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Motivated by the dearth of studies pertaining to the digital quantum simulation of coupled
fermion-boson systems and the revitalized interest in simulating models from medium- and high-
energy physics, we investigate the nonequilibrium dynamics following a Yukawa-interaction quench
on IBM Q. After adopting – due to current quantum-hardware limitations – a single-site (zero-
dimensional) version of the scalar Yukawa-coupling model as our point of departure, we design
low-depth quantum circuits that emulate its dynamics with up to three bosons. In particular, using
advanced circuit-optimization techniques, in the one-boson case we demonstrate circuit compres-
sion, i.e. design a shallow (constant-depth) circuit that contains only two CNOT gates, regardless
of the total simulation time. In the three-boson case – where such a compression is not possible – we
design a circuit in which one Trotter step entails 8 CNOTs, this number being far below the maximal
CNOT-cost of a generic three-qubit gate. Using an analogy with the travelling salesman problem,
we also provide a CNOT-cost estimate for quantum circuits emulating the system dynamics for
higher boson-number truncations. Finally, based on the proposed circuits for one- and three-boson
cases, we quantify the system dynamics for several different initial states by evaluating the expected
fermion- and boson numbers at an arbitrary time after the quench. We validate our results by
finding their good agreement with the exact ones obtained through classical benchmarking.

I. INTRODUCTION

The reinvigorated research interest in digital quan-

tum simulation (DQS) [1–3] has chiefly been moti-
vated by the tantalizing recent progress in the devel-
opment and deployment of quantum hardware based on
superconducting- [4], trapped-ion- [5], or neutral-atom
systems [6]. This recent flurry of research activity in
DQS was preceded by a large body of investigation per-
taining to analog quantum simulators [3] of many-body
systems that had been accrued over the period of nearly
two decades. Both of these research strands have in large
part been inspired by the pioneering assertion of Feyn-
man that a generic quantum system could efficiently be
simulated using a device whose operation is also governed
by quantum-mechanical laws [7]. Admittedly, the field
of DQS has heretofore been dominated by the develop-
ment and application of quantum algorithms for simulat-
ing purely fermionic systems [8–19]; this is mostly related
to the fact that – owing to the existence of the Pauli ex-
clusion principle – simulations of such systems typically
require relatively modest quantum-hardware resources.

Unlike their fermionic counterparts, quantum many-
body systems involving bosonic constituents have
infinite-dimensional Hilbert spaces that ought to be trun-
cated if one aims to simulate such systems on either clas-
sical or quantum computers. Due to the inherently non-
trivial problem of encoding bosonic states on qubit regis-
ters, digital simulators of systems involving bosonic par-
ticles have heretofore received comparatively modest at-
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tention [20–25]. In particular, while a multitude of analog
simulators of coupled fermion-boson models [20, 26] have
been proposed [27–33], only a handful of such models
have as yet been addressed in the DQS context [21, 34].

Motivated by the dearth of research activity pertain-
ing to DQS of coupled fermion-boson models, as well
as the emerging trend of simulating models from high-
and medium-energy physics [34–40], in this paper we
present a DQS of the nonequilibrium dynamics follow-
ing a quench [41] of scalar Yukawa interaction [42]. Such
coupling – first proposed in the context of interaction be-
tween nucleons mediated by pions [43] – involves fermion-
, antifermion-, and boson degrees of freedom. Due to
technological limitations of current noisy intermediate-
scale quantum (NISQ) hardware [44], here we investi-
gate the low-energy limit of scalar Yukawa coupling on
a single lattice site, with low truncation numbers for the
real scalar (boson) field. We show that, despite its inher-
ent simplicity, the resulting single-site (zero-dimensional)
model shows nontrivial quantum dynamics.

By first making use of the local charge conservation
in this system, which allows us to encode the fermion-
antifermion sector of the problem using a single qubit, we
subsequently design low-depth quantum circuits that em-
ulate the system dynamics with up to three bosons. Fur-
thermore, we implement those circuits as a sequence of
quantum gates on state-of-the-art IBM Quantum (IBM
Q) hardware, based on quantum processors that rely on
the use of controlled-NOT (CNOT) as a representative
two-qubit gate. Based on the designed circuits, we char-
acterize the system dynamics for several different initial
states by computing the expected fermion- and boson
numbers at an arbitrary time after the quench on IBM
Q. We also provide a benchmark for the results obtained
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on IBM Q by carrying out a numerically-exact evaluation
of the aforementioned quantities on a classical computer.
We validate our DQS by finding a reasonably good agree-
ment between the two sets of results.

Using sophisticated circuit-optimization techniques, in
the one-boson case – which in our realization corre-
sponds to a two-qubit system – we demonstrate an ex-
ample of circuit compression. More precisely, we design
a constant-depth circuit that contains only two CNOT
gates, regardless of the total simulation time. In other
words, in this case we find a much more efficient realiza-
tion than the conventional one in which the circuit depth
scales linearly with the number of Trotter steps. Such
circuit compressions are only possible for certain spe-
cial types of the system (coupled-qubit) Hamiltonian and
have quite recently been discussed in the context of the
transverse-field Ising- and XY models by means of Lie-
algebraic methods [45], as well as using reflection sym-
metry and the quantum Yang-Baxter equation [46]. The
shallow circuits resulting from such compressions have
depths that are completely independent of the Trotter-
step size and depend only on the number of qubits.

On the other hand, in the more nontrivial three-boson
case – which in our adopted state-encoding scheme cor-
responds to a three-qubit system – a compression to a
constant-depth circuit is no longer possible. We show
that in this case it proves beneficial to make use of the
second-order Trotter-Suzuki product formula [47, 48],
which entails a symmetrized Trotter step. Using this
symmetrized Trotter decomposition, we design a circuit
in which one Trotter step entails 8 CNOTs. This last
number of CNOTs is far below the maximal CNOT-cost
(14) of a generic three-qubit gate [49], which speaks in
favor of the efficiency of the proposed circuit [49, 50].

We also address cases with larger boson-number trun-
cations by providing the CNOT-cost estimate for quan-
tum circuits that emulate the system dynamics in those
cases. We do so based on an analogy of our cir-
cuit optimization with the travelling salesman problem

(TSP) [51]. To this end, we make use of the exact
solution of the TSP based on the Bellman-Held-Karp
dynamic-programming algorithm [52, 53] – which due
to its unfavorable time-complexity is limited to rather
low truncations – as well as the Christofides algorithm, a
polynomial-time heuristic that approximately solves the
TSP on a metric graph [54]. Being polynomial in char-
acter, the latter can be utilized for much larger boson-
number truncations.

The remainder of this paper is organized as follows.
In Sec. II we introduce the fermion-boson system un-
der consideration and its underlying Hamiltonian. Sec-
tion III is devoted to a short description of our scheme
for describing the dynamics following an interaction
quench via DQS, followed by a brief recapitulation of our
adopted approaches for encoding the relevant Fock states
of fermions and bosons on dedicated registers of qubits.
Section IV is devoted to the design of low-depth quan-
tum circuits that emulate the dynamics of the system un-

der consideration, both in the two-qubit- and three-qubit
cases. We complement this by providing a CNOT-cost
estimate for higher boson-number truncations in Sec. V.
The principal results for the relevant quantities describ-
ing the system dynamics, along with their comparison
with the exact ones obtained through classical bench-
marking, are presented in Sec. VI. We summarize the
paper and underscore its main conclusions in Sec. VII.
Some cumbersome derivations, as well as certain relevant
mathematical and computational details, are relegated to
Appendices A, B, C, and D.

