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Fast and nearly lossless atomic transport, enabled by moving the confining trap, is a prerequisite for many
quantum-technology applications. While theoretical studies of this problem have heretofore focused almost
exclusively on simplified scenarios (one-dimensional systems, purely harmonic confining potentials, etc.), we
investigate it here in the experimentally relevant setting of a moving optical lattice (optical conveyor belt).
We model single-atom transport in this system by taking fully into account its three-dimensional, anharmonic
confining potential. We do so using the established method of shortcuts to adiabaticity (STA), i.e., an inverse-
engineering approach based on Lewis-Riesenfeld invariants, as well as its recently proposed modification known
as enhanced STA (eSTA). By combining well-controlled, advanced analytical techniques and the numerical
propagation of a time-dependent Schrödinger equation using the Fourier split operator method, we evaluate
atom-transport fidelities within both approaches. Being obtained for realistic choices of system parameters, our
results are relevant for future experiments with optical conveyor belts. Moreover, they reveal that in the system
at hand the eSTA method outperforms its STA counterpart for all but the lowest optical-lattice depths.
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I. INTRODUCTION

Efficient transport of cold neutral atoms [1–11]—either
in the form of condensates or individually—is of utmost
importance for a variety of emerging quantum-technology
applications [12,13] as well as for quantum-state engineer-
ing [14–16]. Such transport, often referred to as “shut-
tling” [17] and expected to be fast and nearly lossless,
entails moving the confining magnetic [18–20] or optical
trap [21,22]. In particular, moving optical traps come in
two varieties—moving optical lattices [9,11] and tweez-
ers [23–25]. For single-atom transport, it is typically required
that the final atomic state be as close as possible to the ini-
tial one—up to an irrelevant global phase factor—in the rest
frame of the moving trap (the high-fidelity condition). This is
equivalent to demanding complete absence (or, at least, min-
imization) of vibrational excitations at the end of transport,
but does not rule out the existence of transient excitations at
intermediate times [5].

The lack of requirement for adiabaticity throughout atom-
transport processes motivates the use of control protocols
known as shortcuts to adiabaticity (STA) [26] for their mod-
eling. Generally speaking, the latter lead to the same final
states as slow, adiabatic changes of the control parameters
of a system, but typically require significantly shorter times
to reach that state. This makes the system much less prone
to the debilitating effects of noise and decoherence. Impor-
tantly, adiabatic processes are those for which slow changes
of control parameters leave some dynamical properties of the
system invariant. As a consequence, arguably the most useful
ones among STA methods are inverse-engineering techniques
based on the concept of Lewis-Riesenfeld invariants [27].

While STA protocols have already found applications
in a variety of quantum systems [26], their analytical

modification—inspired by optimal-control techniques [28]—
has quite recently been proposed and termed enhanced
shortcuts to adiabaticity (eSTA) [29]. The main motivation be-
hind eSTA is to design efficient control protocols for systems
to which STA protocols are not directly applicable. The princi-
pal idea of eSTA is to first approximate the full Hamiltonian of
such a system by a simpler one for which an STA protocol can
be found. Assuming that this STA protocol for the simplified
Hamiltonian is close to being optimal even when applied to
the full system Hamiltonian, the actual optimal eSTA pro-
tocol is obtained through a gradient expansion in the space
of control parameters. In principle, the heuristic character of
eSTA does not guarantee its superiority over STA and, indeed,
the criteria as to when this scheme can be expected to work
efficiently are still unknown [29]. Yet, eSTA has already been
shown to outperform STA in certain problems of moderate
complexity [29], which motivates its use in more complex
problems.

Theoretical studies of coherent single-atom transport have
heretofore relied on simplified scenarios, typically assuming
a one-dimensional geometry (i.e., motion only along the di-
rection of transport) [5,30] or taking the confining potential
to be purely harmonic [2,6]. However, in realistic systems
such idealizations often do not apply, either because there
is a significant coupling between the longitudinal and trans-
verse degrees of freedom or because the trapping potential is
strongly anharmonic. An important example of such systems
is furnished by optical conveyor belts (OCBs) [21,31], moving
optical lattices enabled by two counterpropagating Gaussian
laser beams with equal intensities, which are slightly mu-
tually detuned. Those systems constitute powerful tools for
the precise positioning of atoms [22,31,32], with the added
capabilities to enable high-speed transport over macroscopic
distances and quickly sort atoms into ordered arrays [33–35].
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In the context of single-atom transport, OCBs have been in-
vestigated quite recently [9,11].

In this paper, we address single-atom transport in an
OCB using both STA and eSTA methods. We model this
system by taking fully into account its underlying three-
dimensional (3D), anharmonic confining potential. Using an
existing inverse-engineering single-atom transport theory [5],
we first obtain an STA solution for the trajectory of a moving
trap. We then obtain, by combining the obtained STA solution
with advanced analytical techniques, an eSTA solution of the
same problem. Finally, based on the designed trap trajecto-
ries, we evaluate the resulting single-atom dynamics through
the numerical propagation of a time-dependent Schrödinger
equation. We quantify these dynamics by computing atom-
transport fidelities for a broad range of lattice depths within
both STA and eSTA frameworks.

Given that they correspond to realistic choices of the rel-
evant experimental parameters (beam waists, lattice depths,
transport distances, etc.), our obtained results are of utmost
interest for future experiments with OCBs. Furthermore, these
results show that the eSTA method yields faster single-
atom transport than STA for all but the lowest optical-lattice
depths.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the system under consideration and
its characteristic length, time, and energy scales. Section III
discusses the design of trajectories of the moving trap. This
is first done using the STA method, i.e., a Lewis-Riesenfeld
invariant (Sec. III A), and then using the eSTA method based
on the STA solution for a harmonically approximated OCB
potential (Sec. III B). In Sec. IV, we briefly describe our
methodology for computing the resulting single-atom dy-
namics. We first review the general aspects of the Fourier
split operator method (Sec. IV A), followed by specific de-
tails of our implementation thereof (Sec. IV B). Our findings
are presented and discussed in Sec. V, starting with the
atom-transport fidelities obtained for a broad range of system
parameters using the STA and eSTA methods (Sec. V A),
and followed by a comparison of the latter results with al-
ternative approaches (Sec. V B). We conclude with a short
summary of the paper and some general remarks in Sec. VI.
Some involved mathematical derivations are relegated to
Appendixes A and B, while Appendix C summarizes certain
intermediate calculation results.

II. SYSTEM AND ITS HAMILTONIAN

We consider an atom of mass m in an OCB, whose optical
axis is in the z direction. In what follows, we will be con-
cerned with the problem of transporting an atom to a distant
location—the distance being at least an order of magnitude
larger than the size of the atomic wave packet—along this
same (longitudinal) direction. This mimics the physical sit-
uation encountered in typical experimental setups [9,11]. The
initial and target atomic states are assumed to be the ground
states of the OCB potential centered at two different locations.

The relevant single-atom Hamiltonian reads

HOCB = − h̄2∇2

2m
+ UF(x, y, z) , (1)

where UF(x, y, z) is the full 3D potential of an OCB [9]:

UF(x, y, z) = Uf ,0(z) cos2(kz) exp

(
−2

[
x2

wx(z)2
+ y2

wy(z)2

])
.

(2)

Here k = 2π/λ is the wave number of the dipole-trap laser
with wavelength λ. The lattice depth Uf ,0(z) is given by

Uf ,0(z) = C
P0

wx(z)wy(z)
, (3)

where wx(z), wy(z) are the two transverse beam waists, which
depend on the longitudinal position z:

wx/y(z) = wx/y,0

√
1 +
(

z

ZR,x/y

)2

, (4)

with ZR,x and ZR,y being the respective Rayleigh lengths.
In Eq. (3), P0 stands for the output laser power, while the
constant C = h̄�2/(2� I0) characterizes the concrete exper-
imental setup, with the saturation intensity I0, the decay rate
�, and the detuning � = ω − ω0 between the laser frequency
ω and the frequency ω0 of the relevant atomic transition (e.g.,
ω0 = 2π×384.23 THz for the rubidium D2 line [36]).

