completeness relations

Z Hé,a = la, Z Hg,b = lg, 2)
aceMy be Mg
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with the unit operators 1,, and 14, of the d4- and d-dimensional local Hilbert spaces H* and H? of
Alice’s and Bob’s quantum systems. The Hilbert space of the complete bipartite quantum system is given
by H = H* @ HE.

In a typical bipartite EPR steering from Alice to Bob, Alice prepares a bipartite quantum state, say p > 0, with
corresponding reduced local density operators p4 = Trz{p}and p? = Tr{p} for Alice and Bob. It is assumed
that Alice can perform local measurements on the combined quantum state only with the help of her POVM
{Hia}, and Bob can perform local measurements on this quantum state only with his POVM {Hﬁ’ »}. According
to quantum theory the bipartite probability distribution of a possible joint local measurement on this quantum
state, in which Alice and Bob measure observables o and 3 with measurement results a and b, is given by

P(a, bla, B, p) = Trap{II4, ® 115, p}. 3)

A quantum state p is called EPR unsteerable from Alice to Bob with respect to measurements v and Jif this joint
probability distribution can be described within the framework of alocal hidden state (LHS) model [14, 15].
Otherwise this quantum state is called EPR steerable from Alice to Bob concerning these measurements. More
concretely, EPR unsteerability from Alice to Bob for local measurements described by the POVMs {17} ,} and

{ H’g, »} means, that there exists a statistical ensemble of reduced quantum states of Bob, say { (], pf )A€ A}
with the random variable { A € A} being characterized by a probability distribution {p(\) > 0| A € A}, which is
consistent with the conditional joint probability (3), i.e.

P(a, bla, B, p) = Z P()\)PA(61|CY’ )\)PB(blﬁ> A,
A€l
PEIB, N) = Trp{TT] 3} )

Itis apparent that this restriction on the joint probability distribution of Alice (A) and Bob (B) is weaker than the
restriction (1) imposed bylocal realism as it involves a quantum mechanical evaluation of Bob’s local conditional
probability distribution P® (b3, V). Using (2) and the characteristic normalization for conditional probabilities
this condition (4) implies the relations

> P(a, ble, B, p) = Trp{Il, p%) = Trp{II5, > p(N 3},

ace My AeA
> P(a, bla, B, p) = Tra{Ily ,p%} = > p(N)PA(ala, V). 5)
be Mg AeA

Thus, concerning Bob’s measurement of the POVM {Hg,b}, Bob’s reduced quantum state pB and the LHS state
Yaea M) pf are indistinguishable.

EPR steering from Bob to Alice is defined analogously. It is worth mentioning that the two concepts of EPR
steerability or EPR unsteerability, namely from Alice to Bob on the one hand and from Bob to Alice on the other
hand, are asymmetric. In particular, EPR steerability (or EPR unsteerability) from Alice to Bob does not
necessarily imply EPR steerability (or EPR unsteerability) from Bob to Alice.

3. Generalized measurements by positive operator valued (N,M)- measures

In this section we summarize basic results on informationally complete generalized measurements which can be
described by (IN,M)-POVMs [25]. They allow for a unified description of various more specialized measurement
schemes, including MUBs [26], MUMs [23], SIC-POVMs [27, 28] and GSIC [24, 29].

In a d-dimensional Hilbert space a (N,M)-POVM, say I1, is a set of NPOVM:s such that each of them involves
M positive semidefinite operators describing the different possible measurement results, i.e.
n={,,>0/a=1,--,N; a=1,--- ,M}. The parameter « identifies a particular measurement scheme
associated with an experimental setup and the parameter a identifies the corresponding different possible
measurement results. The operators I1,, , of a (N,M)-POVMs satisfy the additional relations [25]

d
Tr{lly .} = —, 6
r{Ilsq} v (6)
d — Mx

T Haanau’ = 5au’+ 1 - 6uu’ I E—— 7
0o T} = % o+ (1= Bu) 37 @)

I, .11 ——d
Tr{ a,a a’,a’} - MZ (8)

forall « = o'. The possible values of x are constrained by the relation d/M? < x < min(d?/M?, d/M).A(N,
M)-POVM, for which x assumes its largest possible value, is called optimal.