II. SYSTEM AND HAMILTONIAN

To set the stage for further considerations, we first in-
troduce the system at hand and its underlying fermion-
boson Hamiltonian. We start with some general remarks
on Yukawa-type interactions (Sec. II A) then introduce
the scalar Yukawa-coupling model (Sec. II B), and, fi-
nally, specialize to the single-site (zero-dimensional) ver-
sion of the latter model (Sec. II C).

A. Yukawa-type interactions: Generalities

Being one of the basic interaction mechanisms involv-
ing both fermionic and bosonic particles, Yukawa-type
interactions represent a paradigm for particle production
and absorption. The simplest form of Yukawa-type in-
teraction is described by a coupling term of the type

V = g

∫

Ω

d3x[ψ†(x, t)ψ(x, t)φ(x, t) + H.c.] , (1)

where ψ(x, t) is a fermion field, φ(x, t) a boson field,
while g is the Yukawa (fermion-boson) coupling strength.
This interaction term is a scalar in the fermion space
and involves a scalar boson field. For the sake of com-
pleteness, it is worthwhile mentioning that there exist
much more complicated Yukawa-type interaction mecha-
nisms [55]. For example, ψ†σψ ·∇φ is an interaction term
that couples a pseudovector in the fermion spinor space
to a pseudoscalar boson, this term being also of scalar
character. Likewise, a scalar in the configuration space
that involves a boson of isovector character through in-
ternal degrees of freedom is given by a term of the type
ψ†τψ ·φ, in which a fermion isospinor combination is an
isovector and φ ≡ {φ1, φ2, φ3} is a three-component field
in the isospin space; this last interaction is an isoscalar
that guarantees charge independence of the system.
The Yukawa-interaction mechanism was originally in-

troduced to describe the nuclear force between nucleons
mediated by pions [43]. It later attracted interest in the
context of the Standard Model of partice physics, where it
describes the coupling between the Higgs field and mass-
less quark and lepton fields (i.e. the fundamental fermion
fields); the latter fermion fields acquire masses, via the
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Higgs mechanism, after electroweak symmetry break-
ing [42]. Finally, it is worthwhile mentioning that interac-
tion mechanism somewhat analogous to Yukawa coupling
are of relevance in the context of strongly-correlated sys-
tems in condensed-matter physics [56].

B. Scalar Yukawa coupling

In the following, we will be interested in the Yukawa-
type interaction of a scalar field φ and a Dirac field ψ,
described by the Hamiltonian

Hint = g

∫

d3x ψ̄ψφ , (2)

where g is the dimensionless coupling strength. While
pions, which mediate the nucleon-nucleon interaction, are
pseudoscalar mesons, we will assume a scalar interaction
for the sake of simplicity. In our subsequent discussion,
we adopt natural units, where ~ = c = 1.
To perform a DQS of the real-time dynamics of scalar

Yukawa coupling, we have to discretize the theory and
select a convenient basis. While approaches that are
directly based on the algebraic properties of the field
operators do exist, in what follows we make use of an
expansion in terms of creation and annihilation opera-
tors. We further select the momentum eigenstates |p〉 as
our preferred basis since it diagonalizes the free Hamil-
tonian. Using the definition of the Fourier transform
φ(x) = (2π)

−3 ∫
d3p eip·xφ(p), one may rewrite the in-

teraction Hamiltonian as

Hint =
g

2

∫

d3p

(2π)3

∫

d3p′

(2π)3

×
[

ψ̄(p)ψ(p′)φ(p − p
′) + H.c.

]

, (3)

with the field operators in momentum space being de-
fined as

φ(p) =
1

√

2ωp

(

bp + b†−p

)

,

ψ(p) =
1

√

2Ωp

∑

s

[

aspu
s(p) + cs†−pv

s(−p)
]

,
(4)

with the relativistic dispersion relations ω2
p = m2 + p

2

(for bosons) and Ω2
p = M2 + p

2 (for fermions) [42]. By
discretizing the integrals in Eq. (3) and using Eq. (4), one
obtains the momentum-space version of Hint in terms of
creation/annihilation operators

Hint =
ga

3/2
l

2

∑

p,p′

∑

r,s

{ 1
√

8ΩpΩp′ωp−p′

(

bp−p′ + b†p′−p

)

×
[

ar†p ū
r(p) + cr−pv̄

r(−p)
]

(5)

×
[

asp′us(p′) + cs†−p′v
s(−p

′)
]

+H.c.
}

,

where al is the lattice spacing.

C. Single-site model

Due to technological limitations of current quantum
hardware, it appears prudent to start investigating scalar
Yukawa interaction on a single lattice site with low trun-
cation numbers for the real scalar. While for large lattices
the gate cost of the time evolution scales more favourably
in real space, the momentum-space representation is still
suitable for small lattices – especially in the extreme
case of a single-site model. The single grid point in mo-
mentum space corresponds to a momentum below a cer-
tain small cutoff value for all particles, implying that
all particles can be considered to be approximately at
rest. While zero-dimensional, single-site models of this
type are widely used in the context of the DQS of high-
/medium energy models [57, 58], it is obvious that they
cannot be expected to yield accurate results for any rel-
evant physical observable. However, such “toy models”
can still display nontrivial quantum dynamics and can
thus be be seen as a useful first step towards more com-
plex simulations that should be achievable in the not-too-
distant future.

As derived in Appendix A, the effective interaction
Hamiltonian of our single-site model is given by

Hint =
η

2

(

a†a+ c†c− 1
) (

b+ b†
)

, (6)

with η ≡ 4mgβ3/2 being the effective coupling strength.
At the same time, the single-site version of the free
Hamiltonian H0 = HDirac +HKlein-Gordon is given by

H0 =M(a†a+ c†c) +mb†b . (7)

The sum of the Hamiltonians in Eqs. (6) and (7) – i.e.
the Hamiltonian Htot = H0 +Hint – will be our point of
departure for simulating the dynamics following a quench
of the scalar Yukawa coupling in what follows.

It is worthwhile pointing out that the single-site (zero-
dimensional) coupling Hamiltonian in Eq. (6) features
a fermion-boson interaction of the density-displacement
type, i.e. it describes coupling of the fermion (an-
tifermion) density c†c (a†a) with the boson displacements
b+b†. One widely known model that features this type of
interaction is the time-honoured Holstein model [59] from
condensed-matter physics, which describes a local cou-
pling of a single electron (hole) to dispersionless phonons
on each site of a discrete lattice, these phonons being
described as zero-dimensional bosons. While this last
model also involves zero-dimensional bosons, its princi-
pal difference from our effective model is that a fermion
in the Holstein model – which can be considered spin-
less – is itinerant in nature (i.e. has a nonzero hopping
amplitude between different lattice sites). Consequently,
this model is discussed in scenarios that involve at least
two lattice sites. Therefore, the analogy to the Holstein
model might be more relevant for a multi-site generaliza-
tion of our effective model.
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III. DQS OF HAMILTONIAN DYNAMICS AND
ENCODING PARTICLE STATES ON QUBITS

To faciliatate the discussion of the DQS of the Yukawa-
coupled system in the remainder of this paper, we be-
gin with some general considerations of the DQS of the
dynamics following an interaction quench and quantum-
circuit synthesis (Sec. III A). We then recapitulate the
basic aspects of encoding the relevant particle states
on qubits, both for fermions (Sec. III B) and bosons
(Sec. III C).