Finding a harmonic approximation V (x, y, z) of the full
OCB potential UF in Eq. (2) is of crucial interest for our
further considerations. This simplified potential can readily be
found by applying a harmonic approximation to various terms
in UF. To this end, we first assume z/ZR,x � 1 and z/ZR,y � 1.
We also assume that x/wx,0 � 1, y/wy,0 � 1, and k z � 1.
Under these assumptions, it is straightforward to find that

V (x, y, z) = −U0 + m

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
, (5)

where U0 ≡ Uf ,0(0) is the potential depth at the focus of the
beam and the frequencies ωx, ωy, and ωz are respectively
given by

ω2
x = 4U0

mw2
x,0

, ω2
y = 4U0

mw2
y,0

,

ω2
z = U0

m

(
Z−2

R,x + Z−2
R,y + 2 k2

)
. (6)

It is useful to note that in the paraxial approximation ZR,x/y �
1/k, which is always valid for OCBs, one has that ω2

z ≈
2U0k2/m. By taking into account Eqs. (6) and the well-known
relation ZR,x/y = kw2

x/y,0/2, one concludes that there are five
independent parameters in the system at hand: the transport
distance d , the final time t f , the waists wx/y,0, and the potential
depth U0.

To facilitate our further discussion, it is prudent to sin-
gle out the characteristic time, length, and energy scales in
the system under consideration. The time τz = 2π/ωz cor-
responding to the harmonic-oscillator frequency ωz in the z
direction [cf. Eq. (5)] will be used in what follows as the
characteristic timescale. On the other hand, the harmonic-
oscillator length lz ≡ √

h̄/(2mωz ) in the z direction will serve
as the characteristic length scale. Finally, all energies in the
problem will be expressed in units of the recoil energy ER ≡
h̄2k2/(2m).

053110-2



SINGLE-ATOM TRANSPORT IN OPTICAL CONVEYOR … PHYSICAL REVIEW A 104, 053110 (2021)

III. STA AND eSTA TRAP TRAJECTORIES

Among all STA methods [26], invariant-based inverse
engineering established itself as the method of choice in
the context of efficient atom transport. The basic invariant-
based inverse engineering transport theory was developed in
Ref. [5]. The crux of that theory is the use of quadratic-in-
momentum invariants relevant for transport problems, which
were first discussed by Lewis and Riesenfeld [27]. Impor-
tantly, it was also demonstrated in Ref. [5] that the case of a
harmonic trapping potentials and that of an arbitrary potential
require different treatments, as the perfect atom transport in
the latter case in principle necessitates compensating forces in
the reference frame moving with the trap (cf. Sec. IV B).

In the following, we first apply the theory developed in
Ref. [5] to our problem of single-atom transport in OCBs.
To be more precise, we determine the classical path of the
potential minima in a moving trap in the problem at hand
(Sec. III A). We then apply the eSTA scheme, based on the
theory recently laid out in Ref. [29], to address the same
problem (Sec. III B). We do so by making use of a single-
atom Hamiltonian with the harmonically approximated OCB
potential V (x, y, z) [cf. Eq. (5)] as the simplified Hamiltonian
of the system for which an STA-based protocol can readily be
obtained.

A. Trajectory of the moving trap: STA solution

A dynamical invariant of a time-dependent Hamiltonian
H (t ) is an operator I (t ), which satisfies the equation

∂

∂t
I (t ) + [H (t ), I (t )] = 0. (7)

The eigenvalues λn of the invariant I (t ) are constant in time.
Assuming that these eigenvalues are nondegenerate, the cor-
responding eigenstates |	n(t )〉 and the instantaneous eigen-
states |
n(t )〉 of the Hamiltonian H (t ) (the so-called transport
modes) satisfy the simple relation |
n(t )〉 = eiθLR(t ) |	n(t )〉,
where θLR(t ) = h̄−1

∫ t
0 〈	n(t ′)| [ih̄∂t ′ − H (t ′)] |	n(t ′〉 dt ′ is

the Lewis-Riesenfeld phase [26]. The general solution of the
Schrödinger equation for the Hamiltonian H (t ) can then be
written in the form

|
(t )〉 =
∑

n

Cn eiθLR(t )|	n(t )〉. (8)

It is worth noting that for very long evolution times (t →∞)
Eq. (7) results in the adiabatic-following condition
[H (t ), I (t )] ≈ 0.

In what follows, we apply Lewis-Riesenfeld theory to the
approximate OCB Hamiltonian

H0 = − h̄2∇2

2m
+ V (x, y, z − q0(t )) , (9)

i.e., a single-atom Hamiltonian with the simplified harmonic
potential V (x, y, z) of Eq. (5). For our transport scheme, we
make use of the time-dependent, quadratic-in-momentum in-
variant [5]

I = 1

2m
(p − mq̇c,z )2 + m

2
ω2

z (z − qc,z )2, (10)

tf / τz = 2

tf / τz = 3

tf / τz = 5
0

0.5

1

q 0
/

d

(a)

tf / τz = 10

tf / τz = 15

0 0.5 1
0

0.5

1

t / tf
q 0

/
d

(b)

FIG. 1. Path of the potential minimum as a function of time,
obtained using the STA approach, for transport times t f (a) com-
parable to, and (b) an order of magnitude longer than the internal
timescale τz.

where qc,z is the z component of the classical path for the
trapped particle. Importantly, there are auxiliary equations that
must be fulfilled in order to use this invariant [5]. For simple
displacement schemes, the auxiliary equation has the form
characteristic of a forced harmonic oscillator. It reads

q̈c,z(t ) + ω2
z [qc,z(t ) − q0(t )] = 0, (11)

where q0(t ) is the trajectory of the potential minimum.
In order to fulfill the appropriate boundary conditions for

the “classical” particle, we are choosing a polynomial ansatz
of ninth degree, by which the general solution for the path of
the potential minima can be obtained through Eq. (11). This
results in

q0(t ) = d
9∑

n=3

bn

(
t

t f

)n

(12)

with the following solution vector for constants bn:

X q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b3

b4

b5

b6

b7

b8

b9

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2520(t f ωz )−2

−12600(t f ωz )−2

22680(t f ωz )−2 + 126
−17640(t f ωz )−2 − 420

5040(t f ωz )−2 + 540
−315

70

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

The obtained classical path of the potential minimum for
different final times t f is shown in Fig. 1.
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B. Trajectory of the moving trap: eSTA solution

Generally speaking, the first step in applying the eSTA
method to a system with the Hamiltonian HS entails obtain-
ing an STA solution for a “close” Hamiltonian H0 [29]; this
solution is parameterized by a vector λ0 ∈ Rn. In the present
context, the meaning of “close” is that there exists a parameter
μS such that HS can be expressed in the form of a series
expansion

HS =
∞∑

k=0

μk
S H (k), (14)

such that H (0) ≡ H0. In the OCB system at hand, the role of
HS is played by the Hamiltonian HOCB of Eq. (1), in which z
is replaced by z − q0(t ). On the other hand, the role of H0 is
played by the Hamiltonian of Eq. (9).

Because we aim to find an optimal solution for the full
Hamiltonian HS based on an available STA solution for H0,
it is prudent to express the general control vector for the full
system in the form λ = λ0 + α, i.e., as a sum of the STA con-
trol vector λ0 and an auxiliary control vector α. The value of
α that corresponds to the optimal solution, i.e., the correction
vector necessary to obtain the optimal eSTA protocol will be
denoted by ε in the following.