Ifa (N,M)-POVM II contains d” linearly independent positive semidefinite operators it is called
informationally complete. As each of the N POVM:s fulfills the completeness relation (2), informational
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completeness constrains the parameters N, M and d by the relation [25]
(M- 1N+ 1=4d~ )

Therefore, each possible solution of this equation yields a possible informationally complete (N,M)-POVM in a
given d-dimensional Hilbert space. As a result at least four possible classes of informationally complete
(N,M)-POVMs can always be constructed. They correspond to the possible solutions (N, M) € {(1, a%,
d+1,d),(d—1,2),(d—1,d+2)}.In particular, the solution (N, M) = (1, &%) characterizes a one-parameter
family of GSICs [24, 29]. The solution (N, M) = (d + 1, d) describes MUM [23], which in the special case
x=d’/M* = d/M = 1 reduces to projective measurements with maximal sets of  + 1 MUBs. For a qubit, i.e.
d =2, these four possible solutions of (9) collapse to two cases, namely GSICs (N, M) = (1, 4)) and MUMs
(N, M) =3,2)).

In a d-dimensional Hilbert space informationally complete (IN,M)-POVMs can be represented by a basis of
d* linearly independent hermitian operators. For this purpose it is advantageous to choose an orthonormal basis
of hermitian operators, i.e. { Gj|G; = G;, i = 1,---,d*}, with respect to the Hilbert-Schmidt (HS) scalar product
(Gi|Gy) = Tr{ GiT Gj'}. Such abasis spans the d>-dimensional Hilbert space 2 of hermitian linear operators
over the field of real numbers.

Starting from an arbitrary orthonormal basis B = {|k); k = 1,---,d} in the d-dimensional Hilbert space
H; = (Span(B), (-|-)) ofa d-dimensional quantum system, an example of such a hermitian orthonormal
operator basis is given by

6 — LSk
l—ﬁkzz:l|><la

B 1 i—1
= ——| D I}kl — G— DI){l |
g1 )
Gondn = %umw ) (ml), 1< m<n<d
Gim—1ydin = %(lm)(fﬂ —Im)y(m|), 1<n<m<d (10)

fori =2, --- ,d. This basis satisfies the additional convenient requirements G \/E = 1, such that orthonorm-
ality implies Tr{G;} = 0. Any other orthonormal hermitian operator basis can be constructed from this one by
applying an arbitrary real-valued orthogonal transformation, say O with OO" = 1,2, onto this operator basis.
For our subsequent discussion it is convenient to arrange the basis operators of such an arbitrary hermitian
operator basisin a d*-dimensional column vector, say G = (Gy,--- G = OG. The hermitian basis operators
of any orthonormal basis fulfill the relation

dz
éz G =14 (11)
i=1

Analogously, an arbitrary (N,M)-POVM can be combined into a NM-dimensional row vector of positive
semidefinite operators, i.e. Il = (I3, --- ,IInpy). Its expansion in terms of this basis is given by Il = G TS with the
real-valued @ x NM-matrix S, whose matrix elements are constrained by the defining properties (6), (7) and (8)
of (N,M)-POVMs. In the subsequent sections we shall take advantage of the fact that the characteristic properties
of the matrix S enable an efficient calculation of trace norms of correlation matrices for local (N,M)-POVMs.

4. Correlation-matrix-based sufficient conditions for bipartite EPR steerability from Alice
to Bob

In this section the general form of the recently proposed sufficient condition for bipartite EPR steerability from
Alice to Bob of Laiand Luo [22] is discussed and applied to local measurements of Alice and Bob which can be
described by arbitrary (IN,M)-POVMs or by LOOs. This sufficient condition is based on a violation of an
inequality involving the trace- or 1-norm of the correlation matrix of these local measurements of Alice and Bob.
Itis valid for arbitrary dimensional quantum systems.

In order to investigate EPR steerability of bipartite quantum states with respect to two arbitrarylocal
generalized measurements described by (N,M)-POVMs, say IT* and IT5, let us consider the associated
correlation matrix C(IT%, IT? |p) with matrix elements

(CAA, TPp)); = Trap{II*() @ TP (j(p — p* @ pP)}. (12)

Thereby, I1%(i) denotes the i-th component of Alice’s row vector IT* with the indexing (o, a) :== (o — 1)M4 +
a€ {l1,--- ,NaM,}. The analogous notation is used for Bob’s POVM elements 15 -

5
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If the bipartite quantum state p is EPR unsteerable from Alice to Bob with respect to these local
measurements this correlation matrix can be rewritten in the form (cf (4))