A. Simulating the dynamics following an
interaction quench

In what follows, the dynamics of the fermion-boson
system at hand following a scalar-Yukawa interaction
quench at t = 0 will be considered within the DQS frame-
work. We will evaluate the expected particle (fermion,
boson) numbers at an arbitrary time t after the quench
starting from several different initial states, i.e. for differ-
ent choices of the initial fermion- and boson populations
in a single-site realization of the fermion-boson system
at hand. To this end, we will first evaluate the time-
evolution operator of the system e−iHtott by first repre-
senting it in the form of a quantum circuit, i.e. as a
sequence of single- and two-qubit gates.
It is useful to recall that the unitary time-evolution op-

erator U(t) corresponding to the Hamiltonian H(t) satis-
fies the time-dependent Schrödinger equation in the oper-
ator form ∂U/∂t = −iH(t)U(t), with the initial condition
U(t = 0) = 1. We will hereafter assume that we are deal-
ing with a time-independent Hamiltonian H(t) = Hsys.
By discretizing time into n time steps of duration ∆t,
such that t ≡ n∆t is the total evolution time, the time-
evolution operator U(t) at time t can be expressed as

U(t) = (e−iHsys∆t)n . (8)

The inherent tradeoff pertaining to such a decomposition
is that a smaller time step corresponds to a longer circuit.
The last expression for U(t) is typically approximated
using first-order Trotter-Suzuki-type decomposition [47,
60]. For a time-independent Hamiltonian Hsys =

∑

lHl

the latter approximates exp(−iHsyst) by (
∏

l e
−iHlt/n)n,

with the corresponding error being upper bounded by
O(Nt2/n), where N is the number of qubits [1].
The time-evolution operator of the system at hand is

represented through quantum circuits that emulate the
system dynamics. Those circuit are decomposed into
single-qubit and two-qubit gates. Typical single-qubit
gates include the Pauli gates [61]

X =

[

0 1
1 0

]

, Y =

[

0 −i
i 0

]

, Z =

[

1 0
0 −1

]

, (9)

the single-qubit rotation gates

Rx(θ) = e−
i
2
θX , Ry(θ) = e−

i
2
θY , Rz(θ) = e−

i
2
θZ , (10)

as well as the Hadamard- (H), phase- (S) and π/8 (T )
gates

H =
1√
2

[

1 1
1 −1

]

, S =

[

1 0
0 i

]

, T =

[

1 0
0 eiπ/4

]

. (11)

The essential two-qubit gate is controlled-NOT (CNOT),
whose matrix representation is

CNOT =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






. (12)

Generally speaking, simulating the dynamics of a
quantum many-body system on a classical computer is
typically a highly nontrivial problem due to the large
Hilbert-space size that necessitates the allotment of a
large amount of memory. The task of designing a cir-
cuit that emulates these same dynamics on a quantum
computer [61] – a process often referred to as unitary syn-
thesis – is exponentially hard. This is intimately related
to exponential growth of a generic Hilbert space with the
system size; for instance, for interacting fermion systems
it is known that generating such a circuit is an NP-hard
problem. What further complicates the already challeng-
ing task of unitary synthesis is the fact that near-term
quantum hardware is both very limited in size and in-
evitably noisy [44]. Therefore, optimizing the quantum
circuit that is supposed to mimic the dynamics of a rel-
evant quantum system – i.e. reducing its depth in order
to obtain as shallow a circuit as possible – is a task of
paramount importance in the realm of DQS.

B. Fermion-state encoding

In the familiar Jordan-Wigner (JW) encoding [62] of
fermion states, due to the Pauli exclusion principle, the
fermionic occupation numbers are restricted to the set
{0, 1}. This allows for a one-to-one mapping from the
occupation-number basis to the computational basis. In
other words, a qubit in the state |0〉(|1〉) corresponds to
an empty (occupied) fermionic orbital

|fn−1 . . . f1f0〉 → |qn−1〉 ⊗ · · · ⊗ |q1〉 ⊗ |q0〉 , (13)

where fj is the occupation number of orbital j (j =
0, . . . , n − 1) and |qj〉 the corresponding qubit state
[fj = qj ∈ {0, 1}]. It should be emphasized that in writ-
ing Eq. (13) we assumed that the rightmost single-qubit
state corresponds to the qubit 0, a convention that we
will hereafter also utilize for operators.
The JW-type encoding requires O(n) qubit operations

to represent a fermionic operator, where n is the number
of fermionic orbitals (or, in the problem at hand, mo-
mentum states of spin-up and spin-down particles/an-
tiparticles). While the alternative, Bravyi-Kitaev encod-
ing [10, 63] reduces this cost to O(log n), in what follows
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we will rely on the JW encoding as we will be concerned
with Hamiltonians that are diagonal on the fermionic
subspace in the occupation-number basis.
The JW qubit mappings of the fermion creation- and

annihilation operators are, respectively, given by

c†j ≡ 1

2
(Xj − iYj)⊗ Zj−1 ⊗ · · · ⊗ Z1 ⊗ Z0 ,

cj ≡ 1

2
(Xj + iYj)⊗ Zj−1 ⊗ · · · ⊗ Z1 ⊗ Z0 . (14)

Here the operators (Xj ± iYj)/2 change the occupation
numbers of target spin orbital, while the action of the
string of Z operators amounts to computing the parity
of the state.

C. Boson-state encoding

Bosonic creation/annihilation operators satisfy the

commutation relation [bi, b
†
j] = δij . In contrast to

fermions, bosonic operators on different sites commute,
thus they can be constructed such that they act locally on
a bosonic mode. The main challenge in encoding bosonic
states pertains to their unbounded occupation number,
which forces us to impose an occupation-number cutoff
Λ. The encoding of a bosonic Fock state with cutoff
Λ requires O(n log Λ) qubits, where n is the number of
bosonic modes. This scaling is achieved by representing
the occupation numbers of the basis states of the trun-
cated Fock space as binary strings and mapping the digits
to single qubits [21]. For a Fock state |k〉, where k is an
integer whose binary decomposition reads

k =

N−1
∑

j=0

qj(k) 2
j ( qj ∈ {0, 1} ) , (15)

the mapping is given by

|k〉 → |qN−1〉 ⊗ · · · ⊗ |q1〉 ⊗ |q0〉 . (16)

The mapping of the truncated creation/annihilation op-
erators to their pseudospin-1/2 (qubit) counterparts is
then achieved by finding their corresponding Pauli-basis
representations for arbitary truncations. For a trunca-
tion at Λ = 2N − 1, a bosonic creation operator can be
represented as

b† =

(

1

2

)N Λ
∑

k=1

√
k

N−1
⊗

j=0

Fj,k , (17)

where Fj,k is an operator defined as

Fj,k =

{

Ij + (−1)qj(k)Zj if ∃ m < j : qm(k) = 1

Xj + (−1)qj(k)iYj if ∀ m < j : qm(k) = 0
.

(18)
Another often used operator is the particle-number op-
erator b†b, which in the Pauli basis is given by

b†b =
1

2

N−1
∑

j=0

2j(I − Z)j . (19)

IV. CIRCUIT DESIGN

In the following we describe the design of quantum circuits emulating the dynamics of the system at hand. We
start with the constant-depth two-qubit circuit that corresponds to the one-boson exchange case (Sec. IVA), followed
by its three-qubit counterpart in the case of three-boson exchange (Sec. IVB).

