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Dissipation-enabled resonant adiabatic quantum state transfer:
Entanglement generation and quantum cloning

Marvin Gajewski ,* Thorsten Haase, and Gernot Alber
Institut für Angewandte Physik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

(Received 2 September 2021; accepted 26 October 2021; published 15 November 2021)

Resonant dissipation-enabled adiabatic quantum state transfer processes between the polarization degrees of
freedom of a single-photon wave packet and quantum emitters are discussed. These investigations generalize
previous work [Trautmann and Alber, Phys. Rev. A 93, 053807 (2016)] by taking into account the properties
of the spontaneously emitted photon wave packet and of nonadiabatic corrections. It is demonstrated that the
photonic degrees of freedoms of these adiabatic one-photon quantum state transfer processes can be used for
the passive, heralded, and deterministic preparation of Bell states of two material quantum emitters and for
realizing a large family of symmetric and asymmetric quantum cloning processes. Although these theoretical
investigations concentrate on waveguide scenarios they are expected to be relevant also for other scenarios as
long as the processes involved are adiabatic so that the Fourier-limited bandwidth of the single-photon wave
packet involved is small in comparison with the relevant dissipative rates.
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I. INTRODUCTION

Realizing highly efficient quantum state transfer processes
from the polarization degrees of freedom of a single-photon
wave packet to material quantum systems is crucial for ad-
vancing quantum technology. Their potential applications are
particularly relevant for advancing quantum communication
with the ultimate aim of realizing a quantum internet [1].
Numerous proposals and realizations for interfacing station-
ary and flying qubits as well as performing information
processing have already been made in the framework of
cavity quantum electrodynamics (QED) [2–5], of solid-state
platforms [6,7], of photonic nanostructures [8,9], and of
superconducting platforms [10]. In this context passive in-
terfaces which do not require external control or feedback
and, hence, act autonomously are particularly promising. So
far proposals and demonstrations of passive interfaces have
dominantly been presented in the framework of cavity QED,
such as passive swap operations [11] or passive state transfer
[12] between a photon and an atom.

Recently a general class of resonant dissipation-enabled
processes to achieve optimal passive quantum state transfer
between the polarization degrees of freedom of a single-
photon wave packet and a quantum emitter in the adiabatic
limit has been proposed theoretically [13]. These processes
are capable of turning dominant dissipative processes, such
as spontaneous photon emission by a material emitter, into
valuable tools for quantum information processing and quan-
tum communication. They work for an arbitrarily shaped
single-photon wave packet with sufficiently small bandwidth
provided a matching condition is satisfied which balances
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the dissipative rates involved. In particular, these processes
are passive and do not require additional laser pulses or
quantum feedback and also do not require high finesse op-
tical resonators. They can be used to enhance significantly
the coupling of a single photon to a single quantum emitter
implanted in a one-dimensional waveguide, for example. So
far, the theoretical discussion of these quantum state transfer
processes has concentrated on the quantum dynamics of the
emitter which is excited by the one-photon wave packet in
the extreme adiabatic limit and decays again by spontaneous
emission of this photon. Within this theoretical treatment
implementations of a deterministic quantum memory and of
a deterministic frequency converter between photonic qubits
of different wavelengths have been presented [13]. Recently,
such an adiabatic quantum state transfer process has also
received a “proof-of-concept” demonstration within a cavity-
QED scenario [5].

The main aim of this paper is to extend the previous
theoretical work of Ref. [13] by taking into account and ex-
ploiting the properties of the spontaneously emitted photon
wave packet which have so far been neglected. Within this
generalization also nonadiabatic corrections to the extreme
adiabatic limit are taken into account systematically. Thereby,
we concentrate on scenarios in which the one-photon wave
packet before and after the spontaneous emission process
is confined to an optical waveguide capable of controlling
the propagation directions of the one-photon wave packet
by optical circulators. This way it is demonstrated that the
photonic degrees of freedoms of these adiabatic one-photon
quantum state transfer processes can be used for the passive,
heralded and deterministic preparation of Bell states of two
material quantum emitters and for realizing a large family of
symmetric and asymmetric quantum cloning processes.

This paper is organized as follows. In Sec. II the basic
ideas of the previously introduced [13] dissipation-enabled
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FIG. 1. Schematic representation of a quantum emitter coupled
to a waveguide: A single photon excites the quantum emitter from
its initial state |s〉 to its excited state |e〉 from which it can decay
spontaneously to the energetically lower lying states | f 〉 and |s〉 with
the spontaneous decay rates �e f = γ B

e f + γ W
e f and �es = γ B

es + γ W
es .

