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Abstract
We report on the first realization of time-dependent quantum detector tomography for
commercially available InGaAs avalanche photo detectors. For the construction of appropriate
time-dependent POVMs from experimentally measured data, we introduce a novel scheme to
calculate the weight of the regularization term based on the amount of measured data. We
compare our POVM-based results with the theoretical predictions of the previously developed
model by Gouzien et al (2018 Phys. Rev. A 98 013833). In contrast to our measurement-based
construction of a time-dependent POVM for photon detectors, this previous investigation extends
a time-independent POVM to a time-dependent one by including effects of detector timing jitter
and dead time on the basis of particular model assumptions concerning the inner physical
mechanisms of a photon detector. Our experimental results demonstrate that this latter approach
is not sufficient to completely describe the observable properties of our InGaAs avalanche photo
detectors. Thus, constructing the time-dependent POVM of a detector by direct quantum
tomographic measurements can reveal information about the detector’s interior that may not
easily be included in time-independent POVMs by a priori model assumptions.

1. Introduction

Many applications in quantum information science such as the Boson sampling approach to quantum
computing [2] or the characterization of quantum states [3] can benefit from detailed knowledge about the
performance of single-photon detectors. Furthermore, the minimal requirements on detectors necessary for
loophole-free Bell tests can be estimated when detector efficiencies as well as dark count rates are included
in the analysis [4]. Detailed knowledge about the detector’s peculiarities can also be interesting in the
context of quantum key distribution (QKD). QKD, proposed in 1984 by Bennett and Brassard, uses
principles of quantum mechanics to distribute secure cryptographic keys [5–7]. While in principle QKD
provides information-theoretic security, actual implementations of QKD systems contain imperfections that
can dilute this perfect degree of security. Various attacks on single-photon detectors in QKD systems were
demonstrated [8–10], stressing that detailed knowledge about the detectors is mandatory to maintain
security. Alternatively, protocols immune to detector imperfections, known as
measurement-device-independent QKD [11], with experimentally challenging requirements on the quality
of the photon sources have to be employed [12].

There are two fundamentally different approaches to detector characterization: the first approach is to
thoroughly investigate all relevant effects on the measurement that arise from the detector’s components
and their interplay and to develop a detailed model of the detection process. However, this approach can
easily become impractical for complex detector systems. The second approach is quantum detector
tomography, which aims to make as few assumptions as possible about the detector and instead
reconstructs the measurement operator of a quantum detector from measurement results obtained from the
detector itself [13–15]. Quantum detector tomography describes the detector by a positive operator-valued
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measure (POVM) completely characterizing the device. The POVM can be reconstructed by analyzing the
detection results obtained for a set of tomographically complete input states. Detector tomography can for
example be used to characterize the qubit readout in quantum computers [16].

A tomographically complete basis has to span the Hilbert space of the detector input states [17]. So far,
realizations of quantum detector tomography concentrate on single modes of the electromagnetic field,
ignoring any time dependency [15]. Nevertheless, reduced tomographic analysis can yield valuable
information about the figures of merit relevant in detector characterization, such as response time, dark
count rate, efficiency, wavelength or photon-number resolution [18]. Examples are tomographic
measurements and POVM reconstruction for phase-insensitive detectors based on avalanche photo diodes
[14, 19], single photon superconducting nanostrip detectors [20], transition edge sensors [21],
time-multiplexed superconducting detectors [22] or photon-number-discriminating nanostrip detectors
[23–25] as well as the analysis of phase-sensitive detectors [26–28].

If not the complete characterization of the detector is the primary interest, there exist less data-intensive
alternatives to a full quantum detector tomography such as self-testing [29], self-calibrating [30, 31], or
data-pattern tomography [32, 33]. For example, the last technique has successfully been demonstrated
experimentally for quantum state tomography [34–36]. In contrast to quantum detector tomography the
detector’s POVM is never revealed and responses for unknown signals are fitted to data patterns of known
probe states.

Although a time dependence is immanent to every measurement process, time-dependent tomography
is rarely discussed. However, the detailed knowledge of the detector timing jitter is relevant for time-bin
quantum measurements in QKD or quantum state tomography [37], for example. A time-dependent
theoretical model for POVMs of non-photon-number-resolving detectors including timing jitter and dead
time was recently proposed by Gouzien et al [1]. Here, we extend the tomography of single-photon
avalanche detectors to time-dependent POVMs and test the validity of the model proposed by Gouzien et al
[1] for our detectors. To the best of our knowledge this is the first experimental implementation of
time-dependent detector tomography.

This paper is organized as follows: first, we briefly review the theory of quantum detector tomography
and introduce time-dependent POVMs in section 2. By focusing on a single pulse shape for the input states
we reduce the dimensionality of the detector’s input Hilbert space. Since the reconstruction of the POVM
elements from measured data is a mathematically ill-posed problem, regularization is necessary [14]. Often,
the weight of this regularization is chosen by trial and error. Instead, we propose a novel adaptive
regularization in section 3, weighting the regularization based on the amount of measured data. We show
benchmarking results of the proposed scheme in comparison with a fixed-weight regularization. Our
experimental setup is presented in section 4. With results integrated over the measurement time window we
reconstruct the time-independent POVM of seven detectors, compare them with the expectation for ideal
detectors with finite efficiency and deduce the detection efficiencies for different detector settings in
section 5. Subsequently, we make use of the time resolution of the same data to reconstruct the
time-dependent POVMs and apply them to one of the detectors in section 6. Finally, we compare our
results in section 7 with the model of Gouzien et al [1] in order to evaluate its relevance for the theoretical
description of our photon detector.

2. Time-dependent quantum detector tomography in the photon number basis

In this section, we use a time-dependent detector POVM for describing a phase-independent
click-or-no-click detector under the assumption that this detector is hit by non-entangled input states. This
detector model is based on a model previously presented by Gouzien et al [1] and takes advantage of a
temporal multimode formalism as used by Rohde et al [38], for example. We generalize the previous work
of Gouzien et al [1] by not restricting ourselves to a specific model of the detector’s inner working. We also
briefly discuss the relationship between the POVM reconstruction of Feito et al [14, 15] and the
maximum-likelihood estimation of the POVM elements used in the following.