Before embarking on the construction of specific circuits, we point out how a specific property of the system at
hand – namely, the local charge conservation – allows us to encode the fermion-antifermion sector of the problem
using only one qubit. Starting from a general expression originating from JW mapping, namely

a†a+ c†c− 1 =
1

2
(IZ + ZI) =







−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1






, (20)

we restrict the system to the subspace with a total charge of Q = 0. This allows us to rewrite a†a+ c†c− 1 using only
a single-qubit operator:

a†a+ c†c− 1 = −Z . (21)

This explains why the fermion-antifermion sector of the problem can be encoded using a single qubit.



6

FIG. 1: Circuit representation of a single Trotter step in the time evolution of the Hamiltonian Htot = H0 +Hint [cf. Eq. (22)].

A. Exchange of up to one boson (two-qubit circuit)

The next step is to apply both the fermion and boson mappings from Secs. III B and III C, respectively, to obtain
the qubit Hamiltonian. Here we truncate the bosonic occupation number at Λ = 1 such that b+ b† = X . By making
use of Eq. (21), the two contributions to the total qubit Hamiltonian Htot = H0 +Hint are given by

H0 = −M IZ − m

2
ZI +

1

2
(2M +m) , (22)

Hint = −η
2
XZ .

The spectrum of the free Hamiltonian H0 is symmetrized by dropping the constant term (2M +m)/2. This changes
the time evolution only by an irrelevant global phase.
The general approach to perform the time evolution of such a Hamiltonian with non-commuting terms is based on

the Trotter-Suzuki decomposition, also known as Trotterization. To be more specific, for the Hamiltonian in Eq. (22)
our starting point is the standard second-order Trotter-Suzuki product formula [47, 48]

e−iHtot∆t = e−iH0∆t/2e−iHint∆te−iH0∆t/2 +O(∆t3) , (23)

where the free Hamiltonian H0 is used for symmetrization as its cost in terms of CNOT gates is zero. The circuit for
a single Trotter step, based on the “star” configuration of CNOT gates [see Fig. 8(a)], is depicted in Fig. 1.
In the conventional scenario of using the product formula in Eq. (23), one obtains a quantum circuit whose depth

scales linearly with the number of Trotter steps. In other words, the circuit depth grows with the total simulation
time, which in many systems limits feasible simulations to relatively short times. We show that in the system at hand
– at least in the two-qubit case (i.e. in the case of up to one boson exchange) – we can defy this conventional scenario
and design a constant-depth circuit. To this end, it is instructive to start by analyzing the transition zone between
subsequent Trotter steps, which is represented by the following circuit:

FIG. 2: Circuit representation of the transition zone between two subsequent Trotter steps.

The simplification of the circuit in Fig. 2 is made possible by simple properties of the CNOT gate – namely, its
commutation with a z-rotation gate on the control qubit and with an x-rotation gate on the target qubit, as well as
the fact that the CNOT gate is self-inverse. It is also worthwhile pointing out that the occurrence of x-rotation gates
on the target-qubit wire in the last circuit originates from the identity RX(θ) = HRZ(θ)H , which follows from the
fact that X = HZH .
From this last circuit, one can easily go back to the exact time evolution by taking the limit ∆t → 0, n → ∞

while keeping n∆t ≡ t constant. This approach yields the exact constant-depth quantum circuit that corresponds
to infinitely many small time steps, i.e. to the finite evolution time t; this circuit is shown in Fig. 3, where the top
wire corresponds to the fermion, the bottom one to the boson. It should be emphasized that it is the specific form of
the total Hamiltonian Htot = H0 +Hint in Eq. (22) that allows one to perform circuit compression between different
Trotter steps such that only two CNOT gates are required to perform an arbitrary number of steps.
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FIG. 3: Exact constant-depth quantum circuit corresponding to the evolution governed by the Hamiltonian Htot = H0 +Hint

[cf. Eq. (22)] over the finite time t.

At this point, the problem of decomposing the unitary two-qubit time evolution operator has been reduced to the
decomposition of a single-qubit gate. We choose to break down exp [i(mX + ηZ)t/2] by performing a ZXZ Euler
decomposition RZ(α+ π)RX(β)RZ (α− π), where

α = − arctan

[

η

ω
tan

(

ωt

2

)]

,

β = 2 arctan





m
√

η2 + ω2 cot2
(

ωt
2

)



 ,

(24)

and ω2 = m2 + η2.
The final circuit, which emulates the system dynamics over a finite-evolution time t using only two CNOT gates,

then assumes the form depicted in Fig. 4. In connection with the form of this circuit, it is worthwhile pointing out that
circuit compressions of the type utilized here have quite recently been discussed in the context of interacting qubit
arrays described by the transverse-field Ising- and XY models [45, 46], paradigmatic models in condensed-matter
physics. These models can be mapped to free fermionic models and are also known to be classically simulatable with
polynomial resources [64]. It is thus interesting that the fermion-boson system under consideration offers another,
much less common example – namely, that of an XZ-coupled pair of qubits, with mutually unequal external fields in
the z-direction acting on either qubit [cf. Eq. (22)] – where such a circuit compression is also possible.

FIG. 4: The full two-qubit circuit representing the dynamics of the system in the one-boson-exchange case.

B. Exchange of up to three bosons (three-qubit circuit)

In order to describe an exchange of up to three bosons, two qubits are required to encode the bosonic Fock space.
Using the bosonic qubit mapping, we modify the Hamiltonian as

H0 = −M IIZ − m

2
IZI −mZII , (25)

Hint = −η
2

[1 +
√
3

2
XIZ +

1−
√
3

2
XZZ

+
1√
2
(XXZ + Y Y Z)

]

. (26)

To perform the time evolution of this Hamiltonian, we start with Trotterization. As this Hamiltonian does not allow
for the same efficient circuit compression as in the one-boson case, we have to be more careful how to trotterize. To
reduce the error of a Trotter step to O(∆t3), we once again make use of the second-order Trotter-Suzuki product
formula [cf. Eq. (23)], also using the free Hamiltonian H0 for symmetrization.
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FIG. 5: Minimal circuit representation of the unitary S , obtained using the Kraus-Cirac decomposition.

While a first-order Trotterization of exp(−iHint∆t) requires 8 CNOT gates, we will instead construct an exact
decomposition with the same gate count. The key idea is that Hint can be written as a tensor product of operators
acting locally on the fermionic or bosonic registers. To calculate the matrix exponential, we may diagonalize these
operators separately. The fermionic operator Z is already diagonal, leaving us with the task of diagonalizing b + b†.
We find b+ b† = SDS†, where in the matrix forms D and S are given by

D = diag (−λ+, λ+,−λ−, λ−) , (27)

S =
1

2









−λ̃− λ̃− λ̃+ −λ̃+
1 1 −1 −1

−λ̃+ λ̃+ −λ̃− λ̃−
1 1 1 1









, (28)

with λ± ≡
√

3±
√
6 and λ̃± = λ±/

√
3.

The next step is to perform the Kraus-Cirac decomposition of S, a transformation intimately related to the Cartan
decomposition of the Lie algebra su(4) [65, 66]. In this manner, we find that

S = (K3 ⊗K4) exp (iϕZZ/2)(K1 ⊗K2) , (29)

where the matrices K1, . . . ,K4 ∈ SU(2) are given by

K1 =
eiπ/4√

2

(

i 1
−i 1

)

= e−iπ/4S†
√
X ,

K2 =
eiπ/2√

2

(

1 1
1 −1

)

=
eiπ/2√

2
H ,

K3 =
eiπ/2√

2

(

e−iϕ −ieiϕ
ie−iϕ −eiϕ

)

= eiπ/2Z
√
XRZ(2ϕ) ,

K4 =

(

0 −1
1 0

)

= eiπ/2Y , (30)

with ϕ = arctan
[√

2/(1 +
√
3)
]

. The minimal circuit representation of S is depicted in Fig. 5.