The photon can be emitted spontaneously either into the background
(B) or into the waveguide (W ) modes.

passive adiabatic quantum state transfer processes between
the polarization degrees of freedom of a single-photon wave
packet and a quantum emitter are summarized. Thereby, these
previous investigations are generalized also to weakly nona-
diabatic cases in which the Fourier-limited bandwidth of the
single-photon wave packet is no longer negligibly small in
comparison with the characteristic dissipative rates involved.
The quantum optical model is presented in Sec. II A, in
Sec. II B the resulting quantum state transfer dynamics is
discussed, and in Sec. II C the matching conditions of the
dissipative rates are introduced which enable optimal quantum
state transfer in the extreme adiabatic limit. Basic properties
of the quantum state of the spontaneously emitted photon
are investigated in Sec. II D. Theoretical proposals for gen-
erating entangled Bell states between two distant material
quantum emitters are presented in Sec. III. Whereas the basic
ideas are discussed within a simplified scheme with a linear
waveguide in Sec. III A, a more general scheme for determin-
istic passive heralded entanglement generation is presented in
Sec. III B. Proposals for implementing symmetric and asym-
metric cloning processes capable of cloning an arbitrary pure
polarization state of the initially prepared one-photon wave
packet onto two material quantum emitters are introduced in
Sec. IV. Whereas optimal universal symmetric cloning pro-
cesses are discussed in Sec. IV A, more general symmetric
and asymmetric cloning processes are presented in Sec. IV B.

II. RESONANT DISSIPATION-ENABLED EXCITATION
TRANSFER AND PHOTON EMISSION

This section summarizes basic properties of the recently
presented adiabatic dissipation-enabled resonant excitation
transfer processes [13] induced by a single-photon wave
packet. The basic principle of these processes is schematically
indicated in Fig. 1. A quantum emitter initialized in state
|s〉 is resonantly and adiabatically excited by a single-photon
wave packet in state |�in〉 via one of two orthogonal transi-
tions, i.e., the transition e ↔ s of Fig. 1. Adiabatic excitation

means that the pulse duration of this photon wave packet is
significantly larger than all other relevant physical timescales.
If the impedance matching condition �es = �e f between the
two relevant spontaneous decay rates is fulfilled and if the
quantum emitter is fully coupled to the optical waveguide,
the spontaneous photon emission takes place deterministically
via the transition e ↔ f and the quantum emitter ends up
in its final state | f 〉. This section extends the investigation
of adiabatic dissipation-enabled resonant excitation transfer
processes to higher orders in the adiabatic parameter and
discusses basic properties of the spontaneously emitted pho-
ton. Whereas implications of this generalization to excitation
transfer probabilities are discussed in Sec. II C, Sec. II D fo-
cuses on basic properties of the spontaneously emitted photon.

A. The quantum optical model

The basic model of dissipation-enabled excitation trans-
fer describes a quantum emitter, modeled by a three-level
system, coupled to an electromagnetic continuum of modes.
In a free space scenario, for example, this electromagnetic
continuum includes all modes of the radiation field coupling
to the quantum emitter. In a waveguide or optical fiber sce-
nario this electromagnetic continuum predominantly includes
the modes inside the waveguide and possibly also additional
modes outside of the waveguide [13]. With the specific appli-
cations presented in the later sections in mind, in this section
we concentrate on excitation transfer in a waveguide scenario
as depicted schematically in Fig. 1.

Let us consider a three-level quantum emitter which is
located at position xA and which is coupled to a single
optical photon propagating along a one-dimensional waveg-
uide or optical fiber and prepared initially in state |ψin〉 at
time t0. Within the dipole and rotating-wave approximations
the interaction-picture Hamiltonian describing this interacting
quantum system is given by

Ĥint (t ) = − [e−iωes (t−t0 )d∗
es · Ê−(xA, t )|s〉〈e| + H.c.]

− [e−iωe f (t−t0 )d∗
e f · Ê−(xA, t )| f 〉〈e| + H.c.]. (1)

Thereby ωes > 0 and ωe f > 0 are the resonance frequencies
of the photon-induced transitions |e〉 ↔ |s〉 and |e〉 ↔ | f 〉.
The corresponding dipole matrix elements characterizing the
strengths of these transitions are denoted by des = 〈e|d̂|s〉
and de f = 〈e|d̂| f 〉. In the interaction picture the negative fre-
quency part of the electric field operator is given by

Ê−(x, t ) = −i
∑
ω,λ

√
h̄ω

2ε0
u∗

ω,λ(x)a†
ω,λeiω(t−t0 ) (2)

with Ê+(x, t ) = (Ê−(x, t ))†. It is determined by the creation
operators a†

ω,λ of all field modes (ω, λ), each of which is
characterized by its frequency and all other quantum numbers,
such as direction of propagation and polarization. The spatial
properties of the field modes are described by orthonormal
mode functions uω,λ(x) solving the Helmholtz equation with
appropriate boundary conditions. For the explicit modeling
of the waveguide setup depicted in Fig. 1, all field modes
coupling to the quantum emitter at the position xA are de-
composed into four mode reservoirs, i.e., Wes,We f , Bes, Be f ,
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whose mode functions are assumed to be orthogonal. The
orthogonal reservoirs Wes and We f contain the modes of in-
terest propagating along the waveguide and centered around
the optical transitions frequencies ωes and ωe f . Analogously,
the orthogonal modes Bes and Be f are also centered around the
optical transition frequencies ωes and ωe f but involve all other
physically relevant modes. From the physical applications
discussed in the subsequent sections it will become apparent
how this partitioning of orthogonal modes is determined by
the physical problem of interest in a natural way. As a result
the electric field operator can be split into the contributions of
these four orthogonal reservoirs, i.e.,

Ê±(x, t ) = Ê±
Wes

(x, t ) + Ê±
We f

(x, t ) + Ê±
Bes

(x, t ) + Ê±
Be f

(x, t ).