The most general description of the measurement results of a quantum measurement process is given by
a POVM Π [39], i.e. by a set of positive semi-definite measurement operators Π = {Π̂i} with

∑
i Π̂i = 1,

where i labels the different possible measurement results. If a quantum state �̂ is prepared, the probability of
obtaining measurement result i yields

pi(�̂) = tr(�̂Π̂i) (1)

and pi � 0 is ensured by the positive semi-definiteness of the operators Π̂i [13]. Quantum detector
tomography is concerned with the reconstruction of these measurement operators from tomographic
measurements [14].
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Throughout this paper we consider detectors with two measurement results, i.e. ‘click’ and ‘no click’, in
a time-dependent setting such that the probability density associated with a ‘click’ event at time t is given by
pclick(t, �̂) = tr(�̂ π̂click(t)). The corresponding time-independent POVM for a time interval I is given by
Π̂I,click =

∫
Iπ̂click(t)dt and Π̂I,no click = 1 − Π̂I,click. A complete time-dependent tomography is experimentally

challenging, since it has to span the infinite dimensional space of all photon states at each instant of time
[38]. Thus, detector tomography is often reduced to a single mode [14, 15, 22, 25] of the radiation field.

For a single mode, Fock states |k〉 form a tomographically complete set of basis states. Here, we are
interested in describing time-dependent phenomena. For this purpose we use the temporal multimode
formalism from [38] which has already been used to formulate a model for time-dependent POVMs by
Gouzien et al [1]. Thereby, we restrict the relevant Hilbert space to non-entangled time-localized states and
assume that the detector dead time is much longer than the time interval considered so that at most one
click can be registered in the time interval of interest.

Avalanche photo diodes do not have any external phase reference and are thus phase-insensitive
detectors. POVMs of phase-insensitive detectors are diagonal in the Fock basis [17] and can thus be
described by POVM operators of the form

π̂i =

∞∑
k=0

Θk,i |k〉 〈k| . (2)

Including the time dependencies of the photons arriving at an avalanche photo diode we can represent the
photon detector’s POVM in the form

π̂click(t) = T
∞∑

k=0

∫
Rk

pclick,k(t, τ k)P̂k(τ k)dτ k. (3)

Thereby, τ k = {τ 1, . . . , τ k} denotes the times at which k time-localized photons arrive at the photon
detector. The time-ordering operator is denoted by T and ensures the ordering τ 1 < τ 2 < . . . < τ k. The
quantum state of the k time-localized photons is given by the projection operator

P̂k(τ k) = |τ k〉 〈τ k| with |τ k〉 =
k⊗

j=1

â†(τj) |0〉 . (4)

Consistent with the rotating wave approximation, the creation operator â†(τj) = (2π)−1/2∫
R

â†(ω) exp(iωτj)dω describes the creation of a single time-localized photon at time τ j when the
assumption is made that the bandwidth of the field excitation is much smaller than the optical center
frequency [40, 41]. The corresponding annihilation operators fulfill the commutation relation[
â(τi), â†(τj)

]
= δ(τi − τj). The probability density pclick,k(t, τ k) describes the probability that a state with k

photons localized at times τ 1 . . . τ k causes a click of the photon detector in the time interval [t, t + dt]. The
POVM of (3) is a generalization of the time-dependent POVM model proposed by Gouzien et al [1] as the
probability density pclick,k(t, τ k) is not restricted to a specific model of the detector’s interior. In order to
obtain a finite set of measurement operators, in the following we split the integral in (3) into time bins of
width Δt labeled from i = 1 to imax. Thus, the POVM to be reconstructed has imax + 1 different POVM
operators, one for each time bin plus one for no click in any time bin.

Compared to Fock states the overcomplete basis of coherent states |α〉 is more convenient for describing
experiments as coherent states are naturally produced by attenuated laser light. If a detector is exposed to
N(αj) such attenuated light pulses of a coherent state

∣∣αj

〉
the number of clicks concerning measurement

result i, i.e. ni(αj), can be recorded for all possible measurement results i = 1, . . . , imax. This can be repeated
for the different coherent states with j = 1, . . . , jmax. The resulting relative frequencies fi(αj) = ni(αj)/N(αj)
can be compared to the probabilities pi(αj) predicted by a given POVM. In practice only a finite number
jmax of different values of α can be measured. As coherent states are linear superpositions of infinitely many
photon number eigenstates, in practice also only a maximum number of photons kmax can be measured.
Consequently, in terms of POVM parameters measured probabilities are described theoretically by the

relation pi(αj,Θ) =
∑kmax

k=0

∣∣〈αj|k〉
∣∣2
Θk,i. Thus, for a tomographic reconstruction of the POVM describing

the photon detector the parameters Θk,i have to be inferred from the measured frequencies fi(αj).
For the reconstruction, the probabilities are approximated by the measured frequencies fi(αj), so that in

matrix notation the relation between POVM elements and measured frequencies is given by

Fjmax×imax = Cjmax×(kmax+1)Θ(kmax+1)×imax (5)

3



New J. Phys. 24 (2022) 023025 E Fitzke et al

with Cjk =
∣∣〈αj|k〉

∣∣2
= exp(−μj)μk

j /k! and with the mean photon number μj =
∣∣αj

∣∣2
. In general, the matrix

C is not invertible which complicates the determination of the POVM elements Θi,k from the measured data
in F with Fij = fi(αj). One possibility to solve this problem is to minimize ‖F − CΘ‖F with the Frobenius

norm ‖M‖F = (
∑

i,j

∣∣mij

∣∣2
)1/2 [14, 15]. In order to avoid unphysical solutions from this ill-conditioned

optimization problem it is convenient to add a regularization term to the objective function [42]. For
example, in [14, 15] a quadratic regularization term

r
∑

k,i

(Θk+1,i −Θk,i)
2 (6)

with a regularization coefficient r was used. The coefficient was chosen in a range so that a smooth
distribution of the POVM elements is obtained and the reconstructed results are stable [14, 15].

The necessary regularization comes at the price of biasing the optimization. Thus, it is important to
estimate a value for the regularization coefficient in order to avoid unduly biasing the optimization. In our
subsequent treatment we split our measurement data into time bins and evaluate the bins individually. The
number of recorded events per time bin varies across the considered time interval. The more data are
available for a time bin, the smaller the statistical measurement uncertainty, the smaller r may be chosen.
Instead of choosing a new value of r for each time bin by trial and error we propose an adaptive estimation
value r which depends on the amount of measured data.