CA, T == T ppO) Vi, MW, V),

M eEA
Viao\ N) = P(ala, \) — P(ala, \),
Wi\ N) = Trp{I15 , 8} — Trg{IT5, %) (13)

withie {1,--- ,NaM,}, j€ {1, --- ,NgMp}. The trace- or 1-norm of this Ny4M, X NgMp correlation matrix can
be restricted with the help of the triangular inequality and the Cauchy-Schwarz inequality yielding the result

lcar, HBlmulgg S p0pIVOL X)W Xl

AMNEA
1 2 12 i i

<= [ 30 pOpNOIVOL, DI |3 ppN) W, X3 (14)
2 AMNEA ANEA

Using the positivity of variances this upper bound can be further upper bounded with the help of the inequalities

NyMy NyMy
5757 pIP)VEA, X2 <23 (Tra{dIA)2() pA) — (Tra{IIA () pA})?): =2V4,
MEA i=1 i=1
) NpgMp . , NpMp NpMp
ST PPN, X2 <2 DT (Trp{IP ()i H? — 2 (Trp{IIB(j) pP})>
AXEA j=1 AeA j=1 j=1

NpMp NgMp
< Z[mz},x SO (Trp{IB(jHoBH?— > (TrB{HB(j)pB})2)= =2W., (15)
7 =1 j=1

which involve a maximization over all possible reduced quantum states of Bob o2,

In order to simplify these expressions further we represent the local (N,M)-POVMs 14 = (G*)"'S4 and
I8 = (G®)T'SB by arbitrary LOOs. Analogously we represent Alice’s and Bob’s reduced states in the form
pt = (GM'r4, pB = (GB)'rPand of = (GB)TsB. Using (11), (A7) and (A8) we find

NyMy _
S Te (120 %) = T ((GNTSASNTGAp) = daTy + e/Ma = T
i=1 da
NyMy _
> (T (TG p*))? = (TS ST = DTy (o) + W2 =T,
i=1 da
S (Tl IP G2 = (B SHSHT o = TyTry((oty?) + Mo/ Mo — T,
J
=1 ds
NpMp o
> max (Trp{I1P(j)oP})* = max (sBYTSB(SBYsB = T}y + w- (16)
-1 ° s B
Combining these upper bounds we finally obtain the inequality
[CA, T < JTalp (da — Tral(p?H (1 — Tra{(p?)?}) (17)
with
= XAMj—dA T — XBMé—dB (18)

=2 = p= ————.
My(My — 1) Mp(Mp — 1)

Therefore, provided a bipartite quantum state p is EPR unsteerable from Alice to Bob with respect to the
arbitrary (N,M)-POVMs IT* and IT5, the 1-norm of the associated correlation matrix, i.e. [I C(HA, e o)1
tulfills inequality (17). Stated differently, a violation of inequality (17) is a sufficient condition for bipartite EPR
steerability from Alice to Bob with respect to these local generalized measurements. Consequently, inequality
(17) can be used to obtain upper bounds on measures of EPR unsteerable bipartite states from Alice to Bob and
lower bounds on measures of bipartite EPR steerable bipartite states from Alice to Bob. For different (IN,M)-
POVMs and arbitrary quantum states the upper bound of the steering inequality (17) varies only by the scaling
factor \/T'4I'3. However, for different types of (IN,M)-POVMs the dimensions of the correlation matrices
determining the left hand side of (17) may change, thus complicating a direct comparison of detection
efficiencies resulting from different values of N, M and x.

Itis straightforward to derive an analogous inequality for an arbitrary set of local hermitian operators, say
a=(ay, - ay,) for Aliceand 6 = (5, - -+ ,(,,) for Bob, describing local measurements. The resulting inequality
is given by [22]




10P Publishing

Phys. Scr. 98 (2023) 115234 M Schumacher and G Alber

IC(c, Blp)lh < VEWE (19)

with

Vf = Z(TI‘A{(OZ,')ZPA} - (TI‘A{Oé,‘pA})2),

i=1

WL = | max ) (Trp{5;0%})* — Z(Trs{ﬁjpB})z} (20)
=1

a ]:1

which also involves a maximization over all possible reduced quantum states of Bob o'®.

5. Influence oflocal (N,M)-POVMs on violations of the EPR steering inequality (17)

The natural question arises how the sufficient condition for bipartite EPR steerability from Alice to Bob based on
aviolation of (17) depends on the type of local measurements performed by Alice and Bob. In this section it is
demonstrated that inequality (17) exhibits a characteristic scaling property originating from a permutation
symmetry inherent in the definition of (N,M)-POVMs. It implies that all informationally complete local
measurements involving (N,M)-POVMS and all LOOs lead to one and the same inequality whose violation
yields a sufficient condition for bipartite EPR steerability from Alice to Bob. The derivation of this scaling
property is based on general relations between informationally complete (N,M)-POVMs and LOOs which have
been obtained recently in an investigation on the detection of typical bipartite entanglement with the help of
local measurements [34] and are summarized in the appendix.