It should be mentioned that in general the modes describing
the propagation of interest inside a waveguide (here the W
modes) are only approximately orthogonal to the field modes
describing the background (here the B modes). In general,
there are spatial overlaps between these two types of modes
due to evanescent waves, for example, with typical exponen-
tial tails. Our assumption of orthogonal waveguide W modes
and background B modes applies to all those cases in which
such possible overlaps are negligibly small.

Besides waveguide scenarios also free space of cavity-
QED scenarios can be described within this general theo-
retical framework [13] by properly identifying the physical
significance of the orthogonal modes involved. In a free-space
scenario the reservoir Wes contains all the modes of the photon
coupling to the transition |e〉 ↔ |s〉, the background reservoir
Bes contains all other modes coupling to |e〉 ↔ |s〉, the reser-
voir We f contains all modes coupling to |e〉 ↔ | f 〉, and the
set of modes Be f is chosen to be empty. In a cavity-QED
scenario a quantum emitter typically couples resonantly to
two modes of a high finesse cavity which in turn couples to
the electromagnetic continuum of a waveguide. In addition,
spontaneous photon emission of the quantum emitter takes
place into field modes orthogonal to the cavity and waveguide
modes. By considering the quantum emitter and the cavity
together as a black box the previously described waveguide
scenario can also be adapted to this scenario by a proper
identification of the physical significance of the field modes
involved. This way it should also be possible to adapt the
results discussed in the subsequent sections to cavity-QED
scenarios.

B. Resonant excitation transfer dynamics

The dynamics of a photon propagating inside the waveg-
uide and interacting with the three-level system are governed
by the time dependent Schrödinger equation. In the interaction
picture it is given by

ih̄
d

dt
|�(t )〉 = Ĥint (t )|�(t )〉. (3)

Let us solve this Schrödinger equation with the initial condi-
tion

|�(t0)〉 = |s〉A|ψin〉Wes |0〉Bes |0〉We f |0〉Be f (4)

at time t0. Hence, at t0 the quantum emitter is initialized in
state |s〉A and a single-photon state |ψin〉Wes is prepared in the

waveguide reservoir Wes coupling resonantly to the transition
|s〉A ↔ |e〉A (cf. Fig. 1).

Within the rotating wave approximation the number of
excitations is conserved so that the time evolution of the
quantum state is of the general form

|�(t )〉 = �e(t )|e〉A|0〉Wes |0〉Bes |0〉We f |0〉Be f

+ |s〉A|�es(t )〉Wes,Bes |0〉We f |0〉Be f

+ | f 〉A|0〉Wes |0〉Bes |�e f (t )〉We f ,Be f . (5)

The (unnormalized) single-photon state |�es(t )〉Wes,Bes

(|�e f (t )〉We f ,Be f ) describes the spontaneously emitted photon
resulting from the quantum emitter’s transition e → s
(e → f ) and propagating in the waveguide (W ) or in
the background (B) modes. The probability of observing
the quantum emitter in the excited state |e〉A and the field in
the vacuum state of the field modes is given by |�e(t )|2 with
the complex-valued excited-state amplitude ψe(t ).

The time evolution of this quantum state can be determined
with the help of the Weisskopf-Wigner approximation [14].
This approximation is valid as long as all field-induced tran-
sition rates of the quantum emitter are small in comparison
with the optical transition frequencies involved and as long
as a spontaneously emitted photon does not interact with the
quantum emitter again so that non-Markovian effects are neg-
ligible. As shown in Appendix A, the excited-state amplitude
ψe(t ) obeys the differential equation

d

dt
�e(t ) = −�

2
�e(t ) + i

√
γW

es fin(t ). (6)

According to the golden rule [15] � = γW
es + γ B

es + γW
e f + γ B

e f

denotes the total decay rate of the quantum emitter state |e〉A

due to spontaneous emission of a photon of frequency ω j

with j ∈ {es, e f } into the possible field reservoirs R ∈ {W, B}.
This total spontaneous decay rate equals the sum of the partial
decay rates,

γ R
j = 2π

h̄

∑
(ω,λ)∈Rj

h̄ω

2ε0
δ(h̄ω j − h̄ω)

∣∣d∗
j · uω j ,λ(xA)

∣∣2
, (7)

into the four orthogonal field reservoirs Rj ∈
{Wes,We f , Bes, Be f }. The complex valued one-photon
amplitude

fin(t ) = eiωes (t−t0 )

h̄
√

γW
es

Wes〈0|des · Ê+
Wes

(xA, t )|ψin〉Wes (8)

contains all the information about the incoming single photon
necessary for determining its interaction with the emitter at
position xA. Solving (6) yields the general solution

�e(t ) = i
∫ t

t0

√
γW

es exp

(
−�

2
(t − t ′)

)
fin(t ′)dt ′ (9)

for the probability amplitude that at time t the quantum emitter
is in the excited state |e〉A.