A crucial assumption within the eSTA scheme is that the
protocol based on the existing STA solution for H0 is close
to being optimal even when applied to the full system Hamil-
tonian HS [29]. Furthermore, one assumes that the fidelity is
quadratic around its maximal value, resulting in the approxi-
mate relation [29]

F

(
μS,λ0 + α

∇F (μS,λ0)

‖∇F (μS,λ0)‖
)

≈ 1 − c(α − ε)2, (15)

where ε ≡ ‖ε‖, α ≡ ‖α‖, and c is a positive constant. Using
the above assumptions and a Taylor expansion of the left-
hand-side of Eq. (15) around α = ε, it is straightforward to
find that [29]

ε ≈ 2[1 − F (μS,λS)]∇F (μS,λ0)

‖∇F (μS,λ0)‖2
. (16)

As derived in Ref. [29], the fidelity can be approximated up to
second order in μS as

F (μS,λS) ≈ 1 − 1

h̄2

∞∑
n=1

|Gn|2, (17)

with Gn being an auxiliary (scalar) function, given by

Gn =
∫ t f

0
dt 〈
n(t )|[HS(λ0; t ) − H0(λ0; t )]|
0(t )〉 , (18)

and |
n(t )〉 being the transport modes of the idealized
Hamiltonian H0 (cf. Sec. III A). An analogous approximate
expression, up to second order in μS, for the gradient of the
fidelity reads [29]

∇F (μS,λ0) ≈ − 2

h̄2

∞∑
n=1

Re(Gn K∗
n ), (19)

where Kn is another auxiliary (vector) function:

Kn =
∫ t f

0
dt 〈
n(t )|∇λHS(λ; t )|λ=λ0 |
0(t )〉 . (20)

The optimal correction vector ε can be recast in terms of
the auxiliary functions Gn and Kn as

ε = −
(∑N

n=1 |Gn|2
)∑N

n=1 Re(G∗
nKn)∥∥∑N

n=1 Re(G∗
nKn)
∥∥2 , (21)

where N is the cutoff parameter. This vector can be com-
puted numerically once the expressions for Gn and Kn are
obtained by evaluating the integrals in Eqs. (18) and (20),
respectively. In the atom-transport problem at hand, where
the states |
n(t )〉 represent the transport modes of the 3D
harmonic-oscillator Hamiltonian in Eq. (9), this entails highly
nontrivial derivations based on various properties of Hermite
polynomials (for details, see Appendixes A and B).

For displacement schemes, the control vector λ has to
fulfill the conditions q0(λ; jt f /7) = λ j for j = 1, . . . , 6. Now
the optimized path can be expressed through the path of the
simplified problem

q0(λ; t ) = q0(λ0; t ) + f (α; t ), (22)

with q(λ; jt f /7) = λ0, j + α j for j = 1, . . . , 6. The auxiliary
function f (α; t ) has to obey the following boundary condi-
tions:

f (α; 0) = f (α; t f ) = 0 ,

f (α; jt f /7) = α j ( j = 1, . . . , 6),

d (n)

dt (n)
f (α; t ′)|′t = {0, t f } = 0 (n = 1, . . . , 4) . (23)

The latter conditions are chosen such that f (α; t ) can be con-
trolled through α and also obeys the conditions of continuity.
Therefore, we choose the following polynomial ansatz of the
11th degree:

f (α; t ) =
11∑

n=0

6∑
k=1

ãn,kαk

(
t

t f

)n

. (24)

The specific values for the coefficients ãn,k in the last equation
are given in Table I in Appendix C.

For the optimal eSTA solution, we set the auxiliary control
vector α equal to the optimal correction vector ε. The latter
can be calculated using the general expression in Eq. (21).
Because in our 3D problem the transport modes can be enu-
merated using three 1D quantum numbers {nx, ny, nz}, we can
rewrite the sum in Eq. (21) in terms of the main quantum
number n and {nx, ny, nz}. For the cutoff parameter, we take
the value N = 2, even though our numerical evaluation shows
that already taking N = 1 yields essentially the same result.

The classical path of the potential minimum, obtained us-
ing the eSTA approach, is depicted in Fig. 2. What can be
inferred by comparing this path to the one obtained using the
STA approach (Fig. 1) is that their shapes differ significantly
only for short transport times.
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FIG. 2. Path of the potential minimum as a function of time, ob-
tained using the eSTA approach, for transport times t f (a) comparable
to, and (b) an order of magnitude longer than the internal timescale
τz. The parameters chosen are the following: U0 = 60 ER, d = 85 lz,
and w0,x = w0,y = 4.2×106 lz.

IV. SINGLE-ATOM DYNAMICS: THE FOURIER SPLIT
OPERATOR METHOD

Having described the design of trap trajectories within
both STA and eSTA schemes in Sec. III, in the following
we briefly present our chosen approach for evaluating the re-
sulting single-atom dynamics using the Fourier split operator
method (FSOM). We start with a brief reminder of the basics
of the FSOM (Sec. IV A), followed by the specific details of
our own implementation thereof to the single-atom transport
problem (Sec. IV B).

A. Basics of the FSOM

The FSOM is customarily used for solving Cauchy-type
initial-value problems of the type

∂

∂t
f (x, t ) = Â(t ) f (x, t ), (25)

with some (possibly time-dependent) operator Â(t ) and the
initial condition f (x, t ) = f0(x). The method is typically used
in cases where the operator Â(t ) can be written as a sum
Â(t ) = Â1(t ) + Â2(t ) of two operators, such that Â1(t ) can
easily be diagonalized in real space, while Â2(t ) is straight-
forward to diagonalize in Fourier space. In particular, the
time-dependent Schrödinger equation (hereafter abbreviated
as TDSE) fulfills this requirement and hence the use of the
FSOM for solving this type of equations [37,38]. This require-
ment allows one to approximate the time-evolution operator of
the system by a product of operators that are diagonal either
in real or in Fourier space, the central idea of the FSOM.

In the problem at hand, we make use of the FSOM to
determine the final atomic state after displacement by a certain
distance. The relevant TDSE corresponds to the Hamiltonian
of the type H (r, t ) = −h̄2∇2/(2m) + W (r, t ), where the po-
tential W pertains to a moving trap and is, consequently, time
dependent (for details, see Sec. IV B below). As a result, the
exact time-evolution operator of the system is given by the
most general expression that involves a time-ordered product.

By expanding the time-evolution operator U (t + δt, t ) of
the system to third order in δt , we obtain

U (t + δt, t ) = exp

[
− i

h̄

∫ t+δt

t
H (r, t )dt

]
+ O[(δt )3] . (26)

By making use of the Baker-Campbell-Hausdorff for-
mula [39], the last equation gives an explicit second-order
accurate time-stepping scheme for the propagation of the
wave function 
(r, t ) [40]:


(r, t + δt ) = exp

[
− i

h̄
W (r, t )

δt

2

]
exp

(
i
h̄∇2

2m
δt

)

× exp

[
− i

h̄
W (r, t )

δt

2

]

(r, t ) + O[(δt )3].

(27)

The last equation allows one to treat the different exponential
terms independently, resulting in the possibility of Fourier
transforming the kinetic term to momentum space. As a result,
the complexity of applying an operator on the wave function

 reduces to that of multiplying 
 by a complex number.
Importantly, one can recast the right-hand side of Eq. (27)
using the identity

exp

(
i
h̄∇2

2m
δt

)
exp

[
− i

h̄
W (r, t )

δt

2

]

(r, t )

= F−1

[
exp

(
−i

h̄k2

2m
δt

)
F

[
exp

[
− i

h̄
W (r, t )

δt

2

]

(r, t )

]]
,

(28)

where F is the Fourier transform and F−1 is its inverse.
A general solution at time t ′ = t + Ntδt is obtained nu-

merically by applying the single-step propagation of Eq. (27)
consecutively Nt times to our initial wave function 
(r, t ). In
an actual numerical implementation of the FSOM, this last
wave function is discretized on a rectangular regular lattice
of Ns points and the continuous Fourier transform is approx-
imated by a discrete one. The computational complexity of
propagating the function 
(r, t ) is dominated by the trans-
formation into Fourier space and back into real space [cf.
Eq. (28)]. If these transformations are carried out using the
fast Fourier transform (FFT) algorithm [41], an elementary
step in the FSOM requires O(Ns log2 Ns) operations.

Apart from using the FSOM for computing single-atom
dynamics, we also utilize this method to find the ground state
of our OCB trapping potential [37]. Let φ(r) =∑N

j=0 c j
 j (r)
be an arbitrary trial state with a nonzero overlap with the
sought-after ground state 
0(r). Assuming that φ(r) is the
initial (t = 0) state in a dynamical evolution of the system,
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its counterpart at a later time t is given by

φ(r, t ) =
N∑

j=0

exp(−iE jt/h̄)c j
 j (r). (29)

By switching from real to imaginary time, i.e., performing
a Wick rotation into the complex plane, this last state can
be recast as a sum of exponentially decaying contributions
of different eigenstates 
 j (r), with the decay rates given
by the corresponding eigenvalues Ej . Because the relative
contribution of the excited states decays faster than that of
the ground state, these contributions become negligible for
sufficiently long evolutions. This enables one to extract the
desired ground-state energy E0 and the corresponding wave
function 
0(r).