Before we turn to the EPR steering detection with (N,M)-POVMs let us first investigate inequality (19) for
the special case of LOOs for Alice and Bob as described by (10). Alice measures the hermitian basis operators
G = (GIA; -G dA/z‘ )" and Bob measures the hermitian basis operators GP = (GIB; -G dg ). According to (20)
the relevant upper bounds yield

dZ

VA = SN (G2 — (Tl G pA)2) = da — Tral(p*)2),
i=1

2 2

dB - dB ~
W2 = max  (Trs{ Gy oB}? — 3 (Trs{G] pB))2 =1 — Trs{(p®)2). @1

7 j=1 j=1
Thus, inequality (19) reduces to
ICG™, GPlp)IF < (da — Tra{(p®*H(A — Trp{(p?)?}). (22)

As the 1-norm of a matrix is invariant under arbitrary local orthogonal transformations performed by Alice and
Bob, say 0" and O°, inequality (22) also applies to any other LOOs for Alice and Bob, say G* = 0%G* and
GP = OGP ie.

ICGA, GFlp)lh < (da — Tra{(p™? D1 — Trs{(p®)?}). (23)

The upper bound of the EPR steering inequality for (N,M)-POVM:s (17) is the boundary of (23) scaled by the
factor /T4 I3 . This scaling property enables us to compare the EPR steering inequalities of both measurement
settings in a straight forward way despite the different dimensions of the correlation matrices of the (N,M)
-POVMs and of the LOOs entering (17) and (23). For this purpose we have to relate the 1-norms of correlation
matrices of local (N,M)-POVMs to the ones of LOOs. Let Alice and Bob use local informationally complete
(N,M)-POVMs, say IT* and IT%, with basis expansions IT* = (G*)T$4 and IT? = (GP)” S® involving arbitrary
local orthonormal bases G* and G*. As outlined in the appendix the defining properties of informationally
complete (N,M)-POVMs (2), (7), (8) and (9) imply that the 1-norms of the correlation matrices exhibit the
simple scaling property

[C, TP )|y = JTals[[C(GH, GPlp)|i- (29
Thus, the trace 1-norm of the correlations matrices of local (N,M)-POVM is also proportional to that of LOOs
with the scaling factor /T4 I5. Asaresult inequality (17) simplifies to the inequality for LOOs (23), i.e.
[CA™, TBIp) | = VTals||C(GA, GBIp)|h < YTuls \/(dA — Tra{(p*H (1 — Tre{(p®)*}). (25)

Therefore, a violation of inequality (23) yields the sufficient condition for bipartite EPR steerability from Alice to
Bob not only for arbitrary LOOs but also for arbitrary informationally complete local (N,M)-POVMs. In general,
the property of EPR steerability depends not only on the quantum state but also on the class of measurements
involved. Since the EPR steering inequality (25) is identical for all (IN,M)-POVMs and LOOs, the quantum states

7
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Figure 1. Bell diagonal two-qubit quantum states which are steerable with respect to different measurements: Steerable states with
respect to local measurements involving (N,M)-POVMs due to violations of inequality (25) or equivalently (23)(yellow regions);
steerable states with respect to projective measurements due to the criteria (27) and (29) (yellow and blue regions); unsteerable states
with respect to projective measurements due to the criteria (27) and (29) (uncolored central convex region).

violating this inequality are steerable with respect to all these measurements. In view of this result the recent
observations of Lai and Luo [22], which apply to particular families of quantum states and particular SIC-
POVMs, MUBs and LOOs only, appear as special cases of this general consequence of characteristic scaling
properties of (N,M)-POVMs.