C. Optimal adiabatic excitation transfer

In the adiabatic limit the emitter’s decay rate � is large in
comparison with the effective pulse duration τeff of the single-
photon wave packet approaching the quantum emitter along
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the waveguide. This effective pulse duration can be measured
by the corresponding Fourier-limited effective bandwidth

�ω = τ−1
eff =

(∫ ∞
−∞ dt | f ′

in(t )|2∫ ∞
−∞ dt | fin(t )|2

)1/2

(10)

so that the adiabatic limit is characterized by the condition
�ω 
 �. Recent advancements in the area of subnatural-
linewidth single photonics [16] allow production of single-
photon sources below a bandwidth of 1 MHz, for example.
Thus, this adiabatic regime is experimentally accessible if �

is of the order of a typical spontaneous photon emission rate
[17], for example. As demonstrated in recent experiments,
this adiabatic regime may be realized by increasing the total
spontaneous decay rate � by sufficiently enhancing photon
emission into the waveguide [18] or by appropriately tuning
the coupling parameters in a cavity-QED scenario [5].

In the adiabatic limit the exponential function in (9) decays
fast in comparison with the characteristic timescale on which
fin(t ′) changes significantly. Thus, the integral in (9) can be
evaluated approximately by iterated partial integration. This
yields an asymptotic series [19] in the small adiabatic parame-
ter �ω/�. In this approximation the boundary terms at t0 may
be neglected as the single-photon amplitude at the position of
the quantum emitter xA vanishes initially, i.e., fin(t0) = 0, and
moreover in the adiabatic limit this amplitude is assumed to
rise so slowly that its relevant derivatives of higher order also
vanish, i.e.. f (n)

in (t0) = 0, for all n relevant in the asymptotic
series. As a result we arrive at the (formal) asymptotic series

�e(t ) = i
√

γW
es

�/2

∞∑
n=0

(−2

�

)n

f (n)
in (t ) (11)

for the probability amplitude that the quantum emitter is in
its excited state |e〉A at time t . Together with the field states
|�es(t )〉Wes,Bes and |�e f (t )〉We f ,Be f given by (A1) and (A2) of
Appendix A this yields a complete description of the quantum
state |�(t )〉 of (5) describing the interaction of the single
photon with the quantum emitter in the adiabatic limit. From
these expressions the probability ps→ f for successful excita-
tion transfer from state |s〉A to state | f 〉A after the interaction
can be determined in a straightforward way. It is given by

ps→ f =�e f

∫ ∞

t0

|�e(t )|2dt

= 4�e f γ
W
es

�2

∫ ∞

t0

∣∣∣∣∣
∞∑

n=0

(−2

�

)n

f (n)
in (t )

∣∣∣∣∣
2

dt (12)

with �es = γW
es + γ B

es, �e f = γW
e f + γ B

e f , and � = �es + �e f .
As demonstrated in Appendix B, with the help of successive
partial integrations this excitation transfer probability can be
rewritten in the equivalent form

ps→ f = ηs (13)

with

s =
∞∑

n=0

(
− 4

�2

)n ∫ ∞

t0

∣∣ f (n)
in (t )

∣∣2
dt (14)

and with the efficiency

η = 4�e f �es

(�es + �e f )2

γW
es

γW
es + γ B

es

. (15)

The asymptotic series of (13) generalizes the previ-
ous result of Ref. [13] by taking into account also all
higher order corrections with n � 1 in the adiabatic limit
�ω/� 
 1.

The efficiency of (15) only depends on the spontaneous
decay rates involved and is independent of the pulse form of
the initially prepared single-photon wave packet. It becomes
maximal if the impedance-matching conditions

�es = �e f , γ B
es 
 γW

es (16)

are fulfilled. The condition γ B
es 
 γW

es ensures that the tran-
sition |s〉A ↔ |e〉A predominantly couples to the waveguide
reservoir Wes. Together with the condition �es = �e f it bal-
ances the decay rates in such a way that the emitted photon
interferes with the incoming photon in the Wes reservoir in
a completely destructive way so that the probability that the
photon is emitted spontaneously into the waveguide reser-
voir Wes vanishes [cf. also (18)]. Thus, after the interaction
the single photon is in the We f reservoir with the quantum
emitter in state | f 〉A [cf. also (17)]. According to (13), be-
sides the efficiency η, the probability of excitation transfer
ps→ f after the interaction is also determined by the sum s
of (14) involving integrals over the single-photon amplitude
fin(t ) ≡ f (0)

in (t ) and all its higher order derivatives. Up to sec-
ond order in the adiabatic parameter �ω/�, this sum is given
by

s =
∫ ∞

t0

| fin(t )|2dt

[
1 − 4�ω2

�2
+ O

((
4�ω2

�2

)2
)]

.

If the initially prepared single photon is definitely absorbed,
i.e.,

∫ ∞
t0

| fin(t )|2dt = 1, in the extreme adiabatic limit �ω 

� this sum tends to unity and becomes completely in-
dependent of details of the shape of this single-photon
amplitude. Hence, apart from small corrections of the order
of �ω2/�2 
 1 in this limit, perfect excitation transfer, i.e.,
ps→ f → 1, is achievable. However, an efficient suppression
of photon decay into the background is a crucial condition for
this purpose. In a cavity-based scenario a recent experimental
implementation [5] of adiabatic excitation transfer has been
achieved with an excitation probability of 92%.