3. Adaptive regularization

In this section, we show the relationship between regularization terms that were used for POVM
reconstructions in [14, 15] and Bayesian prior distributions in the maximum-likelihood estimation of
POVMs. We use this relationship to derive an estimation for the weighting coefficient r of the regularization
term that depends on the amount of measured data and on the number of reconstructed elements.
Subsequently, we benchmark the adaptive regularization scheme in comparison with regularization with a
fixed coefficient.

In order to motivate an estimation value of r we consider the maximum-likelihood approach [43] for
inversion of (5). The measured frequencies fi(αj) may be viewed as the empirical mean values of a Bernoulli
experiment with probabilities pi(αj) and (1 − pi(αj)) which has finite variance σ2

ij = pi(αj)(1 − pi(αj)). The
measured data are generated from statistically independent repetitions of Bernoulli experiments. For a
sufficiently large number of repetitions, σ2

ij ≈ fi(αj)(1 − fi(αj)) holds and the central limit theorem ensures
that the distribution of fi(αj) around pi(αj,Θ) is a normal distribution with variance σ2

ij/N(αj). This means
the likelihood function is given by

L(Θ) =
1

(2π)imax jmax/2
exp

⎛
⎝−1

2

∑
i,j

(
fi(αj) − pi(αj,Θ)

N(αj)−1/2 σij

)2
⎞
⎠∏

i,j

σ−1
ij N(αj)

1/2. (7)

In order to obtain an estimation for the parameters Θ, the likelihood function can be maximized or,
equivalently, the negative log-likelihood l(Θ) = −ln(L(Θ)) can be minimized. The sums over i are
independent of each other, so that they can be minimized separately. When all constant factors are omitted
and it is assumed that the σij are independent of i for the same value of j, minimizing the negative
log-likelihood l(Θ) is equivalent to solving the least-squares minimization problem S(Θ) = ‖F − CΘ‖2

F.
The square root is a strictly monotone function, so that minimizing the norm ‖F − CΘ‖F, as it was done in
[14, 15], is also equivalent to the maximum-likelihood approach.

Adding regularization terms biases the optimization. The term of (6), for example, biases POVMs
towards close-by values for adjacent Fock basis matrix elements. This bias can be interpreted as stemming
from information predating the measurement in the form of a Bayesian prior distribution. Bayes’ theorem
allows to relate the likelihood P(F|Θ) of detecting results F, given the parameters Θ, and the prior
distribution P(Θ), to the posterior probability P(Θ|F) of Θ being the parameter set if F is measured:

P(Θ|F) =
P(F|Θ)P(Θ)

P(F)
. (8)

Therefore, the (additive) regularization term can be understood as the negative log-likelihood of the
(multiplicative) prior, so that the negative log-posterior function becomes

lposterior(Θ) = l(Θ) − ln(P(Θ)) + C (9)

4
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with the additive constant C arising from the probability P(F) of (8).
Regularization terms as in (6) can thus be interpreted as a Gaussian prior P(Θ) = exp(−γ

∑
k,i

(Θk+1,i −Θk,i)2/2). The coefficient γ can be interpreted as the inverse covariance of neighboring matrix
elements of Θ. Therefore, γ−1/2 is the expected characteristic distance of neighboring matrix elements. A
prior can be constructed under the assumption that the matrix elements of Θ are equidistantly spaced
between 0 and kmax. Consequently, it can be expected that the average distance between neighboring matrix
elements is k−1

max along the k-axis. For the imax different measurement results it can be assumed that they are
equally distributed. This yields the relation γ = k2

maxi2
max.

The coefficient r can also be related to the statistical measurement error which can be estimated by
taking the maximum over the variances of the normal distributions in (7) as

ε2
i = max

j

σ2
j

N(αj)
≈ max

j

fi(αj)(1 − fi(αj))

N(αj)
. (10)

Here, the maximum is taken over the tomographic states j in order to obtain an upper bound on the
uncertainty.

The minimum of the negative log-posterior remains unchanged under multiplication with a positive
constant. Therefore, we multiply the objective function by ε2 and separate the regularization coefficient
according to the relation r = ε2γ. Thus, for a fixed value of γ, the weight of the regularization term becomes
smaller for more accurate measurements. The more data are available the smaller the measurement
uncertainty ε2 and the more the prior bias is discounted.

In order to show the importance of regularization and the disadvantages of a static regularization term
independent of the statistical measurement uncertainty, especially if the amount of measured data becomes
smaller, we now compare three different types of reconstruction schemes with least-squares minimization.
These three schemes differ in the regularization used in the minimization. We compare results without
regularization with static regularization, i.e. with a constant weight r, and with the adaptive scheme
motivated above where the regularization weight is adjusted by the variance of the measured data. We used
a value of r = 0.1 for the static case and a value of γ = k2

max for the adaptive case, as we consider only one
result, i.e. imax = 1. A cutoff of kmax = 29 was chosen for the maximum Fock state used in the tomography
and 30 coherent tomographic states were chosen with mean photon numbers μ = {0, 1, . . . , 29}. The data
were recorded by randomly sampling measurement data for known POVMs of detectors with only two
results. Three different types of POVMs are studied in the benchmarking: two ideal detectors with
sensitivities η = 1 and η = 0.3 with ‘no-click’ POVM elements Θk,0 = (1 − η)k, and thirdly POVMs with
randomly sampled diagonal elements.

For the POVMs obtained from the reconstruction the maximum norm denoted by
�∞ = maxk |ϑk,true − ϑk,reconstr.| and the fidelity f =

∑
k(ϑk,trueϑk,reconstr.)1/2 with respect to the true POVM

are compared. Within each simulated experiment all tomographic states were measured M times. The same
statistics is performed over various values of M in order to quantify the performance for an increasing
amount of data. The simulation was repeated N times for each value of M in order to estimate both the
mean and the variance of the performance. The number of repetitions N was set to a value of 100. For each
POVM and each tomographic state M measurements were sampled, a tomography was performed, and the
results were compared with the true POVM. Among the studied POVMs the diagonal elements of the
random POVMs were newly sampled from a uniform distribution in each of the N iterations. The other two
ensembles used the same POVM across all iterations.