B. TDSE in the comoving frame

Due to time restrictions and storage capabilities, we are
restricting ourselves to the displacement of one single trap
minimum. Furthermore, we are switching from the laboratory
frame to the comoving frame, i.e., the frame moving along
with the trap. This change is accounted for by applying the
unitary displacement operator [42]

U = eipzq0(t )/h̄ e−imzq̇0 (t )/h̄ (30)

to transform the relevant laboratory-frame TDSE:

ih̄
∂

∂t

(r, t ) =

[
− h̄2∇2

2m
+ UF(x, y, z − q0(t ))

]

(r, t ).

(31)
As a result, the time evolution for the relevant wave function
	(r, t ) ≡ U
(r, t ) in the comoving frame is governed by
another TDSE:

ih̄
∂

∂t
	(r, t ) =

[
− h̄2∇2

2m
+ m

2
q̇0(t )2

+ mq̈0(z + q0) + UF(r)

]
	(r, t ). (32)

The two terms mq̇0(t )2 and mq̈0q0 result only in time-
dependent global phase factors and can hereafter be safely
neglected. One advantage of switching to the comoving frame
is that we do not have to compute the initial potential after
every time step, but just the correction term mq̈0q linear in the
acceleration of the potential minimum. In addition, we can
restrict our “simulation window” around the potential mini-
mum, which obviates the need to take the whole expanded
space of the transport process into account.

Using the result from Eq. (32), one time step in the FSOM
for our system can be written in the form

	(r, t + δt ) ≈ exp

[
− i

h̄
UF(r)

δt

2

]
F−1

[
exp

(
−i

h̄k2

2m
δt

)

× exp

[
−i

kz

2
δq̇0(t )δt

]
F

(
exp

[
− i

h̄
zδq̇0(t )δt

]

× exp

[
− i

h̄
UF(r)

δt

2

]
	(r, t )

)]
+ O[(δt )3],

(33)

with the velocity difference δq̇0(t ) ≡ q̇0(t + δt ) − q̇0(t ). This
equation is slightly more elaborate than Eq. (28), because
the higher order contributions resulting from the correction
term mq̈0q were already treated. Therefore, the higher order
correction terms result solely from the application of the
Baker-Campbell-Hausdorff formula and the neglect of the
time-ordered product. These terms depend on the commu-
tators of the type [UF(r), p2], as well as the commutators
[H (t1), H (t2)] involving the Hamiltonian of the system at
different times.

It should be stressed that by introducing a linear force of
the form F (t ) = mq̈0(t ) in the laboratory frame, the resulting
TDSE in the comoving frame [cf. Eq. (32)] would not contain
the term mq̈0q0. This is the so-called “compensating-force
approach” and results in the same TDSE as in the laboratory
frame (up to global phase factors) and the ensuing perfect
state transfer. Yet, this method is much more challenging to
implement experimentally for neutral atoms [43] and even
impossible for systems containing trapped ions of more than
one sort [44].

V. RESULTS AND DISCUSSION

A. Atom-transport fidelity: STA vs eSTA

In what follows, we present and analyze our results for
the single-atom dynamics in an OCB, obtained using the
FSOM and the trap trajectories resulting from the STA and
eSTA schemes (cf. Sec. III). The main figure of merit quan-
tifying this process is the atom-transport fidelity F (t f ) =
|〈
target|
(t f )〉|2, which is determined by the module of
the overlap of the target state |
target〉 (the ground state
of the displaced OCB potential) and the final atomic state
|
(t f )〉. The dependence of the fidelity on the transport
time t f is illustrated for different optical-lattice depths U0 in
Figs. 3–5. These results correspond to the same transport dis-
tance d = 85 lz, while the waists in the transverse directions
were set to wx/y,0 = 4.2×106 lz.

One of the salient features of the obtained results is the
collapse of the fidelity for short transport times t f , which is
evident from Figs. 3–5. This collapse is, generally speaking,
a consequence of the fact that the potential itself can only
withstand an atomic acceleration below a certain maximal
value |amax| before the atom effectively escapes from the trap
and the corresponding fidelity drops rapidly. Namely, in the
noninertial reference frame that moves with the atom, the
total lattice potential acquires an additional contribution that is
linear in the longitudinal coordinate, thus effectively leading
to a tilted standing-wave potential in this accelerating frame.
As a result, the local minima of the standing wave disappear
completely for accelerations above |amax| = U0 k/m [31]. Be-
ing proportional to U0, this maximal acceleration becomes
greater for deeper potentials [9].

The collapse of the transport takes place when the max-
imal acceleration reached by an atom during the transport
process, which will be denoted by |ãmax| in the following,
exceeds |amax|. While the lower bound on |ãmax| is quite
generally given by 2d/t2

f [5], its actual value depends on the
concrete chosen trap trajectory, i.e., the path of the potential
minimum. In particular, for the trajectory obtained using the
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FIG. 3. The dependence of the atom-transport fidelity on the
transport time t f , for a potential depth U0 of (a) 20 ER, (b) 30 ER,
and (c) 40 ER. The transport distance d was set to 85 lz, while the
transverse beam waists are wx/y,0 = 4.2×106 lz.

STA approach in Sec. III A [cf. Eq. (13)], this value is given
by |ãmax| ≈ 9.372 d/t2

f . The fact that for a fixed transport
distance |ãmax| is inversely proportional to t2

f implies that for
deeper potentials (i.e., for a higher |amax| ∝ U0) the actual
maximal atomic acceleration |ãmax| reaches the value of |amax|
at shorter transport times t f . In other words, for deeper poten-
tials the collapse of the fidelity takes place for shorter times t f .
This is consistent with our numerical findings, illustrated in
Figs. 3–5 for gradually increasing potential depths. As can be
inferred from these results, the characteristic transport times
t f pertaining to the occurrence of the collapse are around 4.5,
3.4, and 2.8 τz, respectively, in Figs. 3–5 and clearly show the
trend of decreasing with the increase of the lattice depth.

Because for eSTA the modulations of the potential path
through the optimization vector ε are small contributions to
the overall dynamics (cf. Sec. III B), for sufficiently deep
lattices the collapse of the fidelity for eSTA-based atom trans-
port takes place at approximately the same transport times
as for the corresponding STA scheme. However, it should be
stressed that for more shallow lattices (e.g., potential depths

eSTA

STA

0.9

1.0

U0 = 80ER

(a)

0.9

1.0

U0 = 90ER

(b)

4 5 6
0.8

0.9

1.0

U0 = 100ER

(c)

FIG. 4. The dependence of the atom-transport fidelity on the
transport time t f , for a potential depth U0 of (a) 80 ER, (b) 90 ER,
and (c) 100 ER. The transport distance d was set to 85 lz, while the
transverse beam waists are wx/y,0 = 4.2×106 lz.

U0 of 30, 50, and 60 ER) the transport time t f corresponding to
the collapse can be notably different between STA and eSTA.
This is due to the fact that even small modulations (such as
the modulation through the optimization vector ε) can result
in non-negligible differences between the maximal atomic ac-
celerations for STA and eSTA. This depends primarily on the
modulation strength around the intermediate transport times
for which the maximal possible acceleration is exceeded in
STA-based transport. On the other hand, this also depends on
the sign of the modulation, i.e., whether the modulation leads
to higher or lower atomic accelerations |ãmax|.

Another interesting feature of the results obtained using the
eSTA scheme is the slowly forming dip for deeper potentials,
as can be observed, e.g., in Fig. 4(a) for t f ≈ 4.4 τz. The
existence of this dip is a result of increasing transient excita-
tion energies during the transport process upon shortening the
transport time t f . Namely, as first discussed in Ref. [5], the
time-averaged transient excitation energy depends on t f ac-
cording to Ēp,min ∝ t−4

f . Consequently, the implications of the
anharmonic character of potential become more prominent,
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FIG. 5. The dependence of the atom-transport fidelity on the
transport time t f , for a lattice depth U0 of (a) 1000 ER, (b) 1500 ER,
and (c) 2000 ER. The transport distance d was set to 85 lz, while the
transverse beam waists are wx/y,0 = 4.2×106 lz.

i.e., the assumption of the harmonic potential for the STA
method begins to break down, resulting in a worse perfor-
mance of this method. At the same time, the performance
of the eSTA approach becomes better for deeper potentials
and slowly approaches a perfect transport up until the afore-
mentioned collapse of the transport process. This performance
improvement of the eSTA approach originates from the fact
that this approach relies on the smallness of the evolution pa-
rameters μS (cf. Sec. III B), which decreases with increasing
potential depth.