D. Properties of the emitted photon

From the field states |�es(t )〉Wes,Bes and |�e f (t )〉We f ,Be f as
given by (A1) and (A2) of Appendix A and from (11)
basic properties characterizing the spontaneously emitted
photon can be derived. Thus, the probabilities pRj of de-
tecting the single photon in any of the four reservoirs Rj ∈
{Wes,We f , Bes, Be f } after the interaction, i.e., at t � 1/�, are
given by

pRj = γ R
j

∫ ∞

t0

|�e(t )|2dt = γ R
j

ps→ f

�e f
(17)

052608-4



DISSIPATION-ENABLED RESONANT ADIABATIC … PHYSICAL REVIEW A 104, 052608 (2021)

for Rj ∈ {We f , Bes, Be f } and by

pWes = 1 − (
� − γW

es

) ps→ f

�e f

= 1 − 4γW
es

�
s + 4

(
γW

es

)2

�2
s. (18)

In the following sections we explore situations in which
the photon in the reservoir Wes has a well defined polarization
λ and propagates from emitter A to a spatially well separated
emitter B along a linear waveguide. The one-photon amplitude
f B
es (t ) characterizing this single-photon wave packet, which

eventually excites emitter B, can be determined analogously
to (8) with the help of (A1), i.e.,

f B
es (t ) = eiωes (t−t0 )

h̄
√

γW
es

〈0|des · Ê+
Wes

(xB, t )|�es(t )〉Wes,Bes

= eiωesLAB/c
(

f (0)
in (t − LAB/c) + i

√
γW

es ψe(t − LAB/c)
)
.

(19)

Thereby, the length of the path between these emitters is de-
noted by LAB, c is the phase velocity of light in the waveguide,
and ψe(t ) is given by (11).

The distortion experienced by the photon wave packet
while propagating in reservoir Wes can be characterized by the
scalar product of the incident field state |�in〉 = |ψin〉Wes |0〉Bes

with the emitted photon state |�es(t )〉Wes,Bes as given in (A1).
As shown in Appendix C we obtain the result

lim
t→∞〈�in|�es(t )〉Wes,Bes = 1 − γW

es

�/2
(s + ir) (20)

with s defined in (14) and with r given by

r = −i
∞∑

n=0

(−2

�

)2n+1 ∫ ∞

t0

f ∗
in(t ) f (2n+1)

in dt . (21)

While s is determined by the adiabatic parameter �ω/�, the
quantity r captures the odd momenta of the photon’s spectral
distribution, and vanishes for a time-symmetric pulse, for
example. In the extreme adiabatic limit �ω/� → 0 all higher
moments vanish, i.e., r → 0 and s → ∫ ∞

t0
| fin(t )|2dt .

Using (20) we can decompose the one-photon amplitude
f B
es (t ) of (19) into the amplitude f (0)

in (t ) of the initial photon
wave packet |�in〉 and an amplitude f⊥(t ) corresponding to
an orthogonal component, i.e.,

f B
es (t ) = γW

es

�/2

√
s − s2 − r2 f⊥(t )

+
(

1 − γW
es

�/2
(s + ir)

)
eiωesLAB/c f (0)

in (t − LAB/c).

(22)

The orthogonal contribution f⊥(t ) is fully determined by
f B
es (t ) and by f (0)

in (t ) and depends on the coupling of the emit-
ters to the specific mode structure under consideration. It is
apparent that in the extreme adiabatic limit, i.e., �ω/� → 0,
the contribution of this orthogonal amplitude vanishes pro-
vided s → ∫ ∞

t0
| fin(t )|2dt = 1. Under these conditions (22)

reduces to the result

f B
es (t ) =

√
pWes eiωesLAB/c f (0)

in (t − LAB/c). (23)

Thus, the orthogonal component becomes vanishingly small
so that under these conditions the spontaneously emitted pho-
ton is not distorted with respect to the incoming photon. It is
apparent that (19) and (22) are consistent with the conserva-
tion of probability, i.e.,∫ ∞

t0

∣∣ f B
es (t )

∣∣2
dt = pWes . (24)

We may also consider a scenario in which the photon is
spontaneously emitted into the reservoir We f and propagates
along a linear waveguide to position xD. Analogous to (19), in
this case the one-photon amplitude f D

e f (t ) characterizing the
single-photon wave packet |�e f (t )〉We f ,Be f of (A2) reads

f D
e f (t ) = i

√
γW

e f eiωe f LAD/cψe(t − LAD/c). (25)

In the extreme adiabatic limit (25) simplifies to

f D
e f (t ) = −

√
pWe f eiωe f LAD/c f (0)

in (t − LAD/c). (26)

Thus, in the extreme adiabatic limit the one-photon amplitude
(26) of the photon emitted into the We f reservoir after suc-
cessful excitation transfer differs from the amplitude (23) by
a phase shift of π .

III. ENTANGLEMENT GENERATION

As discussed in the previous section, the pulse shape of a
single-photon wave packet is not changed under dissipation-
enabled excitation transfer in the extreme adiabatic limit. This
property can be exploited for entanglement generation be-
tween two distant quantum emitters as their emitted photons
become indistinguishable. In this section we present first a
basic probabilistic scheme for entanglement generation be-
tween two distant quantum emitters positioned along a linear
waveguide in Sec. III A. Then in Sec. III B a more general
deterministic scheme is presented for preparing Bell states in
a waveguide ring with the help of optical circulators.