Results of this benchmarking are presented in figure 1 clearly showing the improvement gained by
regularization for low values of M across all chosen underlying POVMs. For higher values of M, all methods
show improvement with increasing M. For the random POVM, the data do not appear sufficient for high
quality reconstruction, as both the error and its variance remain quite large, even for the highest values of
M, compared to the other two columns. Furthermore, it appears that the statically regularized method does
not converge to optimum values, but to levels of a close-by but distinct value in all benchmarks. Only in the
case of the detector with η = 0.3, all three methods seem to have similar asymptotic performance. The
asymptotics for the statically regularized method emphasize that the regularization parameter should not be
chosen independently of the number of data points. The adaptively regularized method shows for large
datasets an asymptotic performance similar to least-squares tomography without regularization. It improves
the results when the datasets are small, similar to the static regularization, but avoids convergence to wrong
POVMs when the amount of data is large enough. We thus use adaptive regularization for the
reconstruction of POVMs in the following sections.
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Figure 1. Benchmarking with detector type varying by column: the closeness of the POVM elements of the true detector and of
the reconstructed elements are quantified by �∞ = maxk |ϑk,true − ϑk,reconstr.| and a metric proportional to the fidelity
1 − f = 1 −

∑
k(ϑk,trueϑk,reconstr.)1/2. For the one-fidelity metric, each error bar that crosses zero is not plotted. The first two

columns show idealized detectors of finite sensitivity η without dark counts. Grey circles represent unregularized least squares,
red triangles represent statically regularized least squares and black squares represent adaptive least squares. The x-axes show the
number of trials M per tomographic state.

Figure 2. Fiber-based setup for time-dependent and time-independent detector tomography. AM: LiNbO3 amplitude
modulator, VOA: variable optical attenuator, pulse gen.: electronic pulse generator, timing: time tagging electronics, PM fiber:
polarization maintaining fiber, MM fiber: multimode fiber.

4. Experimental setup

Tomography measurements were performed for seven free-running commercial InGaAs single-photon
avalanche photo diodes (model ID220 with multimode fiber, ID Quantique). These detectors have three
efficiency settings (10%, 15%, 20%) corresponding to different photo diode voltages. The dead time can be
selected between 1 μs and 20 μs. In general, higher efficiencies and shorter dead times are preferable, but
these settings come with a trade-off: the higher the efficiency is set, the higher the probability for detector
afterpulsing and dark counts for the same dead time setting. Afterpulses can be suppressed by choosing
higher values for the dead time when a high efficiency is set. Thus, three combinations of detector settings
were chosen for the experiments: 5 μs dead time for 10% set efficiency, 10 μs for 15% and 15 μs for 20%.

In order to perform both time-independent and time-dependent tomography, we set up the experiment
shown in figure 2. Laser pulses with a defined mean photon number μ were generated and detector clicks
were registered correlated to the pulse emission.

The setup consists of a fiber-coupled cw DFB diode laser with a central wavelength of 1550.52 nm and
74 mW output power, two cascaded amplitude modulators, a manual and an electronic variable attenuator
as well as electronics for timing acquisition and pulse generation.

The first modulator was used to shape pulses with an FWHM duration of 0.24 ns at a repetition rate of
10 kHz. The rate was chosen to be low enough so that a repetition cycle was much longer than the detector
dead time. Hence, unwanted correlations between subsequent clicks introduced by afterpulses or variations
in the dead time were prevented. The pulse duration for the second modulator was set to 10 ns and the
delay was set according to the optical delay between both modulators, ensuring that the second modulator
was completely opened when a pulse passed by. Therefore, the pulse shape was solely determined by the first
modulator. Within the opening time window of the second modulator, the extinction ratio is determined by

6
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Figure 3. Histogram for detector 2 operated with three different efficiency settings and dead times of 5 μs, 10 μs and 15 μs
showing the clicks directly following a click caused by the probe pulse. An exponential function was fitted for time differences
above 40 μs and extrapolated to earlier times. By integrating the shaded area showing the afterpulses we estimate the afterpulsing
probabilities.

the first modulator only. Outside of the time window, the extinction ratios of both modulators multiply,
resulting in a sufficiently high suppression of uncorrelated detection events from photons leaking through
the modulators during the time between pulses.

Both modulators were driven by a dual-channel pulse generator (HP 8131 A). The detector’s electrical
output as well as the trigger output of the pulse generator were connected to the timing acquisition
electronics (ID Quantique ID900) with 13 ps resolution. Timestamps for detector clicks and the trigger
pulses were recorded in different channels.

The first modulator was stabilized by a bias controller in order to prevent changes in the pulse shape and
energy. In order to avoid bias drifts of the second modulator, a recalibration of the bias voltage was run
before measuring each value of the mean photon number μ by sweeping the voltage and setting the bias
voltage that minimized the rate of uncorrelated counts.

For the tomography measurements, the average power was measured behind the second modulator and
the pulse energy was calculated from the repetition rate. The mean photon number of the pulses μ was
scanned by adjusting the attenuation value of the variable attenuator.

5. Reconstruction of time-independent POVMs

In order to calculate time-independent POVMs for the detectors, histograms for the time difference
between reference clicks from the pulse generator and detector clicks were calculated for a measurement
series over the mean photon numbers μ between 0 and μmax = 50 in steps of 2 with 10 min measurement
time per value.

As we only want to consider the direct clicks of the detector, clicks in a time window of 8 ns covering the
maximum in the arrival time histogram (cf figure 6 in section 6) were selected for the tomography. The
clicks in this time window are directly caused by the probe pulse. Therefore, the influence of dark counts
and afterpulses on the results is suppressed. In order to verify the successful suppression of afterpulsing, we
calculated the histograms of arrival times for the clicks following next after a click in the time window as
shown in figure 3. It can be compared to the click probability for the next click pλ(t) of an ideal detector
without dead time and afterpulsing, which is given by a homogeneous Poisson process with a constant click
rate λ and pλ(t) = λ exp(−λt) [44].

For small time differences, the click rate is zero and shows a steep edge when the detector recovers from
the dead time. When a click happens roughly one dead time after the preceeding click, the detector may
have not recovered completely. Including such clicks in the POVM reconstruction would thus lead to
incorrect results. Thus, we excluded clicks preceded by another click within a time frame of the set dead
time plus two microseconds from further analysis. The maximum is caused by afterpulses. For longer time
differences between clicks above approximately 30 μs, the probability shows an exponential decay as it
would be expected from the photon arrival statistics of uncorrelated counts. By fitting an exponential
function to the tail for times above 40 μs and extending this function to the afterpulsing region, we
estimated the number of afterpulses as the area between the histogram and the fit and calculated the
afterpulsing probability to 5.3%, 7.4% and 4.9% for the three efficiency settings in the order 10%, 15% and
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20%, respectively. The afterpulses are restricted to time differences of less than 40 μs for all settings. Thus,
by choosing the repetition rate to 10 kHz, afterpulses do not occur in the next pulse cycle and can thus not
cause unwanted correlations between cycles.