FIG. 6: Quantum circuit representing exp(−iHint, diag∆t).

The next step is to express D [cf. Eq. (27)] in the Pauli basis:

D =

√

3 +
√
3

2
ZI +

√

3−
√
3

2
ZZ . (31)
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FIG. 7: Quantum circuit for a single Trotter step in second-order Trotterization of the three-qubit Hamiltonian (26). The
bosonic register consists of the mid- and bottom wire.

Then, the Hamiltonian Hint can be recast in the form

Hint, diag =
1

2
(η−ZZZ + η+ZIZ) , (32)

where η± = η
√

(3 ±
√
3)/2. The exact circuit for exp(−iHint, diag∆t) is then given by Fig. 6.

Finally, by combining the circuits shown in Figs. 5 and 6 with those corresponding to the free Hamiltonian H0, we
obtain the circuit that emulates a single Trotter step of the system under consideration. This circuit is depicted in
Fig. 7.
V. CNOT-COST ESTIMATION FOR HIGHER

BOSON-NUMBER TRUNCATIONS

For simulations with higher truncation numbers (or
more grid points), a more systematic approach towards
circuit optimization is required due to the fast-growing
number of Pauli strings. Even when considering only
a single grid point with a boson-number truncation at
Λ = 7 (three bosonic qubits), circuit optimization by
hand in the problem under consideration becomes rather
tedious. Namely, for different possible orderings of Pauli
strings, we obtain different CNOT counts.
In what follows, we will focus on first-order Trotteriza-

tion, which means that each Pauli string appears exactly
once per Trotter step. All considerations in this section
are based on the star + ancilla layout [61, 67], which
is depicted in Fig. 8(b). Using this technique, we can
exactly simulate any Hamiltonian of the form

H =
n−1
⊗

k=0

σk
c(k) , (33)

where σk
c(k) ∈ {I,X, Y, Z} is a Pauli operator acting

on the k-th qubit and H is given by a single Pauli
string. The design of a quantum circuit emulating the
time evolution governed by such a Hamiltonian is ex-
plained in Appendix C. For Hamiltonians with multiple
non-commuting Pauli strings, we append the same circuit
structure for each string and justify the circuit decompo-
sition through the Trotter product formula.
Qubits with identity operations can be disregarded

and qubits with X or Y are transformed to Z using
X = HZH and Y = SHZHS†. Whenever we deal with
multiple non-commuting Pauli strings, we use Trotteri-
zation to recover the circuit structure from Fig. 8(b) for

each string.

For the sake of simplicity, throughout this section, we
ignore the fermionic qubit in the interaction Hamiltonian
Hint, and focus entirely on the bosonic term Hb ∝ b+ b†.
Our goal is therefore to estimate the CNOT-cost of the
circuit representation of exp (−iHb∆t) for an arbitray
truncation Λ. We restrict ourselves the case where the
truncation can be expressed as Λ = 2N − 1, where N is
in integer corresponding to the amount of qubits forming
the bosonic register. Let SN = {P1, P2, . . . , Pk} denote
the set of Pauli strings required to encode b + b†. In
Appendix B, we show that the number of Pauli strings k

FIG. 8: Quantum circuits for simulating the Hamiltonian
H = ZZZ for time δt using two different configurations of
CNOT gates: (a) star configuration, and (b) star+ancilla con-
figuration.
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for a truncation to N qubits is given by

k = |SN | = N2N−1 . (34)

FIG. 9: Time evolution circuit for the Hamiltonian H = XX + ZZ using the Star+Ancilla layout. We define the zones on
the left (right) of the first (last) RZ-gate as the start (end) layer. A zone between two subsequent RZ-gates is referred to as a
transition zone.

To find the optimal order of these strings, we use an
approach based on an analogy with the TSP; a simi-
lar technique was proposed in Ref. [67]. The formula-
tion of this optimization task as a TSP works as fol-
lows. We first define a complete graph G on k nodes
and set the distance between each pair of nodes i and
j to |Pi − Pj |CNOT, where |Pi − Pj |CNOT denotes the
CNOT-cost of the transition zone between the circuits
representing exp (−iPi∆t) and exp (−iPj∆t). A graphi-
cal illustration of the definition of the transition zone is
provided in Fig. 9. In Appendix D we prove that this
CNOT-cost is precisely given by the Hamming distance

|P1 −P2|CNOT :=
∑

i∈[N ]

1P1[i] 6=P2[i] = |P1 −P2|Ham . (35)

Compared to the distance metric proposed in Ref. [67],
this reduces the CNOT-cost by up to 50%. TSP aims
to minimize the cost of a closed path visiting all nodes
exactly once. For a circuit made of k Pauli strings, there
are k − 1 transition zones. A closed path on the graph
described above would however consist of k transition
zones. This issue can be fixed by inserting an ancilla
node which is fully connected with a cost of zero [67]. We
build on this approach by taking the additional CNOT-
cost from the start- and end layers of the circuit (Fig. 9)
into consideration. We find the cost of such a layer to be
given by the Hamming weight

|Pj |Ham =
∑

i∈[N ]

1Pj [i] 6=I . (36)

The closed path on our modified graph now contains
k + 1 edges, of which two correspond to the start- and
end layers, meaning that we have k − 1 transition zones,
as desired. Last, to build our graph, we need to know
the Pauli strings explicitly. We generate the sets of Pauli
strings recursively using

SN+1 = SN ⊗ I ∪ SN ⊗ Z ∪ S(σ⊗N
+ ⊗ σ−

+σ⊗N
− ⊗ σ+) , (37)

with S1 = {X}, where the tensor product is performed
element-wise (e.g., SN ⊗ Z = {P1 ⊗ Z, . . . , Pk ⊗ Z}) and
S(O) denotes the set of Pauli strings building the opera-

tor O. A naive expansion of the last set S(σ⊗N
+ ⊗ σ− +

σ⊗N
− ⊗ σ+) gives us 2N+1 different strings where each

character can be either X or Y . But as the operator is
Hermitian, all strings with imaginary coefficients cancel
out. These strings are precisely the ones with an odd
number of Y s. This leaves us with a subset containing
2N strings with an even number of Y s. An example of
the completed graph for a truncation at Λ = 3 is shown
in Fig. 10.
To solve the TSP exactly, we use the Bellman-Held-

Karp dynamic-programming algorithm [52, 53], which
scales in time with O(k22k). Due to the exponential
growth of the number of Pauli strings, we are limited
to truncations with N ≤ 3 (Λ ≤ 7). As we are deal-
ing with a metric graph, TSP can be 1.5-approximated

FIG. 10: Graph representation of the set of Pauli strings
{XI,XZ,XX, Y Y }. The weights between two Pauli string
nodes correspond to the Hamming distance while the weight
between a Pauli string node and the ancilla node is the Ham-
ming weight.
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FIG. 11: CNOT-cost as a function of the qubit number N .

in polynomial time O(k3) using the Christofides algo-
rithm [54]. We make use of this heuristic to approximate
the CNOT-cost for truncations with N ≤ 8 (Λ ≤ 255).
Last, we compare to an upper bound on the cost derived
in Appendix D. Figure 11 shows the results obtained us-
ing all three methods. We find, as expected, that the
exact TSP produces the best results. The heuristic out-
performs the upper bound we propose, suggesting that a
tighter bound can be found.