For the simple case of Bell diagonal states of the form

3

Ppi = @l + Y gt o8 (26)

4 el

with the Pauli spin operators o and o? for Alice and Bob it is straightforward to determine the quantum states
which are steerable from Alice to Bob and which can be detected by a violation of inequality (25) or equivalently
(23) with the help of LOOs or local informationally complete (N,M)-POVMs. For Bell diagonal states EPR
steering is symmetric. Therefore, a steerable quantum state from Alice to Bob is also steerable from Bob to Alice.
For Bell diagonal states and projective measurements a necessary and sufficient condition for EPR steerability
has recently been derived by Nguyen et al [21]. Accordingly, the Bell diagonal states on the border of EPR
steerability are solutions of the equation

1 = 27Ny| det T| 27)

with the diagonal matrix T = diag(t;, f,, t3). The normalization constant Nris determined by the relation
Nyl = f AS@@)[7i - T-2A]> (28)
Sy

with the unit vectors # being integrated over the surface of the unit sphere S,. Equivalently these states can be
defined by the relation [35]

27 = f dS@@) i - T, 29)
Sy

In figure 1 the yellow regions within the tetrahedron of all Bell diagonal quantum states represent the steerable
states detected by (25). The yellow and blue regions in this figure indicate the steerable quantum states with
respect to projective measurements according to the criteria of (27) and (29). The uncolored central region
represents the Bell diagonal two-qubit states which are unsteerable with respect to projective measurements
accordingto (27) and (29).

The sufficient condition based on a violation of inequality (25) may be improved further by changing the
LOOs of Alice and Bob to another set of local hermitian operators, say & and &>, thereby relaxing the
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orthonormality constraints. This may be achieved by a simple rescaling of Alice’s local observables of the form
at =nGH (30)

with the real-valued parameters h; [22]. With these new local measurements inequality (19) assumes the form

IC@A, GRlp)lh < VA — Trs((p®?) G1)
with
d;
VA =S hAT((GH2p%) — (TG pA)2). (32)

i=1

For a given state p it can be tested whether the parameters h; can be chosen so that inequality (31) can be violated.
Thus, for a given state p it may be possible to find an optimal set of parameters h;, such that inequality (31) is
violated even if inequality (23) is still fulfilled. Such an optimization of the sufficient condition for EPR
steerability from Alice to Bob by variations of the parameters h; of Alice’s LOO or local informationally complete
(N,M)-POVM breaks the scaling property. Thus, a violation of inequality (31) may detect more EPR steerable
states from Alice to Bob than a violation of inequality (23).

6. Numerical results

Numerous investigations have already concentrated on criteria and sufficient conditions for steerability and
have applied them to restricted classes of quantum states which typically form zero-measure sets within the
convex set of all quantum states [16]. However, so far questions concerning the statistical typicality of steerability
and its detectability by local measurements are largely unexplored. In this section we concentrate on these latter
issues and explore Euclidean volume ratios between bipartite steerable and all bipartite quantum states. In
particular, we concentrate on detecting EPR steerability from Alice to Bob by local quantum measurements
based on violations of inequality (31). The required volume ratios between EPR steerable quantum states from
Alice to Bob and all quantum states for different dimensions of Alice’s and Bob’s quantum systems will be
determined with the help of a recently developed hit-and-run Monte-Carlo method [30, 36]. This way the
efficiency can be explored with which typical bipartite steerability can be detected with the help of local
measurements.

Starting from a d ,dg-dimensional Hilbert space H 4, 4, describing a bipartite quantum system the
corresponding (d, dg)*-dimensional Hilbert space H,, 4, of hermitian linear operators can be constructed.
With respect to the Hilbert-Schmidt (HS) scalar product (A|B)ys = Trag{A'B} for A, B € H,g, 4, this Hilbert
space H g, 4,2 is a Euclidean vector space on which volumes of sets of hermitian linear operators and of convex
sets of quantum states p > 0 can be defined naturally. Numerically the Euclidean volumes of quantum states can
be determined efficiently with the help of a recently developed hit-and-run Monte-Carlo algorithm [30] which
has already been applied successfully to the determination of Euclidean volumes of bipartite quantum states.
This efficient Monte-Carlo method, which has been introduced originally by Smith [37], relies on the realization
of arandom walk inside a convex set that converges efficiently to a uniform distribution over this convex set and,
moreover, is independent of the starting point inside this convex set [38].

With this hit-and-run Monte-Carlo method we randomly sampled N = 10® bipartite quantum states for
different values of d4 and dg. For each of these randomly selected states it has been tested whether it violates the
sufficient condition for EPR steerability from Alice to Bob (31) for LOOs or informationally complete local
(N,M)-POVMs with optimized parameters h;. If inequality (31) is violated this quantum state is EPR steerable
from Alice to Bob and is kept. Otherwise this quantum state is dismissed. This way Euclidean volume ratios
Rs.4_.gbetween the volumes of EPR steerable quantum states from Alice to Bob and all bipartite quantum states
have been determined numerically. In view of the optimization over the parameters 4; these Euclidean volume
ratios Rg.4 . p are always larger than the corresponding ratios which are obtainable directly from a violation of
inequality (23).