The detection probabilities for the POVM reconstruction were calculated by dividing the sum of
detections within the 8 ns time window by the number of pulses. In this way, we obtained the
time-independent POVMs from the detection probabilities by minimizing

‖f − Cϑ‖2
2 + ε2γ

kmax∑
k=0

(ϑk+1 − ϑk)2 (11)

over ϑ. Here, the matrices F and Θ became vectors f and ϑ, as only one single detection result, the no-click
event in the whole interval, was considered.

For the photon numbers, a reasonable cutoff kmax needs to be found. The coefficients Cjk decrease for
higher k according to the Poissonian distribution exp(−μ)μk/k! with the standard deviation of the photon
number given by μ1/2. We decided to reconstruct the elements up to μmax plus two standard deviations, i.e.
chose kmax ≈ μmax + 2

√
μmax = 64 resulting in Cjmaxkmax < 1%. Thus, the weighting coefficients of the

regularization term are γ = 642 and ε2 ≈ 4.4 × 10−8 which was calculated for detector 2 with 15%
efficiency and 10 μs dead time according to (10). Convergence of the minimization was facilitated by
explicitly implementing the gradient of (11).

In order to compare the results, we consider the POVM for an ideal detector with efficiency η. When
such a detector is exposed to a photon, the probability that it is not triggered is given by (1 − η). Thus, the
no-click probability for k photons is given by Pno click(k) = 1 − Pclick(k) = (1 − η)k and (2) becomes
π̂no click =

∑∞
k=0(1 − η)k |k〉 〈k|. Thus, the no-click probabilities for a number state |k〉 and for a coherent

state |α〉 of an ideal detector are given by

〈k| π̂no click |k〉 = (1 − η)k and 〈α| π̂no click |α〉 = exp(−ημ). (12)

In order to obtain a value for the detector efficiency, the POVM element for k = 1 can be considered or,
alternatively, the efficiency can directly be derived from the measured data by fitting an exponential
function to the number of clicks over the mean photon number μ according to (12).

The time-independent POVMs were reconstructed for all seven detectors. Exemplary results for
detection probabilities and time-independent POVMs of detector 2 (cf figure 5) with an efficiency setting of
15% and 10 μs dead time are shown in figure 4 along with a fit for an ideal detector. The measured no-click
probability well matches the exponential distribution of an ideal detector with η = 16.9% according to (12).
For values above μ = 30, however, the logarithmic scale shows that the no-click probability is higher than
for an ideal detector and approaches a value of 2.7 × 10−3, irrespective of a further increase of μ. In order
to investigate this effect, the selection criterion for clicks was extended from 12 μs to 99 μs as the required
distance to the preceding click. However, no change was observed. Thus, we conclude that this effect is
independent of the time difference to the preceeding click and is not related to the dead time. The POVM
elements shown in figure 4 reflect this behavior: up to photon numbers around 30, they match the model of
an ideal detector well, but for higher values of k they are larger than predicted by the model. We investigated
the dip visible at k = 43 in the logarithmic plot of POVM elements by varying kmax and μmax. We observed
that a change of μmax lead to significant changes in the shape of the dip or even multiple dips. The dip may
thus be regarded as a small boundary effect caused by the finite value of μmax in the experiment.

For all seven detectors the efficiencies obtained from the POVM reconstruction are shown in figure 5.
Systematic relative measurement uncertainties for μ are introduced by the accuracy of the photo detector
used for attenuator calibration (5%) and by variations of losses in the fiber–fiber connections (10%).
However, these values are constant for the measurements shown. In principle, these values can be further
improved by using a tightly calibrated photo detector for the attenuation calibration and by using
permanent, spliced fiber connections. Repeated measurements of the same detector yielded a variation
of 8%.

We determined the values for the detection efficiencies in three different ways which are compared in
the figure. First, the efficiency was extracted from a fit of the exponential distribution in (12) to the
measured values of pno click(μ). Second, the POVM elements were reconstructed with the proposed adaptive
weight r = ε2γ of the regularization term and the value (1 − ϑ1) was interpreted as efficiency. Third, the
second procedure was repeated with a 100 times stronger regularization.

The determined efficiency values in figure 5 match the expected values stated as detector settings
generally being slightly higher than these values. For most of the detectors the efficiency obtained from the
strongly regularized reconstruction is in better agreement with the value determined from the fit than the
value obtained with normal regularization. The fact that reasonable POVMs can be obtained although the
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Figure 4. Time-independent POVM elements for detector 2 (cf figure 5) with 15% efficiency and 10 μs dead time: from a fit of
the no-click probabilities according to (12), the detector efficiency was estimated to η = 16.9%. This value was used to plot the
ideal no-click POVM according to (12) on the right-hand side. Each diagram shows the data once in a linear scale (left vertical
axis) and in a logarithmic scale (right vertical axis, dashed line).

Figure 5. Detection efficiencies of the seven detectors tested, calculated from an exponential fit to pno click(μ) and from the first
POVM element ϑ1, reconstructed with the proposed weighting factor r = ε2γ of the regularization term: in addition, results with
a 100 times stronger regularization are shown. The colors indicate the detector efficiency settings 10% (black), 15% (red) and
20% (gray).

regularization coefficient can be varied by more than two orders of magnitude has already been observed in
[14]. In this previous investigation it has been concluded that the regularization is mainly necessary to
ensure a well-conditioned optimization and that choosing the regularization coefficient in this range does
not excessively distort the results. Thus, we conclude that the proposed adaptive regularization coefficient
can be understood as a rule-of-thumb value to obtain reasonable results from the POVM reconstruction.
Notably, it is not a strict value so that larger or smaller values may also be chosen, depending on the specific
situation.