The relative efficiency of the eSTA-based atom transport
compared to its STA-based counterpart is illustrated by Fig. 6,
which depicts the dependence of the time t0.99 required to first
reach the fidelity of 0.99 on the lattice depth U0 for the fixed
transport distance d = 85 lz. As already established, it can be
inferred from this figure that the eSTA method constitutes an
improvement of the STA scheme for deeper potentials (in this
example for U0 � 80 ER) because a shorter transport time is
needed to reach the same fidelity of 0.99. On the other hand,
for more shallow potentials this is not the case. In fact, in

eSTA

STA

40 60 80 100

4

5

6

U0 / ER

t 0
.9

9
/

τ z

FIG. 6. The time t0.99 for which a fidelity of 0.99 is first reached
for different potential depths U0. The transport distance d was set to
85 lz, while the transverse beam waists are wx/y,0 = 4.2×106 lz.

a narrow range between U0 ≈ 65 ER and U0 ≈ 80 ER eSTA
even yields results inferior to that of STA. This outcome (that
eSTA does not always result in higher fidelities than STA)
seems to be consistent with the heuristic character of the eSTA
approach. However, eSTA is expected to reach perfect fidelity
and be an improvement over STA for μS → 0 [cf. Eq. (14)].

It is pertinent to also comment on the obtained results for
the atom-transport fidelity (cf. Figs. 3–5) from the point of
view of the typical shapes of the corresponding trap-trajectory
solutions (cf. Figs. 1 and 2). What can be inferred is that the
typical times t f needed for a high-fidelity transport correspond
to trap-trajectory solutions that do not display oscillatory fea-
tures. For instance, the eSTA trap trajectory for t f /τz = 2 in
Fig. 2(a), which has oscillating character, does not allow for
a high-fidelity atom transport. In other words, in the system
at hand only nonoscillatory solutions for the trajectory of the
moving lattice can enable such transport.

For the sake of completeness, it is worthwhile to briefly
discuss the effect of varying transverse beam waists on the
efficiency of atomic transport. Our calculations show that
the variation of the waists leads to appreciable changes (for
fixed values of other relevant parameters) of the fidelity only
for rather shallow lattices, i.e., for lattice depths as small
as several tens of ER. For larger lattice depths, the results
are practically insensitive to the size of the transverse beam
waists. This is illustrated in Fig. 7, where the dependence of
the fidelity on the transport time is shown for the lattice depths
U0 of 20, 30, and 100 ER with the relevant waists chosen to
be wx/y,0 = 300 lz. For the parameter choice corresponding to
Fig. 7, the behavior of the fidelity changes for lattice depths U0

just slightly above 30 ER and remains essentially unchanged
upon further increase of wx/y,0.

B. Comparison to other approaches

In what follows, we complement our analysis of STA
and eSTA results for the atom-transport fidelity by com-
paring these results to those originating from other known
approaches. To be more precise, we consider approaches
based on the use of sine-shaped and triangular velocity pro-
files for the potential path. The time-dependent forms of these
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FIG. 7. The dependence of the atom-transport fidelity on the
transport time t f , for a lattice depth U0 of (a) 20 ER, (b) 30 ER, and
(c) 100 ER. The transverse beam waists are wx/y,0 = 300 lz, while the
transport distance is d = 85 lz.

two profiles are given by

qs
0(t ) = v0

2

[
t −

sin
(
2π t

t f

)
2π

t f

]
, (34)

qt
0(t ) =

{
v0 t2/t f , for 0 � t � t f /2,

v0(2 t − t f /2 − t2/t f ), for t f /2 < t � t f ,
(35)

with the maximal velocity v0 = 2d/t f .
The approach based on the triangular velocity profile

is also known as the bang-bang approach [5,6,10]. As
a consequence of discontinuities in its corresponding
acceleration profile, this approach leads to additional motional
heating in the regime of fast transport. As a result, it showed
a relatively poor performance in some previous studies,
e.g., in Ref. [9]. On the other hand, the sine-shaped profile
represent an improvement over the bang-bang approach,
since its attendant acceleration is continuous during the entire
transport process. However, it is plausible to expect that STA
and eSTA approaches should lead to much better results
than these preselected velocity profiles. Namely, the STA
approach is based upon inverse engineering and makes use
of the specific form of the Hamiltonian in question to obtain
a tailored trap trajectory. Likewise, being based on STA

Triangular
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0.0

0.2

0.4
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0.8

1.0 (a)

eSTA

STA
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0.0

0.2
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FIG. 8. The atom transport fidelity for an atom prepared in the
longitudinal motional ground state and moved by a distance d =
140 lz. The results correspond to (a) sine-shaped and triangular ve-
locity profiles and (b) STA and eSTA methods. The lattice depth is
set to U0 = 2610 ER, while the transverse waists are wx,0 = 1790 lz

and wy,0 = 537 lz.

solutions for simplified systems, eSTA solutions inherit this
last property of their STA counterparts.

The fidelities obtained using triangular and sine-shaped
velocity profiles are compared to those resulting from the
application of STA/eSTA methods in Fig. 8. The plot shows
the dependence of F on the transport times t f for an atom
that is initially prepared in the longitudinal motional ground
state and moved by a fixed distance (here d = 140 lz), with
the target state being the ground state of the displaced OCB
potential.

The triangular velocity profile shows strong oscillations in
fidelity, a trend that gradually becomes more prominent upon
reducing transport times t f , up until the complete breakdown
of the fidelity for t f ≈ 2.1 τz [cf. Fig. 8(a)]. Somewhat better
results are obtained for the sine-shaped velocity profile. Even
though the latter also show oscillations, these are much less
pronounced than in the triangular case and start for much
shorter transport times; the complete breakdown occurs for
t f ≈ 2.3 τz.

In accordance with the aforementioned expectation, a sig-
nificant improvement over these previous results is obtained
using STA and eSTA, where only one major drop in fidelity
takes place for t f ≈ 2.9 τz [cf. Fig. 8(b)]. While eSTA results
in smaller fidelities than STA for times t f ≈ 2.9 τz very close
to the breakdown point, the eSTA method still leads to slightly
larger fidelities than STA for almost all transport times.

VI. SUMMARY AND CONCLUSIONS

In summary, using a combination of advanced analytical
and numerical techniques, in this paper we investigated
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fast single-atom transport in moving optical lattices (optical
conveyor belts). Unlike previous theoretical studies of fast
atomic transport, which were almost exclusively based
on simplified scenarios, such as strictly one-dimensional
systems and/or purely harmonic trapping potentials, we
studied this phenomenon by taking fully into account the
three-dimensional, anharmonic trapping potential of the
system under consideration.

Our results for atom-transport fidelities obtained using both
STA and eSTA approaches correspond to realistic values of
the relevant system parameters (beam waists, lattice depths,
transport distances, etc.). Moreover, our study demonstrates
the feasibility of applying the recently proposed eSTA method
to a realistic experimental system. It shows that eSTA, en-
visioned as an improvement of the existing STA techniques,
indeed yields more efficient atom transport in optical conveyor
belts than STA in a broad range of system parameters.

It can be expected that our present study will motivate
further attempts toward realistic modeling of single-atom
transport in various optically trapped atomic systems, such
as optical lattices of different geometry [45,46]. In addition,
while in the present work only near-ground state atoms have
been considered, it is worthwhile to also investigate the finite-
temperature effects (leading, e.g., to finite atom lifetime in
traps) and optically induced heating (due to optical-potential
fluctuations). Likewise, this study is of utmost relevance for
future experiments in optical conveyor belts. In particular,
an experimental corroboration of our results for the atom-
transport fidelities is clearly called for.
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APPENDIX A: DERIVATION OF THE EXPRESSION FOR Gn

In the following, we derive an expression that can be used for the numerical evaluation of the first auxiliary function Gn [cf.
Eq. (18)] in our problem. For the sake of brevity, the multi-indices n ≡ (nx, ny, nz ) and nr ≡ (nx, ny) are used. It should be borne
in mind that the main quantum number n of a 3D harmonic oscillator is given by the sum of the quantum numbers of three 1D
oscillators, i.e., n = nx + ny + nz.