We summarize our numerical results in table 1. We have numerically investigated bipartite quantum states
with 2 < dy, dg < 4. The cases not shown in table 1 yield negligible volume ratios below our numerical accuracy.
These results suggest that the detection of typical bipartite EPR steerability from Alice to Bob based on a
violation of inequality (31) with LOOs or informationally complete local (N,M)-POVMs significantly
underestimates the volume ratios of EPR steerable states in higher dimensional scenarios beyond two-qubit
cases. It should be emphasized that in view of the peculiar scaling properties of (N,M)-POVMs discussed in
section 5 the volume ratios of table 1 cannot be increased by changes to other LOOs or informationally complete
local (N,M)-POVMs.
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Table 1. Numerical estimates of lower bounds
ofthe Euclidean volume ratios Rg.4 g between
EPR steerable quantum states from Alice to
Bob and all bipartite quantum states for
different dimensions d, and dj of Alice’s and
Bob’s quantum systems: These estimates are
based on a violation of inequality (31) with
Alice’s local measurement being optimized by
rescaling. The procedure described in [30] was
used to estimate the numerical errors.

Case dg=2 dg=3

d,=2 5,011 x 1072 1,92 x 107°
+1,5x 107* +4,1 x 107¢

d,=3 5,72 x 107° 0
+6,4 x 10°°

Table 2. Numerical lower bounds on the Euclidean volume
ratios Rg.4 . g between EPR steerable quantum states from
Alice to Bob and all bipartite quantum states for d4 = 2 and
different dimensions 2 < dp < 7 of Bob’s quantum system:
These estimates are based on the approach of Das etal [31].
The Peres-Horodecki condition has been used as a sufficient
condition for bipartite entanglement of 74 g for dg > 3. The
procedure described in [30] has been used to estimate the

numerical errors.
dy 2 3 4
0,05167 0,10936 0,17278
+1,5 x 107* +3,4 x 107* +5,6 x 107*
dg 5 6 7
0, 24009 0,3119 0,3842

48,3 x 10°* +1,3 x 10 +1,5 x 10

In order to quantify this possible underestimation of bipartite steerability it is of interest to compare the
results of table 1 with the corresponding results of another sufficient condition for bipartite EPR steerability
from Alice to Bob which has been proposed recently by Das et al [31]. However, this method is only applicable if
Alice’s quantum system is a qubit. Beyond this requirement it does not impose any restrictions on the
dimensionality of Bob’s quantum system. The authors have proven that given a bipartite quantum state p,
entanglement of the mixed quantum state

TA—B = f1p + (12—“)112 ® Tra(p) (33)
foravalueof € [0, 1/ J3 ]is sufficient for EPR steerability from Alice to Bob. As there are powerful methods
for determining bipartite entanglement, this approach may yield better lower bounds on the volume ratios
Rs.4 . pinits regime of validity. In particular, according to Peres [39] and Horodecki [40] one may use the
existence of a negative partial transpose (NPT) of 7, 5 as a sufficient condition for bipartite entanglement for
cases with d > 3. In cases with dy < 3 this latter condition is also necessary for bipartite entanglement. However,
apossible disadvantage of this approach is that it is not based on local measurements of Alice and Bob. Table 2
depicts our numerically obtained lower bounds on Euclidean volume ratios Rs.4 .z based on the approach by
Dasetal[31] combined with NPT tests of the states 74, of (33) for different dimensions dg of Bob’s quantum
system. A comparison with the results of table 1 demonstrates that for two qubits the detection of EPR
steerability by optimized local measurements leads to a result in agreement with the one of table 2. However, in
all other cases the local measurement based sufficient condition for EPR steerability from Alice to Bob
significantly underestimates the volume ratios Rg.4 3 of table 2. Furthermore, the volume ratios of table 2 also
agree with the intuition suggested by the concept of EPR steerability from Alice to Bob that increasing the
dimensionality of Bob’s local quantum system should increase his ability to detect EPR steerability by Alice.