A. Entanglement generation along a linear waveguide

We consider an excitation scenario as depicted schemat-
ically in Fig. 2. Two identical quantum emitters, say A and
B, can perform optical transitions between two threefold de-
generate manifolds of unit angular momenta. These emitters
are assumed to be perfectly coupled to electromagnetic field
modes inside a linear waveguide with a well defined propaga-
tion direction. This direction will be used as the quantization
axis in our subsequent discussion. Initially a circularly po-
larized single-photon wave packet, say with σ+ polarization,
is prepared inside this waveguide and propagates towards the
quantum emitters. These emitters are assumed to be spatially
separated by a distance LAB large in comparison with the
spatial extension of the initially prepared single-photon wave
packet, i.e., LAB = |xA − xB| � c/�ω. Thereby, c denotes
the phase velocity inside the linear waveguide and �ω is the
effective bandwidth of the wave packet. Therefore, both quan-
tum emitters can be excited adiabatically in such a way that
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Waveguide

|Ψin〉 = |σ+〉 Quantum emitters
Photon
detector

σ−

|0〉 |1〉

σ+ σ−

γW γWγW γW

FIG. 2. Schematic representation of entanglement generation: A
σ+-polarized single-photon wave packet propagates (from left to
right) along a linear waveguide and interacts with two identical
quantum emitters, thereby causing adiabatic excitation transfer. After
successful excitation transfers at both emitters, detection of a σ−

photon at the detector heralds entanglement between the quantum
emitters as it is impossible to discriminate which emitter has emit-
ted a σ−-polarized photon spontaneously. The level schemes of the
quantum emitters are indicated with initial states in red and final
states in black. Due to dipole selection rules the central spontaneous
decay channel is forbidden for photons propagating along the linear
waveguide.

the resulting excitation transfer processes are well separated in
time. For instance, a single-photon bandwidth of �ω/(2π ) =
5 s−1 requires a minimum distance between the emitters of
at least 60 m. A proof-of-principle experiment demonstrating
the feasibility of such adiabatic dissipation-enabled resonant
processes over this distance was performed recently by Daiss
et al. [20], for example.

Initially both emitters are prepared in their initial states
|0〉A and |0〉B. Each of these initial states is part of the ground
state manifold and couples to the excited state manifold by
the initially prepared circularly polarized σ+ modes. In each
emitter one of the other ground states, i.e., |1〉A and |1〉B,
couples to the same excited state by the orthogonal circularly
polarized σ− modes. Provided the coupling of the emitters
to the electromagnetic field modes of the linear waveguide is
perfect, spontaneous photon emission from the excited emitter
state to the ground state manifold cannot involve a photon
linearly polarized along the propagation direction of the wave
packet, i.e., the quantization axis. Therefore, spontaneous
photon emission from the excited central emitter state to the
central ground state is forbidden by dipole selection rules
so that the level scheme realizes an ideal lambda system as
discussed in Sec. II.

In the following it is convenient to decompose the radiation
field inside the linear waveguide into four reservoirs, i.e.,
W ±

← and W ±
→. These reservoirs contain the modes describing

photon propagation to the left (←) or to the right (→) with σ+
(+) or σ− (−) polarization. This decomposition ensures that
all reservoirs are pairwise orthogonal so that we can describe
this scenario by the theoretical framework developed in Sec. II
with the help of the identifications Wes = W +

→, We f = W −
→,

Bes = W +
←, and Be f = W −

←. Accordingly, the modes describ-
ing propagation to the right, i.e., to the photon detector of
Fig. 2, constitute the “waveguide” (W) modes and the modes

describing propagation to the left constitute the “background”
(B) modes. As we are neglecting spontaneous photon emis-
sion out of the waveguide these reservoirs yield a complete
description of the relevant electromagnetic field. Effects of
such an emission are discussed at the end of the section. It
should be pointed out that this structure of the relevant reser-
voirs implies that

∫ ∞
t0

| fin(t )|2dt = 1 so that in the extreme
adiabatic limit, i.e., �ω/� → 0, the initially prepared single
photon is definitely absorbed after the interaction with the first
quantum emitter A.

Dipole selection rules imply that the dipole transitions of
the identical emitters couple equally strongly to their respec-
tive reservoirs so that the corresponding spontaneous decay
rates are equal, i.e., γW

es = γW
e f = γ B

es = γ B
e f = γW . Hence the

total decay rate of the excited emitter state is given by � =
4γW . As a result the efficiency for excitation transfer of quan-
tum emitter A is given by [cf. (15)]

η = γW

2γW
= 1

2
. (27)

This is due to the fact that the excited emitter state can decay
spontaneously also by emission of a σ+ photon. Nevertheless,
in the extreme adiabatic limit the initially prepared single-
photon wave packet excites the quantum emitter A with unit
probability so that in this limit the transitions probability for
excitation transfer is given by ps→ f = η = 1/2 [cf. (13)].