By inserting the transport modes of a 3D harmonic Hamiltonian, written in the coordinate representation, into Eq. (18) we
obtain the expression

Gn = −
∫ t f

0
dt
∫ ∞

−∞
dZ
∫ ∞

−∞
dY
∫ ∞

−∞
dX

exp[i(ωxnx + ωyny + ωznz )t]√
2nnx!ny!nz!π3

× Hnx (X )Hny (Y )Hnz [ZC (t )] exp(−X 2)exp(−Y 2)exp[−ZC (t )2]

×
(

C P0 cos[
√

2 k lz Z0(t )]2

wx[Z0(t )]wy[Z0(t )]
exp

[
−4

(
X 2 l2

x

wx[Z0(t )]2
+ Y 2 l2

y

wy[Z0(t )]2

)]
+ h̄

2
[ωxX 2 + ωyY

2 + ωzZ0(t)2] − U0

)
, (A1)

with the dimensionless coordinates X = x/(lx
√

2), Y = y/(ly
√

2), Z = z/(lz
√

2), and new functions Z0(t ) ≡ Z − q0(t )/(lz
√

2),
ZC (t ) ≡ Z − qc,z(t )/(lz

√
2). For notational convenience, the waists will hereafter be denoted by wx/y[Z0(t )], instead of

wx/y[Z0(t ) lz
√

2]. The final expression for Gn will be obtained by treating the different terms and integrations separately from
each other.

1. Integration over the transverse directions

We first carry out the integrations in X and Y directions, because those are conceptually easier to do than the Z integration.
Therefore, the integral we are considering here is given by

Inr
r [Z0(t )] =

∫ ∞

−∞
dY
∫ ∞

−∞
dX Hnx (X )Hny (Y )exp(−X 2)exp(−Y 2)

(
A[Z0(t )] exp

[
−4

(
X 2 l2

x

wx[Z0(t )]2
+ Y 2 l2

y

wy[Z0(t )]2

)]

+ h̄

2
[ωxX 2 + ωyY

2 + ωzZ0(t )2] − U0

)
, (A2)

with A(Z ) = CP0cos2(k lz Z )/[wx(Z )wy(Z )] and U0 = CP0/(wx,0wy,0). Using the orthogonality and the recurrence relation of
Hermite polynomials [47] ∫ ∞

−∞
dx Hm(x) Hl (x) exp(−x2) = √

π 2m m! δl,m, (A3)

xHm(x) = 1

2
Hm+1(x) + mHm−1(x), (A4)

the X integration of the second term in Eq. (A2) can readily be carried out. It yields the following result:

Inx
r,2[Z0(t )] = h̄

2

∫ ∞

−∞
dX

[
ωxX 2 + ωyY

2 + ω2
z Z0(t)2 − 2U0

h̄

]
Hnx (X )exp(−X 2)

= h̄ωx

4

√
π (δnx,0 + 4 δnx,2) + √

π
h̄

2

[
ωyY

2 + ωzZ0(t )2 − 2U0

h̄

]
δnx,0. (A5)
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Owing to the symmetry of the problem, the Y integration of Eq. (A5) is conceptually equivalent to the X integration.
Therefore, we just state the final result for the integrated second term [cf. Eq. (A2)]:

Inr
r,2[Z0(t )] = π

h̄

2
ωz Z0(t )2δnx,0 δny,0 + π h̄

[(
ωx + ωy

4
− U0

h̄

)
δnx,0 δny,0 + ωx δnx,2 δny,0 + ωy δnx,0 δny,2

]
. (A6)

Let us now focus on the first term in Eq. (A2). We can restrict our calculations to the integration of

Inx
x,1[Z0(t )] =

∫ ∞

−∞
dX Hnx (X )exp(−X 2) exp

(
−4

X 2 l2
x

wx[Z0(t )]2

)
. (A7)

As a consequence of the presence of the second exponential in the last integral, we cannot simply use the orthogonality
relation (A3) of Hermite polynomials to evaluate it. However, this integral can be computed using the formula of Faá di
Bruno [48] for Hermite polynomials

Hm(x) = (−1)m
∑

k1+2k2=m

m!

k1!k2!
(−1)k1+k2 (2x)k1 . (A8)

In addition, we make use of the identity∫ ∞

−∞
dx xn exp(−ax2 + bx + c) = exp

(
b2

4a
+ c

) �n/2�∑
k=0

(
n
2k

)(
b

2a

)n−2k
�(k + 1/2)

ak+1/2
, (A9)

where �(x) is the gamma function. Putting everything together, the following result is finally obtained:

Inx
x,1[Z0(t )] =

∑
k1+2k2=nx

nx!

k1!k2!
(−1)nx+k1+k2

∫ ∞

−∞
dX (2X )k1 exp(−X 2) exp

(
−4

X 2 l2
x

wx[Z0(t )]2

)

=
∑

k1+2k2=nx

k1even

nx!

k1!k2!
(−1)k2�

(
k1 + 1

2

)
. (A10)

In the last step we made use of the fact that the integral in Eq. (A7) is equal to zero for odd values of nx due to the symmetry
of the integrand. A similar result can also be obtained for the Y integration. Thus, the final integrated form for the first term in
Eq. (A2), up to the Z-dependent factor A[Z0(t )], is given by

Inr
r,1[Z0(t )] =

∑
k1+2k2=nx

k1even

∑
k̃1+2k̃2=ny

k̃1even

nx! ny!

k1!k2! k̃1!k̃2!
(−1)k2+k̃2 2k1+k̃1

(
wx[Z0(t )]2

4 l2
x + wx[Z0(t )]2

) k1+1
2

× �

(
k1 + 1

2

)
�

(
k̃1 + 1

2

)(
wy[Z0(t )]2

4 l2
y + wy[Z0(t )]2

) k̃1+1
2

. (A11)

2. Integration over the longitudinal direction

The most general form we can obtain for Gn after the integrations over the X and Y coordinates is given by

Gn = −
∫ t f

0
dt
∫ ∞

−∞
dZ

exp[i(ωxnx + ωyny + ωznz )t]√
2nnx!ny!nz!π

× Hnz [ZC (t )] exp
[−ZC (t )2]( 1

π
A[Z0(t )] Inr

r,1[Z0(t )] + h̄

2
ωzZ0(t )2δnx,0 δny,0

+ h̄

[(
ωx + ωy

4
− U0

h̄

)
δnx,0 δny,0 + ωxδnx,2 δny,0 + ωy δnx,0 δny,2

])
. (A12)

For the Z integration, we treat the three terms in the brackets of Eq. (A12) independently.
The integration of the third term is conceptually the simplest one and is thus treated first. The integral we need to evaluate

has the form

In
z,3 = Bnr

∫ ∞

−∞
dz (lz

√
2)−1 Hnz [ZC (t )]exp[−ZC (t )2], (A13)

where we have set Bnr ≡ h̄[(ωx/4 + ωy/4 − U0/h̄)δnx,0 δny,0 + ωx δnx,2 δny,0 + ωy δnx,0 δny,2].
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Since we want to use orthogonality relation (A3), we have to rewrite the Hermite polynomial and the exponential function
such that their arguments become independent of q0(t ) and qc,z(t ). We can accomplish this using the relations of the generating
function of Hermite polynomials and the following sum representation [47]:

exp(2xt − t2) =
∞∑

m=0

Hm(x)tm

m!
, (A14)

Hm(x + y) =
m∑

k=0

(
m
k

)
Hk (x)(2y)m−k . (A15)

We are now able to calculate the integral and obtain the following:

In
z,3 = Bnr

∫ ∞

−∞
dZ

nz∑
k=0

(
nz

k

)
Hk (Z )

[
−

√
2

qc,z(t )

lz

]nz−k

exp(−Z2)
∞∑

m=0

Hm(Z )

m!

[
qc,z(t )√

2 lz

]m

= Bnr
√

π

[√
2

qc,z(t )

lz

]nz nz∑
k=0

(
nz

k

)
(−1)nz−k . (A16)

The last line of Eq. (A16) vanishes for any value of nz except for nz = 0, which can be seen by making use of the binomial
theorem. Hence, the solution to the first integral in Z is given by the simple form

In
z,3 = Bnr

√
π δnz,0 . (A17)

The Z integration of the second term of Eq. (A12) can be carried out by combining the above integration steps and using
relation (A4). Thus, the second integral in Z is given by

In
z,2(t ) = h̄

2
ωz

∫ ∞

−∞
dZ exp[−ZC (t )2] Z0(t )2 Hnz [ZC (t )]δnx,0 δny,0

= h̄

2
ωz

∫ ∞

−∞
dZ

∞∑
m=0

1

m!