In view of the differences between the results of tables 1 and 2 one may ask whether the underestimated
volume ratios of table 1 may still be improved by using the approach of Das et al [31], while detecting
entanglement of the quantum state 7,4 of (33) by local measurements. Recently it has been demonstrated that
local informationally complete (IN,M)-POVMs are as powerful in detecting entanglement of bipartite quantum
states as LOOs [34]. This is a consequence of the peculiar scaling properties characterizing local informationally
complete (N,M)-POVMs and of their relation to LOOs. It has already been shown by Gittsovich and Githne [41]
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that a sufficient condition for bipartite entanglement detection by LOOs is given by a violation of the inequality

IC(GH, GBlp)lh < (1 = T {(pA?H(1 — Trg{(pB)?)). (34)

with G* and G” denoting the LOOs of Alice and Bob and p* and p” denoting their reduced quantum states.
Using LOOs of the form (10) for Alice and Bob and the relations 74 5 = up® + (1 — p)/2)l, and
78 5 = pP for the reduced quantum states of (33), inequality (34) assumes the form

1+ 2
2u?

iuaé’*, Grasp)lh = I1C(G* Gl < \/( - TrA{(pA)Z})u — Trs{(p")*D). (35)
For yu = 1/+/3 inequality (35) reduces to inequality (23) with d, = 2. Thus, for cases with d, = 2 a violation of
inequality (23) characterizes once again the sufficient condition for EPR steerability from Alice to Bob by
entanglement detection via correlation matrices of local measurements involving LOOs or informationally
complete (N,M)-POVMs. This demonstrates that the approach of Das et al [31] combined with local
measurements involving LOOs or informationally complete (IN,M)-POVMs as tests for bipartite entanglement
cannot improve the results of table 1.

7. Conclusions

We have applied the correlation-matrix-based sufficient condition for bipartite EPR steerability from Alice to
Bob of Lai and Luo [22] to local measurements based on (IN,M)-POVMs performed on arbitrary dimensional
bipartite quantum systems. It has been shown that within the class of local informationally complete
(N,M)-POVMs this sufficient EPR steerability condition, which is based on a violation of inequality (17),
exhibits a peculiar scaling property. This implies that a violation of one and the same inequality characterizes this
sufficient condition for measurements involving LOOs and for all local informationally complete (N,M)-
POVMs. Thus, local informationally complete (IN,M)-POVMs are as powerful as LOOs for detecting bipartite
EPR steerability from Alice to Bob based on a violation of inequality (23).

With the help of a hit-and-run Monte-Carlo algorithm we have determined lower bounds on the Euclidean
volume ratios of EPR steerable bipartite quantum states from Alice to Bob and all bipartite quantum states for
low dimensions of Alice’s and Bob’s quantum systems. These numerical results explore the statistical typicality
of locally detectable bipartite EPR steerability from Alice to Bob based on a violation of inequality (31). They
demonstrate that, except for the case of two qubits, the sufficient condition for bipartite EPR steerability from
Alice to Bob resulting from a violation of inequality (31) tends to underestimate the Euclidean volume ratios
between EPR steerable bipartite quantum states from Alice to Bob and all bipartite quantum states significantly.
Our numerical investigations also demonstrate that the recently introduced approach of Das et al [31], which
relates bipartite EPR steerability from Alice’s qubit to Bob’s arbitrary dimensional qudit to bipartite
entanglement, can be more efficient provided methods for detecting bipartite entanglement are used which
transcend local measurements. However, besides not being based on local measurements a further disadvantage
of this latter approach is that its validity is restricted to cases in which Alice’s quantum system is a qubit.
Therefore, further research is required for the development of efficient measurement-based methods for the
detection of EPR steerability and for the exploration of its intricate relation to entanglement.
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Appendix

This appendix outlines the derivation of the general scaling relation (24) of section 5 between the 1-norms of the
correlation matrices of arbitrary LOOs and local informationally complete (N,M)-POVMs. The general
relations between informationally complete (N,M)-POVM:s and orthonormal hermitian operators bases
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presented in this appendix have been obtained recently in an investigation on the detection of typical bipartite
entanglement with the help oflocal measurements [34].