VI. RESULTS AND DISCUSSION

In what follows, we present and discuss the obtained
results for the cases of one-boson- (Sec. VIA) and three-
boson exchange (Sec. VIB). We benchmark the accuracy
of our DQS by comparing the results obtained on IBM Q
processors with those resulting from a numerically-exact
treatment of the quantum dynamics of the model under
consideration on a classical computer.
To show that our single-site model of scalar Yukawa

coupling exhibits nontrivial quantum dynamics, we per-
form DQS of this model for a variety of initial states of
the fermion-boson system. After preparing the desired
initial state, we construct the states |ψ(t)〉 of the system
at different times t by applying the designed two-qubit-
and three-qubit circuits that emulate the system dynam-
ics following a Yukawa-interaction quench at t = 0. Fi-
nally, for each of those constructed states we perform
measurements that give us access to the desired quanti-
ties, bearing in mind the relevant expressions in the Pauli
basis [cf. Eqs. (14) and (19)].
Given that the DQS of the single-site fermion-boson

model under consideration only requires two- and three-
qubit systems [cf. Sec. IV], for benchmarking purposes
we made use of two freely available IBM Q processors.
More precisely, we performed DQS in the case of up to
one boson exchange on the five-qubit ibm oslo proces-
sor, while for the case of up to three bosons we used the
seven-qubit ibmq quito. The qubit-connectivity graphs
(coupling maps) of these two quantum processors are de-

picted in Figs. 12(a) and 12(b), respectively.
Generally speaking, the errors in numerical experi-

ments on IBM Q devices strongly depend on the number
of CNOT gates in the corresponding quantum circuit.
The principal reason for this is that the CNOT-gate er-
ror is an order of magnitude larger than that of single-
qubit gates. Another reason is that the CNOT-gate time
is much longer than that of its single-qubit counterparts,
which leads to the accumulation of errors due to energy
relaxation and dephasing, this two processes being quan-
tified by the respective decoherence times T1 and T2.
Therefore, in order to minimize the error, in our DQS
we make use of the connected subsets of qubits with the
smallest average CNOT error.

A. Exchange of up to one boson

For the DQS of the quench dynamics in the case with
up to one-boson exchange (two-qubit case) we utilized the
IBM Q processor ibm oslo (average CNOT error on this
device is 1.321× 10−2, average readout assignment error
2.596×10−2, each data point averaged over 20, 000 shots),
whose corresponding qubit-connectivity graph is shown
in Fig. 12(a). In line with the strategy indicated above,
for the qubit pair that we selected (physical qubits 3 and
5) the CNOT error is smaller – only 5.606×10−3. At the
same time, the readout assignment errors are 1.850×10−2

(qubit 3, used for encoding bosons) and 9.9×10−3 (qubit
5, used to encode fermions).
The obtained results in the two-qubit case are illus-

trated in Figs. 13 and 14, which show the expectation val-
ues of the particle-number operators – both for fermions
and bosons – at an arbitrary time t after the quench
for various initial states. In particular, initial states
with a particle number of 1/2 were prepared such that

|ψ0〉 = (|0〉 + |1〉)/
√
2. What can be inferred from both

figures is that the simulation of the compressed circuit
with only two CNOT gates [cf. Sec. IVA] shows an ex-
cellent agreement with the exact (continuous-time) quan-
tum dynamics. Importantly, the small discrepancy be-
tween the data points and the exact results can mostly
be ascribed to the readout assignment errors.
Another important observation is that for some of the

FIG. 12: Qubit-connectivity graphs (coupling maps) of (a)
ibm oslo, and (b) ibmq quito.
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FIG. 13: Expected particle number 〈Nb,f 〉 for bosons and
fermions as a function of the dimensionless time t/t0, where

t0 ≡ 2π/
√

m2 + η2, for various initial states. The chosen
values of the simulation parameters are M/m = 7 and η/m =
1.7. Each data point was averaged over 20, 000 shots.

chosen initial states, examples of which are presented in
Fig. 13, the fermion-boson dynamics is trivial. In other
words, these states do not cause any interaction between
fermions and bosons, which is manifested by the fact that
the ensuing boson dynamics are completely independent
of the fermion number. We can straightforwardly see why
that is the case by finding an explicit expression for the
expected boson number at time t based on Eq. (19):

〈ψ(t)|b†b|ψ(t)〉 =
1

2

{

1− m2 + η2 cos(ωt)

ω2
〈ψ0|ZI|ψ0〉

− mη [1− cos(ωt)]

ω2
〈ψ0|XZ|ψ0〉

+
η sin(ωt)

ω
〈ψ0|Y Z|ψ0〉

}

. (38)

By considering separable initial states |ψ0〉 = |ψ0〉b ⊗
|ψ0〉f, we can infer that the fermion-boson interaction
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FIG. 14: Expected particle number 〈Nb,f 〉 for bosons and
fermions as a function of the dimensionless time t/t0, where

t0 ≡ 2π/
√

m2 + η2 for various initial states. The cho-
sen values of the simulation parameters are M/m = 7 and
η/m = 1.7. Each data point was averaged over 20, 000 shots.

vanishes for states with 〈ψ0|Z|ψ0〉f = 0 or 〈ψ0|X |ψ0〉b =
〈ψ0|Y |ψ0〉b = 0.
By contrast to Fig. 13, nontrivial quantum dynamics of

fermions and bosons are illustrated in Fig. 14, where the
boson dynamics clearly depends on the fermion number.
In particular, Fig. 14(b) shows a special case where both
fermion- and boson numbers are conserved.

B. Exchange of up to three bosons

For the case of up to three-boson exchange case (three-
qubit system) we made use of the IBM Q processor
ibmq quito (average CNOT error: 1.148× 10−2; average
readout assignment error: 4.348 × 10−2; 10, 000 shots),
whose corresponding qubit-connectivity graph is shown
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in Fig. 12(b). In keeping with the strategy indicated
above, for the qubit pairs selected (physical qubits 0, 1
and 3) the respective CNOT error are only 9.227× 10−3

(pair 0-1) and 1.166 × 10−2 (pair 1-3). At the same
time, the readout assignment errors are 3.820×10−2 and
3.660×10−2 for qubits 0 and 1 used for encoding bosons,
respectively, and 3.280×10−2 for qubit 3 that is used for
encoding fermions.
The states from the previous simulation in Figs. 13 and

14, as well as new states from the extended (three-boson)
Hilbert space are taken into consideration; for the sake
of comparison with the case of one-boson exchange, the
parametersM/m and η/m are assumed to have the same
values as for the two-qubit benchmarks in Sec. VIA.
The results obtained in the DQS of a system with up

to three bosons exchanged are presented in Figs. 15 -
18. What can be inferred from these results is that the
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FIG. 15: Expected particle number 〈Nb,f 〉 for bosons and
fermions as a function of the dimensionless time t/t0, where

t0 ≡ 2π/
√

m2 + η2, for various initial states. The chosen
values of the simulation parameters are M/m = 7 and η/m =
1.7. Each data point was averaged over 10, 000 shots.
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FIG. 16: Expected particle number 〈Nb,f 〉 for bosons and
fermions as a function of the dimensionless time t/t0, where

t0 ≡ 2π/
√

m2 + η2, for various initial states. The chosen
values of the simulation parameters are M/m = 7 and η/m =
1.7. Each data point was averaged over 10, 000 shots.