[
qc,z(t )√

2 lz

]m

exp[−Z2] δnx,0 δny,0

[
1

4
Hm+2(Z )

+
(

m + 1

2

)
Hm(Z ) + m (m − 1)Hm−2(Z ) + q0(t )2

2 l2
z

Hm(Z )

−
√

2
q0(t )

lz

[
1

2
Hm+1(Z ) + m Hm−1(Z )

]] nz∑
l=0

(
nz

l

)
Hl (Z )

[
−

√
2

qc,z(t )

lz

]nz−l

= h̄

2

√
π ωz δnx,0 δny,0

[√
2

qc,z(t )

lz

]nz nz∑
l=0

(
nz

l

)
(−1)nz−l

[
l (l − 1)

2

[
qc,z(t )

lz

]−2

− l
q0(t )

qc,z(t )
+ l

]
. (A18)

In the last step, we utilized the orthogonality of Hermite polynomials [cf. Eq. (A3)], the binomial theorem, and the general
condition n > 0. Using mathematical induction, we can further simplify this last result and obtain the following form:

In
z,2(t ) = h̄ ωz√

2 lz

√
π δnx,0 δny,0

(
δnz,1[qc,z(t ) − q0(t )] + δnz,2

)
. (A19)

This shows that the only nonvanishing contributions are those with nz = 1, 2.
The last integral that we have to compute corresponds to the first term in Eq. (A12) and has the form

In
z,1(t ) = C P0

π

∫ ∞

−∞
dZ

Inr
r,1[Z0(t )] Hnz [ZC (t )] exp[−ZC (t )2]

wx[Z0(t )]wy[Z0(t )]
cos2[

√
2 k lzZ0(t )]. (A20)

The dependence of the denominator on Z makes it impossible to find an analytical solution for the above integral even for
concrete values of nz. Therefore, as part of our optimization procedure, we perform numerical evaluation of this integral.

Putting the results of the last two subsections together, we obtain the integrated form of Gn:

Gn = −
∫ t f

0
dt

exp[i(ωxnx + ωyny + ωznz )t]√
2nnx!ny!nz!

[
h̄δnz,0

(
ωx δnx,2δny,0 + ωy δnx,0δny,2

)+ 1√
π

In
z,2(t ) + 1√

π
In
z,1(t )

]
. (A21)

Because an analytic solution for In
z,1(t ) does not exist, this integral can only be computed numerically.
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3. Approximation for Gn

Because the numerical evaluation of two-dimensional integrals can be rather time-consuming, we simplify the z-dependent
denominator within the function In

z,1(t ). By analyzing the exponential function in Eq. (A20), we see that the main contributions
of In

z,1(t ) are localized around the classical path of the particle qc,z(t ). Thus, we will first express the argument of the z-dependent
denominator in terms of qc,z(t ), resulting in

√
2 Z0(t ) lz = qc,z(t ) + ∣∣q̈c,z(t )/ω2

z

∣∣ � qc,z(t ) + q̈max
c,z

ω2
z

≈ qc,z(t ) + 10d

t2
f ω

2
z

� qc,z(t ) + 1√
2

Ũ 7/4lz. (A22)

It should be borne in mind that within the STA solution, the acceleration of the particle q̈c,z(t ) is connected to the difference
in classical particle and potential paths [cf. Eq. (11)]. Moreover, in the second line, the following inequality for the particle
acceleration was used:

q̈max
c,z := max

t∈[0,tf ]
q̈c,z(t ) = d

t2
f

ã � |amax| = 1√
2

Ũ 7/4 lz
ω−2

z

, (A23)

where the dimensionless lattice depth Ũ ≡ U0/ER was introduced. In Eq. (A23) |amax| is the maximal acceleration of the trap
(i.e., that of the moving OCB potential), while the dimensionless parameter ã is the maximal acceleration of an atom in the trap
expressed in units of d/t2

f . As already stated in Sec. V A, the upper bound for ã is close to 10, more precisely 9.372, while the
lower bound equals 2 [5].

Now, let us examine the Rayleigh lengths by looking at the following expression:

ZR,x/y√
2 lz

=
[

m2

h̄2

U0

m

(
1

Z2
R,x

+ 1

Z2
R,y

+ 2k2

)]1/4

ZR,x/y �
(

U0m

h̄2 4k2

)1/4

k−1 = (2Ũ )
1/4

, (A24)

with the characteristic length scale lz = √
h̄/(2mωz ), the frequency ωz =

√
U0(Z−2

R,x + Z−2
R,y + 2k2)/m, and the recoil

energy ER = h̄2k2/(2m).
Furthermore, we used the paraxial approximation ZR,x/y � 1/k in the second line, which is also used to derive the potential

for a Gaussian laser beam and, subsequently, an OCB. Hence, the paraxial approximation is always fulfilled for these types of
potentials. Furthermore, we are concerned with the regime in which our lattice depth is at least several ER, resulting in Ũ > 1
and thus ZR,x/y l−1

z � 1.
Putting everything together shows that the regime of the numerator of inequality (A22) is of the same order of magnitude as

that of the last equality in (A24), resulting in
√

2 Z0(t ) lz
ZR,x

� qc,z(t )

ZR,x
+

1√
2
Ũ 7/4lz

ZR,x
≈ qc,z(t )

ZR,x
. (A25)

Now, scales on which the approximated denominator and the exponential function change significantly can be compared.
Using inequality (A24), we conclude that the influence of changes in the denominator is negligible small on the scales on which
the exponential functions drops significantly, resulting in the central approximation√√√√1 +

[√
2 Z0(t ) lz
ZR,x/y

]2

≈ 1 . (A26)

Using once again Faá di Bruno’s representation for Hermite polynomials [cf. Eq. (A8)] and this last approximation, together
with Euler’s formula for the cosine function and integral relation (A9), Eq. (A20) adopts the approximated form:

In,ap.
z,1 (t ) = U0

4π
Inr
r,1(0)

∑
k1+2k2=nz

(−1)nz+k1+k2
nz!

k1!k2!
2k1

k1∑
l=0

(
k1

l

)[
−qc,z(t )√

2 lz

]k1−l

D(l ). (A27)

For the sake of readability, we introduced the auxiliary function

D(l ) =
�l/2�∑
λ=0

(
l

2λ

)
�(λ + 1/2)

[
2

[
qc,z(t )√

2 lz

]l−2λ

+ exp
(−2 k2 l2

z

)
exp(+2ik[qc,z(t ) − q0(t )])

[
qc,z(t )√

2 lz
+ i

√
2 k lz

]l−2λ

+ exp
(−2 k2 l2

z

)
exp(−2ik[qc,z(t ) − q0(t )])

[
qc,z(t )√

2 lz
− i

√
2k lz

]l−2λ]
. (A28)

Thus, we have reduced the calculation of Gn to the numerical evaluation a one-dimensional integral in the time domain. The
relative difference between the results of the full numerical integration and our approximated solutions was verified to be of the
order of 10−5. At the same time, our approximate numerical integration is around 15 times faster than obtaning the numerically
exact solution.
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APPENDIX B: DERIVATION OF THE EXPRESSION FOR Kn

Here we are concerned with the calculation of Kn. To begin with, the gradient of HS with respect to λ was computed. Use has
also been made of the fact that the substitution q0(λ; t ) = q0(λ0; t ) + f (α; t ) implies that

∇λq0(λ; t ) = ∇α f (α; t ). (B1)

By inserting the transport modes of the 3D harmonic oscillator, written in the coordinate representation, into Eq. (20), we obtain

Kn =
∫ t f

0
dt
∫ ∞

−∞
dZ
∫ ∞

−∞
dY
∫ ∞

−∞
dX

−∇α f (α; t )√
2nnx!ny!nz!π3

exp[i(nxωx + nyωy + nzωz)t]

× C P0

wx[Z0(t )]wy[Z0(t )]
Hnx (X )Hny (Y )Hnz [ZC (t )] exp[−X 2 − Y 2 − ZC (t )2]

× exp

[
−4

(
X 2l2

x

wx[Z0(t )]2
+ Y 2 l2

y

wy[Z0(t )]2

)]⎛⎝k sin[23/2 k lzZ0(t )] + Z0(t )