We consider a d-dimensional Hilbert space Hy; = (Span(B), (:|-)) with orthonormal basis
B = {|1),---,|d)} and an associated arbitrary basis of hermitian linear operators G = (G,,--+,G;2)! with
G, = GE, u € {1,---,d*} acting on this Hilbert space. Let us also assume that this operator basis is orthonormal
with respect to the Hilbert-Schmidt (HS) scalar product, i.e. (G,|G, )us := Trug{ G, G, } = 8, so thatitspans
the Hilbert space Hy2 = (Span(G), (| )us)-

An arbitrary (N,M)-POVM, say Il = {II,, --- ,IIxp} with I1(3) > 0, (o, a) :== (o — )M + a,a € {1, --- ,N},
ac{l,---,M},ie {1,--- ,NM}, can be expanded in this orthonormal hermitian operator basis,i.e. Il = G Ts
with the d* x (NM) matrix S of real-valued coefficients. Using the orthonormality of the basis G, for N > 2
conditions (7) and (8) characterizing (IN,M)-POVMs can be rewritten in the form

(STS)i(a,a),j(a’,a’) = Féi(a,a),j(a’,a’)

(&

d
M ) + _2]i(a,a),j(a",a’) (Al)
a=1 i(a,a),j(a’,a’)

withT' = (xM? — d)/(M(M — 1)) (cf (18)), the (NM) x (NM) matrix J ofall ones, i.e. Ji(,a),j(a’,a’y = 1, and with
the M x Mblock matrices ], of all ones, i.e. (Ju)i(a,a),j(a",a’y = Oa,a’- The spectrum of the positive semidefinite
symmetric (NM) x (NM) matrix (A1) is given by

1
Sp(sTS) = {I“(N(Ml))) dﬁN( ), 0<N1>} (A2)

with the exponents indicating the multiplicities of the eigenvalues. For N = 1 the zero eigenvalue no longer
appears in the spectrum of §™°. Therefore, according to (9) for informationally complete (N,M)-POVM:s the
dimension D of the eigenspace of the nonzero eigenvalues is given by

D=NWM-1)+1=d~ (A3)

The spectral representation of this symmetric matrix is given by

NM—-1)+1
STSi= Y XX (A4)
pn=1
with
d 1
Al = WNM’ Xi,l = \/W >
M
Au - P) Z Xi(a,a),u =0 (AS)

a=1
forie {1,--- ,NM},v € {2,--- ,N(M — 1) + 1}. The (NM) x (N(M — 1) + 1) matrix X; , fulfills the
orthogonality condition

NM
Z (XT)/z,iXi,u = Ou,v- (A6)
i=1

As a consequence of (9), for an informationally complete (N,M)-POVM the most general form of the d* x (NM)

matrix S which is consistent with (7) and (8) is given by

dZ
Spsi = Z O;,u’ M’Xg’,i (A7)
=1

with the arbitrary real-valued orthogonal d* x d* matrix O,i.e. OO = OTO = P p. Thereby, P; denotes the
projection operator onto the (N(M — 1) + 1)-dimensional eigenspace of nonzero eigenvalues of the linear
operator S™° acting in the Hilbert space Hyy. Note that in the case of an informationally complete (N,M)-
POVM this subspace is isomorphic to the Hilbert space H 2. Let us finally also add the constraint (2) which
yields

M d
1; =Y L(i(a, 2)) = Vd 3" G0}, (A8)
a=1

p=1

where we have taken into account the constraints (A5) on the eigenvectors of S*°. This relation together with the
constraints (A5) also implies condition (6). Therefore, all requirements defining an informationally complete
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(N,M)-POVMII = GS, namely (2), (6), (7), (8) and (9), are fulfilled. It should be mentioned that so far the
positive semidefiniteness of the POVM elements I1(i(cv, a)) has not been taken into account. Therefore, it can be
concluded that, provided an informationally complete (IN,M)-POVM exists, it is related to an orthonormal
hermitian operator basis G by IT = G "S with the matrix elements of S being given by (A7).

With the help of (A7) it is straightforward to relate the correlation matrix of two local informationally
complete (N,M)-POVM:s for Alice and Bob, say IT* and IT”, to the correlation matrix of two LOOs, say G* and
G2 Using relation (A7) for these local bases we find

C(IIA, TP p) = (SHTC(GH, GBp)SP
= XA A OAC(GA, GBlp) (0BT AB (XB)T. (A9)

For the corresponding 1-norm we obtain the result

|CATA, T )|, = |[NAOAC(GA, GBlp) (OB AB | (A10)

with A* and A® denoting the diagonal matrix of nonzero eigenvalues of Alice and Bob. Using (A8), the
degeneracy of all eigenvalues for yt = 1,i.e. A ,.; = I, and the invariance of the 1-norm under orthogonal
transformations this expression simplifies to

|CA, T )|, = VTayTs[C(GA, GBlp)|. (Al1)

The above arguments demonstrate that this scaling relation is valid for arbitrary informationally complete local
(N,M)-POVMs IT* and IT? and LOOs G* and G®.
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