DQS results show a reasonably good agreement with the
exact results for the first few Trotter steps, but subse-
quently start to deviate visibly. These deviations are
mainly caused by the CNOT-gate error. For instance,
given that we employed up to n = 10 Trotter steps and
that our designed three-qubit circuits entail 8 CNOTs
per one step, obtaining the last data points requires one
to carry out 80 CNOTs. While the Trotter error also has
to be taken into account, by performing idealized simu-
lations of the Trotter circuit we have verified that this
error is low compared to the accumulated CNOT error.

Initial states with a fermion number of 1/2 were once

again prepared such that |ψ0〉f = (|0〉 + |1〉)/
√
2. The

initial states for bosons in Figs. 15 and 16 were prepared
the same way as for the two-qubit circuit, with the natu-
ral extension to the higher-dimensional Hilbert space by
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FIG. 17: Expected particle number 〈Nb,f 〉 for bosons and
fermions as a function of the dimensionless time t/t0, where

t0 ≡ 2π/
√

m2 + η2, for various initial states. The chosen
values of the simulation parameters are M/m = 7 and η/m =
1.7. Each data point was averaged over 10, 000 shots.

setting the additional qubit to state |0〉. While the initial
state in Fig. 17 also corresponds to an occupation num-
ber of 1/2 as in Fig. 16, it lies in the extended Hilbert

space and is encoded as |ψ0〉b = (
√
3 |00〉 + |10〉)/2. Fi-

nally, the boson state in Fig. 18 is given by |ψ0〉b =
(|00〉 + |01〉 + |10〉 + |11〉)/2. Figures 15 and 16 show
states with a non-interacting behaviour, while the states
in Figs. 17 and 18 exhibit fermion-boson interactions.
Note that the states from Fig. 16 did interact in the two-
qubit circuit.
By inspecting different initial states, it can be inferred

that the agreement between the simulation- and exact
results is much better in certain special cases, such as, for
example, that of Fig. 18(b). This can likely be attributed
to the fact that the readout assigment error is small for
states like |0〉 + |1〉, while at the same time being large
for states such as |0〉 and |1〉.
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FIG. 18: Expected particle number 〈Nb,f 〉 for bosons and
fermions as a function of the dimensionless time t/t0, where

t0 ≡ 2π/
√

m2 + η2, for various initial states. The chosen
values of the simulation parameters are M/m = 7 and η/m =
1.7. Each data point was averaged over 10, 000 shots.

VII. SUMMARY AND CONCLUSIONS

To summarize, in this paper we investigated the
nonequilibrium dynamics of a coupled fermion-boson sys-
tem following a quench of Yukawa-type interaction within
the framework of digital quantum simulation. We showed
that a single-site abstraction of scalar Yukawa coupling
can successfully be simulated on the existing IBMQ hard-
ware in the limit of low boson-number exchange. Using
advanced circuit-optimization techniques – exemplified
by the Kraus-Cirac decomposition – we designed effi-
cient, low-depth quantum circuits for simulating the ex-
change of up to three bosons. Based on these circuits we
computed the expected boson- and fermion numbers at
an arbitrary time after the quench and demonstrated a
good agreement of the obtained results with their classi-
cal counterpart.
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In the one-boson case we designed a constant-depth cir-
cuit with only two CNOT gates, regardless of the total
simulation time. This constitutes an example of circuit
compression, which is only possible for certain special
types of the underlying system Hamiltonian and allows
one to defy the usual linear scaling of the circuit depth
with the number of Trotter steps. In the three-boson
case – where such a compression is no longer possible –
we designed a circuit in which one Trotter step requires
8 CNOT gates, which is far below the maximal CNOT-
cost of an arbitrary three-qubit gate (14 CNOTs) [49].
Finally, by making use of an analogy with the travel-
ling salesman problem, we derived a CNOT-cost estimate
for quantum circuits emulating the system dynamics for
higher boson-number truncations.
The findings of the present study motivate future work

in several different directions. For example, it is of inter-
est to extend our single-site digital quantum simulation
to multi-site realizations, including much larger systems
for which benchmarking may require access to quantum

devices with a smaller two-qubit gate error and all-to-
all connectivity [68]. For such systems, tensor networks
may provide an efficient approximation for certain classes
of quantum states [69]. Finally, accurate simulations
of larger systems might be enabled through the use of
circuit-optimization techniques based on machine learn-
ing [70, 71] and quantum-error mitigation [72–78].
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Appendix A: Derivation of the single-site Hamiltonian

1. Free Hamiltonian

The free Hamiltonians of the Dirac- and Klein-Gordon fields in momentum space are given by

HDirac =

∫

d3p

(2π)3
Ωp

∑

s

(

as†p a
s
p + cs†p c

s
p

)

,

HKG =

∫

d3p

(2π)3
ωpb

†
pbp .

(A1)

By discretizing to a single grid point with momentum p = 0, we have

H0 = HDirac +HKG =M
∑

s

(

as†as + cs†cs
)

+mb†b . (A2)

By ignoring the spin degrees of freedom (spinless fermions), we find

H0 = HDirac +HKG =M(a†a+ c†c) +mb†b . (A3)

2. Interaction Hamiltonian

In its most general form, the interaction Hamiltonian is given by [cf. Eq. (6) in Sec. II B of the main text]

Hint =
ga

3/2
l

2

∑

p,p′

∑

r,s

{

1
√

8ΩpΩp′ωp−p′

[

ar†p ū
r(p) + cr−pv̄

r(−p)
]

[

asp′us(p′) + cs†−p′v
s(−p

′)
] (

bp−p′ + b†p′−p

)

+H.c.

}

.

(A4)
By restricting momentum space to a single site with p = 0, we obtain

Hint =
ga3/2

2
√
8M2m

∑

r,s

[(

ar†v̄r + crūr
) (

asvs + cs†us
) (

b + b†
)

+H.c.
]

=
ga

3/2
l

2
√
8M2m

∑

r,s

[(

ar†asūrus + ar†cs†ūrvs + crasv̄rus + crcs†v̄rvs
) (

b+ b†
)

+H.c.
]

,

(A5)
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where the momentum argument index/argument is dropped. For the spinor products in the non-relativistic limit we
have

ūrus
′

= 2Mδrs ,

ūrvs
′

= 0 ,

v̄rus
′

= 0 ,

v̄rvs
′

= −2Mδrs .

(A6)

By taking into account these last identities, the single-site Hamiltonian in Eq. (A5) reduces to

Hint =
ga

3/2
l√
2m

∑

s

(

as†as − cscs†
) (

b+ b†
)

=
ga

3/2
l√
2m

∑

s

(

as†as + cs†cs − 1
) (

b+ b†
)

.

(A7)

Finally, we ignore the spin degrees of freedom and restrict ourselves to the states with the vanishing total charge,
which yields

Hint =
ga

3/2
l√
2m

(

a†a+ c†c− 1
) (

b+ b†
)

. (A8)

At this point we can express the lattice spacing al in terms of the boson mass via al/(2m) = βγ. Because β ought to
be small for our single-site abstraction (the nonrelativistic limit), we use γ ≈ 1. In this manner, we finally obtain the
zero-dimensional interaction Hamiltonian

Hint =
η

2

(

a†a+ c†c− 1
) (

b+ b†
)

, (A9)

with η ≡ 4mgβ3/2 being the effective coupling strength.