25/2 l3
z

(cos[23/2 k lzZ0(t )] + 1)

×
⎡
⎣(1 − 8X 2 l2

x

wx[Z0(t )]2

)⎛⎝ ZR,x

Z2
R,x

2 l2
z

+ Z0(t )2

⎞
⎠

2

+
(

1 − 8Y 2 l2
y

wy[Z0(t )]2

)⎛⎝ ZR,y

Z2
R,y

2 l2
z

+ Z0(t )2

⎞
⎠

2⎤
⎦
⎞
⎠. (B2)

1. Integration over the transverse directions

By analogy to what was done in Appendix A 1, we first treat the integration in X and Y . In other words, we are considering
the integral

Ĩnr
r [Z0(t )] =

∫ ∞

−∞
dY
∫ ∞

−∞
dX exp(−X 2 − Y 2)exp

[
−4

(
X 2 l2

x

wx[Z0(t )]2 + Y 2 l2
y

wy[Z0(t )]2

)]

× Hnx (X )Hny (Y )

⎛
⎝k sin[23/2 k lzZ0(t )] + Z0(t )

25/2 l3
z

[cos
(
23/2 k lzZ0(t )

)+ 1]

×
⎡
⎣
⎛
⎝ ZR,x

Z2
R,x

2 l2
z

+ Z0(t )2

⎞
⎠

2(
1 − 8X 2 l2

x

wx[Z0(t )]2

)
+
⎛
⎝ ZR,y

Z2
R,y

2 l2
z

+ Z0(t )2

⎞
⎠

2(
1 − 8Y 2 l2

y

wy[Z0(t )]2

)⎤⎦
⎞
⎠. (B3)

The integrations in X and Y are conceptually the same and somewhat similar to what was done in previous sections. As a
consequence, the first term can readily be obtained using previous results:

Ĩnr
r,1[Z0(t )] = k sin[23/2 k lzZ0(t )]Inr

r,1[Z0(t )] . (B4)

The second integral is given by

Ĩ nx
r,2,x[Z0(t )] =

∫ ∞

−∞
dX X 2 Hnx (X )exp(−X 2) exp

(
−4

X 2 l2
x

wx[Z0(t )]2

)

=
∑

k1+2k2=nx

k1even

nx!

k1!k2!
(−1)k2 2k1

(
wx[Z0(t )]2

4 l2
x + wx[Z0(t )]2

) k1+3
2

�

(
k1 + 3

2

)
, (B5)

where we made use of integral relation (A9) and Faá di Bruno’s representation of Hermite polynomials (A8). It should be stressed
that Eq. (B6) is equal to zero for odd nx due to the symmetry of the integral, akin to the X integration for Gn [cf. Eq. (A10)].
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The Y integration entails similar steps. Putting it all together, the full form of the second term of Eq. (B2) reads

Ĩnr
r,2[Z0(t )] = −

∑
i∈{x,y}

Ci[Z0(t )]
23/2 Z0(t ) lz l2

i

wi[Z0(t )]2√π
I0,ni
r,1 [Z0(t )]

∑
k1+2k2=ni

k1even

(−1)k2
nx!

k1!k2!
2k1+2�

(
k1 + 3

2

)(
wi[Z0(t )]2

4 l2
i + wi[Z0(t )]2

) k1
2 +1

+ (Cx[Z0(t )] + Cy[Z0(t )]) Inr
r,1[Z0(t )] , (B6)

with the factors

Ci(Z ) = 1

8 l4
z

[cos(23/2 k lzZ ) + 1]

⎛
⎝ ZR,i

Z2
R,i

2 l2
z

+ Z2

⎞
⎠

2

. (B7)

It should be stressed that the expressions for Ĩnr
r,1 and Ĩnr

r,2 are only valid for even values of nx and ny; otherwise, they are equal to
zero.

2. Integration over the longitudinal direction

The most general form we can obtain without approximation of the integrand for Kn is given by

Kn = −
∫ tf

0
dt
∫ ∞

−∞
dZ

U0√
2nnx!ny!nz!π3

exp[i(nxωx + nyωy + nzωz)t]∇α f (α; t )

× Hnz [ZC (t )]exp[−ZC (t )2]√
1 + [√2 Z0(t ) lz

ZR,x

]2√
1 + [√2 Z0(t ) lz

ZR,y

]2 (k sin[23/2 k lzZ0(t )] Inr
r,1[Z0(t )] + Ĩnr

r,2[Z0(t )]
)
. (B8)

Hence, we need to evaluate the following integral in the Z direction:

Ĩn
z (t ) = −

∫ ∞

−∞

dZ Hnz [ZC (t )]exp[−ZC (t )2]√
1 + [√2 Z0(t ) lz

ZR,x

]2√
1 + [√2 Z0(t ) lz

ZR,y

]2 (k sin[23/2 k lzZ0(t )] Inr
r,1[Z0(t )] + Ĩnr

r,2[Z0(t )]
)
. (B9)

While this integral cannot be computed analytically, we are able to approximate it.
The same procedure to obtain an approximate solution for the Z integral in the first auxiliary function Gn can be used to

find an approximate result for the integration of Eq. (B9). Repeating the same steps—that is, approximation of the z-dependent
denominator—using the Euler formula and the Faá di Bruno representation for Hermite polynomials [cf. Eq. (A8)], we obtain
the final form for the first term

Ĩn,ap.
z,1 (t ) = ik

2
Inr
r,1(0) exp

(−2 k2 l2
z

) ∑
k1+2k2=nz

2k1 nz!

k1!k2!
(−1)nz+k1+k2+1

k1∑
l=0

(
k1

l

)

×
[
−qc,z(t )√

2 lz

]k1−l �l/2�∑
λ

[
exp(2ik[qc,z(t ) − q0(t )])

[
qc,z(t )√

2 lz
+ i

√
2 k lz

]l−2λ

−exp(−2ik[qc,z(t ) − q0(t )])

[
qc,z(t )√

2 lz
− i

√
2 k lz

]l−2λ](
l

2λ

)
�(λ + 1/2) (B10)

and the second term of Eq. (B9):

Ĩn,ap.
z,2 (t ) = −

∑
i∈{x,y}

2 l2
i

Z2
R,iw

2
i,0

√
π

I0,ni
r,1 (0)

∑
k1+2k2=ni

k1even

(−1)k2
ni!

k1!k2!
2k1+2�

(
k1 + 3

2

)

×
(

w2
i,0

4 l2
i + w2

i,0

) k1
2 +1
⎛
⎝ ∑

k̃1+2k̃2=nz

nz!

k̃1!k̃2!
(−1)nz+k̃1+k̃2 2k̃1−1

k̃1∑
l=0

[
−qc,z(t )√

2 lz

]k̃1−l

×
(

k̃1

l

)[
D(l + 1) − q0(t )√

2 lz
D(l )

]⎞⎠+
(

1

Z2
R,x

+ 1

Z2
R,y

)
In,ap.
z,1 (0) Inr

r,1(0). (B11)

The computational speedup and the accuracy of the final result are of the same order as in the aforementioned approximation for
Gn [cf. Appendix A 3].
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TABLE I. Approximated parameters ãn,k for Eq. (24). The relative differences between approximated and exact values are of the order of
10−8. For n < 3 the parameter ãn,k is equal to zero.

n/k 1 2 3 4 5 6

3 3268.0278 −1764.7350 1361.6782 −1021.2587 705.89400 −544.67130
4 −42974.565 29382.838 −24260.567 18791.160 −13235.513 10339.677
5 238311.85 −188292.32 168031.09 −135594.78 97923.184 −77792.678
6 −731080.51 636579.13 −607620.55 512478.95 −381148.45 309119.12
7 1362055.0 −1270967.0 1282059.8 −1128042.6 865989.78 −719297.45
8 −1583096.2 1555055.1 −1640810.9 1500138.2 −1188990.2 1013733.1
9 1124047.2 −1148396.4 1257158.1 −1189045.8 971849.37 −851598.11
10 −446816.56 470792.08 −531275.79 517653.33 −435482.68 392326.73
11 76285.754 −82388.614 95357.192 −95357.192 82388.614 −76285.754

APPENDIX C: PARAMETERS OF THE AUXILIARY FUNCTION f (α; t )

The values of the parameters ãn,k in Eq. (24), rounded to the accuracy of 10−8, are listed in Table I.
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