In order to entangle the two quantum emitters we consider
two subsequent adiabatic excitation processes. Initially both
quantum emitters are prepared in their ground states |0〉A and
|0〉B. A single-photon wave packet, initially prepared in the
Wes = W +

→ reservoir in the quantum state |σ+〉→, propagates
to the right towards the first emitter A. Correspondingly, at
time t0 the initially prepared pure quantum state of the two
quantum emitters and of the radiation field is given by

|�(t0)〉 = |σ+〉→|0〉A|0〉B. (28)

As the single photon propagates along the waveguide it can
cause excitation transfers at both quantum emitters with prob-
abilities ps→ f = ηs [cf. (13)] with s being determined by the
one-photon amplitude at the location of the corresponding
emitter [cf. (14)]. Each excitation transfer flips the polariza-
tion of the photon. Therefore, detecting a photon within the
waveguide behind the second emitter B with flipped polariza-
tion heralds the occurrence of one of two possible excitation
transfer processes either at quantum emitter A or at quantum
emitter B. As these two events cannot be distinguished by
this photon detection process, both quantum emitters become
entangled conditioned on the detection of a σ− photon in the
reservoir We f .

Let us explore this basic idea of entanglement generation
quantitatively. After interaction with the first emitter A the
photon can remain in the initial reservoir Wes = W +

→ with
probability pWes = 1 − 2ηs + η2s [cf. (18)]. Its normalized
quantum state |σ+

A (t )〉→ is obtained by projecting the state
of (A1) onto the reservoir Wes. Alternatively, the photon is
spontaneously emitted into any of the other three reservoirs
with probabilities pWe f = pBes = pBe f = η2s [cf. (17)]. In case
of successful excitation transfer the resulting σ−-polarized
photon state in reservoir We f is denoted by |σ−

A (t )〉→ and can
be determined from (A2). Furthermore, let us describe the
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normalized quantum state of the emitter-field system resulting
from cases in which the photon ends up in the background
modes Bes or Be f propagating away from the second emitter
B by |�back(t )〉←. As a result, long after the first interaction,
i.e., at time t with (t − t0) � 1/�, the quantum state of the
emitter-field system |�(t )〉 is a linear superposition of three
orthogonal quantum states, i.e.,

|�(t )〉 =
√

pWe f |σ−
A (t )〉→|1〉A|0〉B

+
√

pWes |σ+
A (t )〉→|0〉A|0〉B

+
√

pBes + pBe f |�back(t )〉←. (29)

It should be mentioned that due to dipole selection rules the
spontaneously emitted photon in quantum state |σ−

A (t )〉→ does
not interact with the second emitter B initialized in state |0〉B.
In this case the photon propagates directly to the right to
the photon detector located at position xD. Its one-photon
amplitude at the position of the photon detector is given by
(25).

For interaction with the second emitter B only the σ+-
polarized component |σ+

A (t )〉→ in the Wes = W +
→ reservoir has

to be considered. According to (22), at the position of emitter
B its one-photon amplitude f B

in (t ) can be separated into a
part identical to the initial amplitude fin(t − LAB/c) and an
amplitude f⊥(t ) corresponding to an orthogonal component,
i.e.,

f B
in (t ) = eiωLAB/c

(
[1 − η(s + ir)] fin(t − LAB/c)

+ η
√

s − s2 − r2 f⊥(t )
)
. (30)

Accordingly, the interaction with emitter B originates from
a superposition of two one-photon amplitudes. However, in
the extreme adiabatic limit, i.e., s → 1 and r → 0, the con-
tribution f⊥(t ) of the orthogonal component vanishes. Since
we assume identical couplings of both emitters to the reser-
voirs, the excitation transfer induced by fin(t − LAB/c) can be
treated similarly as the excitation transfer at the first emitter
A. Analogously, we denote the normalized quantum state of
the spontaneously emitted σ−-polarized photon of emitter B
by |σ−

B (t )〉→. Its one-photon amplitude at the photon detector
is given by

f D
e f (t ) = i

√
γW eiω(LAB+LBD )/cψe[t − (LAB + LBD)/c]. (31)

It is identical to the one-photon amplitude of the sponta-
neously emitted photon of emitter A at the position of the
photon detector which originates from the photonic quantum
state |σ−

A (t )〉→, as derived in (25).
Let us now consider the small contribution of the am-

plitude f⊥(t ) which vanishes in the extreme adiabatic limit.
This amplitude induces an excitation transfer in emitter B
with probability ηs⊥, where s⊥ ∈ [0, 1] encodes the amplitude
analogously to (14) but now with the one-photon amplitude
f⊥(t ). This excitation transfer causes spontaneous emission
of a photon with probability p

We f

⊥ = η2s⊥. The resulting nor-
malized single-photon quantum state |σ−

⊥ (t )〉→ is orthogonal
to the single-photon quantum state |σ−

B (t )〉→ since excitation
transfer is a unitary process and preserves orthogonality.

As a result, long after both interactions the quantum state
of the emitter-field system has the general form

|�fin(t )〉 =
√

pWe f |σ−
A (t )〉→|1〉A|0〉B

+
√

pWe f [1 − η(s + ir)]|σ−
B (t )〉→|0〉A|1〉B

+
√

p
We f

⊥ η2(s − s2 − r2)|σ−
⊥ (t )〉→|0〉A|1〉B

+√
1 − R|�other(t )〉→,←. (32)

Thereby, all contributions not involving the reservoir
We f = W −

→ are described by the normalized quantum state
|�other(t )〉→,←. These latter contributions do not cause detec-
tion of a σ−-polarized photon.