Appendix B: Generation of Pauli strings

In this appendix, we derive an algorithm to efficiently calculate the Pauli strings for a truncation using N qubits.
Our approach is based on finding a recurrence relation between b+b† truncated with N and N+1 qubits [79]. Writing
out b+ b† in the Fock state basis, we find

(b+ b†)N+1 =







































0
√
1 · · · 0 0√

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
√
2N − 1

0 0 · · ·
√
2N − 1 0

√
2N√

2N 0
√
2N + 1 · · · 0 0√

2N + 1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
√
2N+1 − 1

0 0 · · ·
√
2N+1 − 1 0







































. (B1)

Notice that the top left block is nothing but (b + b†)N . In order to succinctly express the recurrence relation, we
define I± = (I ± Z)/2 and σ± = (X ± iY )/2. The expression we find is given by

(b + b†)N+1 = (b+ b†)N ⊗ I+ + 2N
(

σ⊗N
+ ⊗ σ− + σ⊗N

− ⊗ σ+
)

+MBR,N ⊗ I− , (B2)

where (b+ b†)1 = X and MBR,N is the bottom right structure in Eq. B1. The reason we do not write it out explicitly
is that MBR,N consists of the same Pauli strings as (b + b†)N . Bearing this in mind, we write down the recurrence
relation

SN+1 = SN ⊗ I ∪ SN ⊗ Z ∪ S(σ⊗N
+ ⊗ σ− + σ⊗N

− ⊗ σ+) , (B3)
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for the set of Pauli strings SN [cf. Eq. (37)], with S1 = {X}.
Here, the Pauli operators I and Z come from the expansion of I±. As discussed in Sec. V, the set S(σ⊗N

+ ⊗ σ− +

σ⊗N
− ⊗ σ+) consists of 2N Pauli strings, which implies that the number of Pauli strings |SN | satisfies the difference

equation

|SN+1| = 2|SN |+ 2N , (B4)

with |S1| = 1. The explicit solution to this equation is given by

|SN | = N 2N−1 . (B5)

Appendix C: The distance metric

In this section, we base our observations on the star+ancilla layout, depicted in Fig. 8(b). While the pure star layout
from Fig. 8 (a) makes use of a smaller number of CNOT gates, the ancilla qubit allows for easier gate cancellation in
the transition zones, as no basis transformations are applied on the target qubit.
Let us consider the transition zone of two consecutive Pauli strings P1 and P2. We will briefly describe the approach

of Ref. [67] before introducing our improved cancellation technique. On indices where P1[i] = P2[i], the CNOT gates
cancel out. But for indices where P1[i] 6= P2[i], one has to differentiate between two cases: (a) neither P1[i] nor P2[i]
is I or (b) one of them is I. Case (a) requires two CNOTs, while (b) only needs one. Combining these results, the
CNOT distance metric is defined as

|P1 − P2|CNOT :=
∑

i∈[N ]

1P1[i] 6=P2[i]

(

1 + 1I /∈{P1[i],P2[i]}

)

. (C1)

We will now modify this approach by optimizing case (a). We start by considering transitions of the type X → Z
or Z → X , represented by the circuit in Fig. 19, which can be reduced to a single CNOT gate.

FIG. 19: CNOT reduction in the X ↔ Z transition circuit.

Next, we investigate the Z → Y and Y → Z transitions. Of course, Y → Z is just the inverse of Z → Y and can
be obtained as the Hermitian conjugate. The circuit for Z → Y is shown in Fig. 20. In the first step, we used that S
commutes with a control, and in the second one, we reuse the circuit from Fig. 19 for the X → Z transition.

FIG. 20: CNOT reduction in the Z → Y transition circuit.

It remains to simplify the circuit for X → Y , depicted in Fig. 21. In the first step, we use that HSH = S†HS† up
to a global phase and the commutation of S† with the control. In the second step, we once again recycle the circuit
for X → Z and undo the global phase.

FIG. 21: CNOT reduction in the X → Y transition circuit.
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All these results together prove that any transition with P1[i] 6= P2[i] can be implemented with only one CNOT
gate, which implies that we have

|P1 − P2|CNOT :=
∑

i∈[N ]

1P1[i] 6=P2[i] = |P1 − P2|Ham , (C2)

where |P1 − P2|Ham is the Hamming distance counting the number of disagreeing indices. Compared to the previous
cost function in Eq. (C1) this cuts the cost by up to 50%.

Appendix D: Upper bound on the CNOT-cost

Using the recurrence formula for the Pauli strings (37) and the functions for the CNOT-cost of the start- and end
layer as well as the transition zones, we will now derive an upper bound on the CNOT-cost of the circuit representing
exp (−iHb∆t) in first-order Trotterization. We first recall the recurrence formula for the Pauli strings [cf. Eq. (37)]

SN+1 = SN ⊗ I ∪ SN ⊗ Z ∪ S(σ⊗N
+ ⊗ σ− + σ⊗N

− ⊗ σ+) , (D1)

where S1 = {X}.
In the following, C(O) denotes the CNOT-cost of implementing the Pauli strings of the operator O in first-order

Trotterization. Using that C(SN ⊗ I) = C(SN ), C(SN ⊗Z) = C(SN )+ 2 and the fact, that we can always cancel 2N
CNOT-gates when transitioning from SN ⊗ I to SN ⊗ Z, we find

C(SN ⊗ I ∪ SN ⊗ Z) = 2C(SN ) + 2− 2N . (D2)

For the second part, namely S(σ⊗N
+ ⊗σ−+σ⊗N

− ⊗σ+), we recall that this set contains all (N+1)-digit Pauli strings
made from X and Y with an even number of Y s. The start- and end layers of this set give us 2(N + 1) CNOTs.
To maximize the gate cancellation, we arrange the set using every other element of an (N + 1)-digit gray code. This
way, only two characters change per transition. For 2N − 1 transition zones, we then find a total cost of 2N+1 − 2.
Combining these results, we have

C(SN+1) ≤ 2C(SN ) + 2N+1 , (D3)

with C(S1) = 2. The explicit solution to this recurrence relation is given by

C(SN ) ≤ N 2N = 2|SN | . (D4)

[1] S. Lloyd, Science 273, 1073 (1996).
[2] C. Zalka, Proc. R. Soc. London A 454, 313 (1998).
[3] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod.

Phys. 86, 153 (2014).
[4] For a recent review on superconducting qubits, see G.

Wendin, Rep. Prog. Phys. 80, 106001 (2017).
[5] For a recent review of trapped-ion based platforms, see,

e.g., C. D. Bruzewicz, J. Chiaverini, R. McConnell, and
J. M. Sage, Appl. Phys. Rev. 6, 021314 (2019).

[6] For an up-to-date review of Rydberg-atom based plat-
forms, see, e.g., M. Morgado and S. Whitlock, AVS Quan-
tum Sci. 3, 023501 (2021).

[7] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[8] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586

(1997); ibid. 83, 5162 (1999).
[9] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R.

Laflamme, Phys. Rev. A 65, 042323 (2002).
[10] S. B. Bravyi and A. Y. Kitaev, Ann. Phys. (N.Y.) 298,

10 (2002).
[11] See, e.g., J. D. Whitfield, I. Biamonte, and A. Aspuru-

Guzik, Mol. Phys. 109, 735 (2011).
[12] S. Raeisi, N. Wiebe, and B. C. Sanders, New J. Phys.

14, 103017 (2012).
[13] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C.

Nayak, and M. Troyer, Phys. Rev. A 92, 062318 (2015).

[14] R. Barends, L. Lamata, J. Kelly, L. Garćıa-Álvarez, A.
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