6. Time-dependent POVMs

The temporal resolution of the setup also allowed for a time-resolved measurement of detection
probabilities. In general, the temporal distribution of the clicks depends on the temporal shape of the probe
pulse and on the detector response. Exemplary results for detector 2 are shown in figure 6 along with the
probe pulse shape. With increasing values of μ, the maximum of the click distribution shifts to earlier times
with respect to the input pulse and also becomes narrower. This effect can be understood intuitively: after
the click the detector switches into the dead time, so that other photons in the pulse cannot cause
subsequent clicks for the same pulse. The higher μ, the higher the probability that a photon located early
within the pulse causes a click. The deformation of the click distribution can be expected to become
significant above ημ ≈ 1, as a detector without dead time would likely yield multiple clicks per pulse, but a
detector with dead time only registers the first click per pulse.
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Figure 6. Click probabilities pwp(t)Δt of detector 2 (cf figure 5) with a setting of 15% efficiency and 10 μs dead time: the time

resolution is Δt = 13 ps. On the right-hand side the normalized probe pulse shape |α(t)|2 is shown for comparison. The
absolute delay between the pulse and the click distribution depends on optical and electrical delays. Both time axes were shifted
so that the pulse shape and the click distribution are located close to time t = 0.

Figure 7. Left: measured time-dependent click distribution depicted as a function of the mean photon number μ for detector 2
(cf figure 5) with 15% set efficiency and 10 μs dead time. Right: time-dependent POVM elements are reconstructed with adaptive
regularization from the click distribution.

From the resulting click probability distribution, a time-dependent POVM as in (2) was reconstructed,
where clicks in a specific time bin correspond to a specific detection result i. Here, we minimized (11) for
each time bin individually, with the variance ε2 calculated from the data in this time bin only. The
optimization was performed with bounds for the POVM elements to ensure physically reasonable values
between 0 and 1. The measured click probabilities and the reconstructed POVM for detector 2 are shown in
figure 7.

The shape of the POVM roughly matches that of the click probability distribution. This raises the
question whether the description of the detector by a time-dependent POVM is necessary or if the temporal
shape of the distribution can be explained by modeling the detector behavior. In the next section, we
compare the reconstructed POVM to the POVM predicted by a detector model describing the click
probability deformation explained above.

7. Test of a detector model including dead time and timing jitter

In the last section we argued that the changes of the shape of the click distribution with increasing mean
photon number μ qualitatively match the expectation for a detector which only responds to the first photon
in each pulse. Gouzien et al [1] formalized this argument and developed a model describing
time-dependent POVMs of click-or-no-click detectors. In this section, we investigate whether this model is
sufficient in order to describe the observed temporal detector click probability for our detectors.

The model of Gouzien et al [1] assumes a detector having an intrinsic jitter distribution J(T). The value
J(t − τ)dt is the probability that a photon hitting the detector at time τ causes a click in the time interval
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[t, t + dt]. Causality requires that J(t < 0) = 0. Furthermore, it is assumed that the dead time is much
longer than the probe pulse duration and that the detector switches immediately into dead time after the
first click. This means that after a click the detector is inactive for the remaining pulse duration and all other
photons in the pulse cannot cause subsequent clicks. The probabilities

p1(t, τ) = ηJ(t − τ) and p1,not(t, τ) = 1 − η

∫ t

τ

J(t′ − τ)dt′ (13)

describe the probability that a single photon hitting the detector at τ causes a click at t and that a photon
has not caused a click up to time t, respectively.

The probability pclick(t, τ k) of obtaining a click at time t from a pulse with k photons arriving at times
τ k = (τ 1, . . . , τ k) can now be written as the sum of the probabilities that one particular photon causes the
click and the probability that all other k − 1 photons did not yet cause a click:

pclick(t, τ k) =
k∑

j=1

p1(t, τj)
k∏

l=1
l 
=j

p1,not(t, τl). (14)

Multiplying the probabilities is justified by the assumption that apart from the dead time effect the photons
cause clicks according to the jitter distribution independently of each other. The POVM model proposed in
[1] is a combination of the general time-dependent POVM from (3) and the specific form of pclick(t, τ k)
from (14). In [1] the click distributions for single-photon and two-mode biphoton states are calculated for
this specific POVM.

In order to compare the predictions of this model with our experimental results we calculate the click
distribution for a coherent wavepacket. Therefore, we insert (14) into the general formula for the
time-dependent POVMs (3) and apply it to a continuous multi-mode coherent wave packet

∣∣Ψwp

〉
= exp

(∫
R

(
α(t)â†(t) − h.c.

)
dt

)
|0〉 . (15)

It is assumed that the wave packet has a sufficiently narrow bandwidth and [â(t), â†(t′)] = δ(t − t′) holds
[40]. Thus, |α(t)|2 describes the time-dependent photon flux of the probe pulse with mean photon number
μ =

∫
R
|α(t)|2dt. In appendix A we show that the probability of obtaining a click at time t for such a wave

packet
∣∣Ψwp

〉
is given by

pwp(t) = − ∂

∂t
exp

(
−η

∫ t

−∞
(J ∗ |α|2)(t′)dt′

)
, (16)

with ∗ indicating convolution.
This equation has a structure known from Poisson processes. For an inhomogeneous Poisson process

with time-dependent rate λ(t), the probability for the first detection in the interval [t, t + dt] is

pλ(t)dt = λ(t) exp
(
−
∫ t
−∞λ(t′)dt′

)
dt [44]. Thus, pwp(t) resembles the probability density for the time up

to the first click of an inhomogeneous Poisson process with the click rate

λ(t) = η(J ∗ |α|2)(t). (17)

The structure of pwp(t) can be understood by recalling that the detection of a coherent state yields
Poissonian statistics. Here, the temporal shape of the wave packet is modified by convolution with the
intrinsic detector jitter distribution. The Poissonian statistics reflects the fact that all photons are treated
independently. As only the first click is registered due to the detector switching into dead time, the resulting
distribution is the probability density of the first-click-time of this process.

In order to check whether this model is valid for our detectors, we investigated whether it is possible to
reconstruct the jitter distribution J(T) from the measured click distribution pwp(t) according to (16). In

order to reconstruct J(T), we define the cumulative rate Λ(t) =
∫ t
−∞λ(t′)dt′ and write

∫ t
−∞pwp(t′)dt′

= 1 − exp(−Λ(t)), where we used Λ(t →−∞) = 0. Solving for λ(t) yields

λ(t) =
∂Λ(t)

∂t
= − ∂

∂t
ln

(
1 −

∫ t

−∞
pwp(t′)dt′

)
= pwp(t)

(
1 −

∫ t

−∞
pwp(t)

)−1

. (18)

The right-hand side can be directly calculated from the measured data, without requiring a calculation of η
or μwp. The click rates λ(t) are shown in figure 8 for different values of μ.

We also computed the jitter distribution J(T) by deconvolution from λ(t) according to (17) for different
mean photon numbers μ.
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Figure 8. Investigation of the model from [1] for detector 2 (cf figure 5) with 15% efficiency and 10 μs dead time:
(a) normalized click rate λ(t)/(ημ) according to (18). (b) Reconstructed intrinsic jitter distributions J(T) obtained from
deconvolution of (17).

Table 1. Statistical metrics used for comparing the POVM model and
the model with the jitter rate from [1].

Models Jitter rate POVM model

Negative log-likelihood 883 203 385
Bayes factor (POVM against jitter rate) 10383403

AIC score 1766 531 8705

For the numerical implementation of the deconvolution with discrete data, it is convenient to introduce
the normalized discrete pulse shape I with Ii = |α(ti)|2/μwp and the normalized rate λ with λi = λ(ti)/
(μwpη), with

∑
i λi =

∑
i Ii = 1. The discrete convolution with the jitter Ji can then be written as

λ = (I ∗ J) = TJ, where T is a Toeplitz matrix constructed from I. The deconvolution can be performed by
minimizing ‖λ− TJ‖2

2 over J. The formulation with the Toeplitz matrix enabled direct implementation of
the gradient by using ∇J‖λ− TJ‖2

2 = 2TT(TJ − λ), which facilitated the convergence.
We optimized with the constraint J(T) � 0. In order to obtain smooth results, we penalized large

variations in the first derivative of the jitter distribution by introducing the regularization term∑
i(Ji+1 − Ji)2, multiplied by a weighting coefficient. The objective function is thus very similar to the

objective function for the POVM reconstruction in (11). According to the model, the detector should have
one distinct jitter distribution that explains the resulting click distributions for all values of μ according to
(16). Consequently, the normalized rate λ(t) and the deconvolved jitter distribution should be independent
of μ. However, with increasing μ, the rate distribution becomes narrower and shifts towards earlier times,
meaning that the model underestimates the previously discussed deformation of the click probabilities in
figure 6. The effect is even more pronounced in the jitter distributions and appeared for all seven detectors
and for all three detector settings.

For a more rigorous statistical evaluation of the jitter rate model, we compute the log-likelihood of both
the jitter rate model and the POVM model. Using the log-likelihood, we determine the Bayes factor between
the models. Additionally, the score for the Akaike information criterion (AIC) [45] is determined. The
results are shown in table 1 and a detailed discussion of these calculations is described in appendix B.

As the Bayes factor is many (383 401) orders of magnitudes larger than the Bayes factor of 102 classified
as ‘decisive’ in [46], the comparison gives overwhelming evidence that the model with the jitter rate should
be rejected. The AIC additionally tests whether the larger number of parameters in the POVM model is
sufficient grounds to still consider the jitter rate model. For each model a score is computed, and then the
model with the minimum score is selected. In contrast to the Bayes factor, the score depends on the number
of parameters, to compensate overfitting due to the higher number of parameters [45]. The jitter rate model
has 62 parameters, while the POVM model has 62 × 64 parameters, thus a considerable proportion of the
aic-value (cf (B.4)) of the POVM model is constituted by the parameter term. Due to the extremely large
difference between the Akaike scores, the jitter rate model can still be rejected with a high degree of
certainty.

From these two observations we conclude that the jitter rate model is not sufficient to completely
describe the time-dependent click distribution of our detectors. A possible explanation for the deviation can
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be found in the detection mechanism by electron avalanches. When the amplitude of an electron avalanche
reaches a threshold level, the detector emits an electric pulse to indicate a detection event. The main
contribution of the timing jitter in InGaAs single-photon avalanche detectors comes from the distribution
of transit times of charge carriers in the absorption region and by the distribution of the avalanche build-up
time in the multiplication region [47]. When multiple photons hit the detector, the avalanches can add up.
The threshold for a detection event is thus reached faster than expected for photons triggering independent
events. It can be expected that the effect will cause a shift of the click distribution to earlier times that is
stronger than the prediction of the model. The underlying general reason may thus be the violation of the
model assumption that, except for the dead time effect, all photons can be treated independently. An option
to include such effects would be to develop complex models of the detector behavior including more details
of the detection mechanism such as in [48, 49]. However, this approach is contrary to the tomographic
approach, which is to introduce as few as possible general assumptions about the detector.

8. Conclusion

We performed tomographic measurements on avalanche single-photon detectors that enabled the
reconstruction of both time-independent and time-dependent POVMs. The time-independent tomography
results were in agreement with a simple model of an ideal detector. By this method, we deduced and
compared the detection efficiencies of seven detectors. For the time-dependent POVM reconstruction we
derived an estimation for the weighting coefficient which adapts the regularization term based on the
amount of available data in different time bins. Benchmarking the new method showed a superior
performance in comparison with reconstructions based on a fixed coefficient. We then reconstructed
time-dependent POVMs by using the adaptive regularization. Finally, we investigated whether the model for
time-dependent POVMs proposed by Gouzien et al [1] can explain the measured POVMs and showed that
the model is not able to explain the performance of our InGaAs single-photon avalanche detectors in a
satisfactory way. This example demonstrates the strength of detector tomography in comparison with less
flexible modeling approaches. Thus, measuring the time-dependent POVM of a detector with quantum
tomographic methods can reveal information about the detector’s interior that may not easily be included
by a priori model assumptions.

Acknowledgment

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—SFB 1119—236615297.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix A. Derivation of the click probability pwp(t)

Here, we calculate the click probability pwp(t) for Gouziens’s model [1] applied to a coherent wavepacket by
inserting (14) into (3)

pwp(t) =
〈
Ψwp

∣∣ π̂click(t)
∣∣Ψwp

〉
= T

∞∑
k=0

∫
Rk

pclick(t, τ k)
〈
Ψwp

∣∣ P̂k(τ k)
∣∣Ψwp

〉
dτ k. (A.1)

The integral is subject to time ordering τ 1 < τ 2 < . . . < τ k. However, both pclick(t, τ k) from (14) and〈
Ψwp

∣∣ P̂k(τ k)
∣∣Ψwp

〉
from (4) are symmetric under permutation of τ 1 . . . τ k. The time ordering can thus be

expressed by extending the integration range to the complete real line for each τ and simultaneously
dividing by the number of k! permutations

pwp(t) =
∞∑

k=0

1

k!

∫
Rk

pclick(t, τ k)
〈
Ψwp

∣∣ P̂k(τ k)
∣∣Ψwp

〉
dτ k. (A.2)
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From the definition of the multimode coherent state

∣∣Ψwp

〉
= exp

(
−1

2

∫
R

|α(t)|2dt

) ∞∑
n=0

1

n!

(∫
R

α(t)â†(t)dt

)n

|0〉 (A.3)

we can calculate
〈
Ψwp

∣∣ P̂k(τ k)
∣∣Ψwp

〉
= e−μwp

∏k
j=1

∣∣α(τj)
∣∣2

. Inserting this expression into the expression for
pwp(t) yields the result

pwp(t) = e−μwp

∞∑
k=0

∫
Rk

1

k!
pclick(t, τ k)

k∏
j=1

∣∣α(τj)
∣∣2

dτ k

= e−μwp

∞∑
k=0

∫
Rk

1

k!

⎛
⎝ k∑

j=1

η
∣∣α(τj)

∣∣2
J(t − τj)

∏
l 
=j

|α(τl)|2
(

1 − η

∫ t

τl

J(t′ − τl)dt′
)⎞
⎠ dτ k

= −e−μwp
∂

∂t

∞∑
k=0

1

k!

(∫
R

|α(τ)|2
(

1 − η

∫ t

τ

J(t′ − τ)dt′
)

dτ

)k

= − ∂

∂t
exp

(
−η

∫ t

−∞
(J ∗ |α|2)(t′)dt′

)
. (A.4)

Appendix B. Bayes factor, Akaike information criterion and model comparison

When comparing different models of the same phenomena, it is often interesting to have a criterion for
selecting the better model from a set of models. Some criteria account for the number of parameters, thus
privileging ‘simpler’ models in the selection. This helps avoid overfitting. In the following, two criteria are
discussed: the Bayes factor and the AIC.

B.1. Bayes Factor and Akaike information criterion
The Bayes factor can be used to quantitatively compare two models with respect to given data. Let
P(model2) and P(model2) the prior probabilities for both models and P(data|model1) and P(data|model2)
the probabilities to obtain the data when a model is given. The posterior probabilities for model i can be
then calculated from (8) for a Bayesian update with the measured data:

P(modeli|data) =
P(data|modeli)P(modeli)

P(data)
. (B.1)

The ratio of the posterior probabilities is given by

P(model1|data)

P(model2|data)
= K

P(model1)

P(model2)
(B.2)

with the Bayes factor

K =
P(data|model1)

P(data|model2)
= exp (l(model2) − l(model1)) (B.3)

and the negative log-likelihood function l which incorporates the data. Thus the Bayes factor directly
quantifies by which factor the ratio of posterior probabilities differs from the ratio of prior probabilities
after a Bayesian update using the data. A criterion for privileging one model over the other decisively is a
Bayes factor over 100 [46].

For the AIC each modeli with ki parameters is assigned a score value of [45]

aic(modeli) = 2ki + 2l(modeli) (B.4)

with the negative log-likelihood function l(model). It should be noted that the collection may encompass
entirely different families of models with different parameter spaces [45]. The model with the lowest
aic-value is then selected as optimal. Obviously k is constant for a family of models parametrized by the
same parameters. Inside such a space the AIC selects the model with the lowest negative log-likelihood.
Only when comparing models with different numbers of parameters, the AIC differs in any way from the
max-likelihood selection. The first term counting the number of parameters penalizes models with many
parameters and therefore helps avoid overfitting [45, 50].
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B.2. Model comparison
In this section we compare the model obtained by our tomographic algorithm and the timing jitter model
analyzed in section 7. We assume that all measurement errors are normally distributed. For a single
Gaussian with mean m and standard deviation σ, the negative log-likelihood in the variable x is

lGauss(m,σ) = − ln (LGauss(m,σ)) =
1

2σ2
(x − m)2 +

1

2
log 2π + log σ. (B.5)

Note here, that the last two terms do not depend on x and remain constant as long as the same Gaussian is
considered.

We aim to compare the model entailed by the reconstructed POVM, with the optimal version of the
jitter rate model. We thus optimize the least square distance between the measured click probability pwp and
the jitter rate model click probability pJR with one single click rate λ, so that the click probability according
to this model is given by (16):

pJR(t) = − ∂

∂t
exp

(
−ημ

∫ t

−∞
λ(t′)dt′

)
= ημλ(t) exp

(
−ημ

∫ t

−∞
λ(t′)dt′

)
. (B.6)

According to (17), the click rate λ would be restricted to a convolution of the pulse shape with the jitter
distribution. By optimizing for a common click rate λ explaining the probabilities for all values of μ
simultaneously instead of optimizing for a common jitter rate, we allow a broader class of solutions
including those that cannot be represented by a convolution. Therefore, the model comparison is
independent of the measured probe pulse shape.

We discretize λ(t) and pJR(t) into the time bins as defined in section 2 such that
∑

i λi = 1. Each time
bin is assigned a standard deviation (and thus a measurement error) by taking the maximum standard
deviation as in equation (10). These measurement errors determine the log-likelihood function as

l(λ) =
∑

i

1

2σ2
i

(fi − pJR, i)
2 +

∑
i

(
1

2
log 2π + log σi

)
, (B.7)

with measured click probabilities fi as introduced in section 2. The second sum is independent of the
parameters, and thus left out for the final objective function

U(λi) =
∑

i

1

2σ2
i

(fi − pJR,i)
2. (B.8)

The likelihood used for the POVM model itself is an adapted version of (B.7):

pPOVM,i =

kmax∑
k=0

Θk,i
μk

k!
e−μ (B.9)

lPOVM,i(Θn,i) =
∑

i

1

2σ2
i

(fi − pPOVM,i)
2 −

∑
i

(
1

2
log 2π + log σi

)
. (B.10)

We then compare both, the optimal jitter rate model from (B.7) and the POVM model from section 6, using
the Bayes factor and the AIC calculated from the negative log-likelihood functions in (B.7) and (B.10). The
results are summarized in table 1.
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[29] Yang T H, Vértesi T, Bancal J D, Scarani V and Navascués M 2014 Phys. Rev. Lett. 113 040401
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