In order to determine the quantum state of the two quan-
tum emitters conditioned on the detection of a σ−-polarized
photon we employ Glauber’s one-atom photodetection model
[21]. As the one-photon amplitudes originating from the
quantum states |σ−

A (t )〉→, |σ−
B (t )〉→ and |σ−

⊥ (t )〉→ are not
distinguished by the photodetector positioned at xD, detec-
tion of a σ−-polarized photon after both interactions implies
preparation of both quantum emitters in the pure entangled
quantum state

|�ent〉 =
(√

pWe f
(|1〉A|0〉B + [1 − η(s + ir)]|0〉A|1〉B)

+
√

p
We f

⊥ η2(s − s2 − r2)|0〉A|1〉B

)
/
√

R (33)

with probability

R = η2s[1 + (1 − ηs)2 + η2r2] + η4s⊥(s − s2 − r2). (34)

Thus, in the extreme adiabatic limit, i.e., s → 1, r → 0, ne-
glecting terms of the order of (�ω/�)2, the quantum state
of both emitters conditioned on the postselection of a σ−-
polarized photon becomes

|�ent〉 = (
η|1〉A|0〉B + η(1 − η)|0〉A|1〉B

)
/
√

R (35)

with the photon detection probability R → η2[1 + (1 − η)2].
As our setup employs an efficiency of η = 1/2, in this limit
the photon detection probability approaches the value R =
5/16.

In order to achieve perfect entanglement in the form of
a Bell state, for example, a higher efficiency η would be
required at the second emitter B than at the first emitter A.
Furthermore, it would be desirable to increase the photon
detection probability R in order to achieve a higher probabil-
ity for the conditional preparation of an entangled quantum
emitter state. In the following it is demonstrated that both
desiderata can be achieved by interconnecting the emitters
by a ring shaped waveguide, whose photon propagation char-
acteristics can locally still be well approximated by a linear
waveguide, and by controlling the directions of photon prop-
agation with the help of optical circulators. By this setup it is
even possible to achieve perfect entanglement in a determin-
istic way.
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FIG. 3. Schematic representation of deterministic entanglement
generation in a ring-shaped waveguide: A σ+-polarized single-
photon wave packet propagates along optical paths indicated by the
optical circulators (�,�). After successful excitation transfers at
both emitters A and B, detection of a σ−-polarized photon at one
of the two detectors heralds the preparation of a Bell state of the
two quantum emitters as each detector cannot distinguish which
emitter has emitted the σ−-polarized photon. The level schemes of
the quantum emitters are indicated with initial states in red and final
states in black. Due to dipole selection rules the central spontaneous
decay channel is forbidden.

B. Deterministic entanglement generation
in a ring-shaped setup

In this section a ring-shaped setup is discussed which
enables one-shot Bell state generation by balancing the spon-
taneous decay rates appropriately and by controlling the
photon propagation with the help of optical circulators. We
consider a waveguide ring as schematically shown in Fig. 3. It
interconnects two identical quantum emitters by two paths of
lengths L1 and L2 and involves three optical circulators which
send an incoming photon only into the direction indicated by
the circular arrows. The basic excitation and detection mech-
anisms of this ring-shaped setup are analogous to the linear
model discussed in the previous section. Again it is assumed
that the emitters are well separated spatially. In addition it
is assumed that the curvature of this long waveguide is so
small that locally wave propagation inside this waveguide can
be approximated well by wave propagation inside a linear
waveguide.

Modifying the notation of the previous section accordingly,
the waveguide reservoirs are now called W ±

� and W ±
� and

denote the clockwise (�) and anticlockwise (�) propagating
modes with σ+ or σ− polarization. Initially the emitter-field
system is prepared in the pure quantum state

|�(t0)〉 = |σ+〉�|0〉A|0〉B. (36)

The initially prepared σ+-polarized single-photon wave
packet is injected via an optical circulator so that it propa-
gates in anticlockwise direction, i.e., inside the W +

� reservoir.
In order to describe the interaction with the first emitter A
in the the framework of Sec. II we identify the reservoirs
Wes and W +

� . The background reservoir Bes of the transition

between the initial state |0〉A and the excited state is identi-
fied with the reservoir W +

� . Furthermore, as both propagation
directions of the spontaneously emitted photon lead to the
second emitter B, we choose the target reservoir as We f =
W −

� ∪ W −
� and the corresponding background to be empty,

i.e., Be f = ∅. Again we neglect photon emission out of the
ring-shaped waveguide and refer for a discussion of these
effects to the end of the section. With this choice of reservoirs
the relevant spontaneous decay rates fulfill the relations γW

es =
γ B

es = γW , γW
e f = 2γW , and γ B

e f = 0 so that the resulting total
decay rate of the excited state is given by � = 4γW . The
resulting efficiency of adiabatic excitation transfer is given
by η = γW /2γW = 1/2. In the extreme adiabatic limit the
corresponding transfer probability is given by ps→ f = 1/2.
The probability for the spontaneously emitted photon to re-
main in the reservoir Wes = W +

� after this excitation transfer
is given by pWes = 1 − 2ηs + η2s [cf. (18)]. According to (17)
the probability for spontaneous photon emission into any of
the other waveguide reservoirs is given by pWe f = 2pW and
pBes = pW with pW = η2s.

The normalized field states of a spontaneously emitted
photon |σ−

A (t )〉� and |σ−
A (t )〉� can be determined from (A2)

by projection onto the corresponding reservoirs. Analogously
the normalized field states |σ+

A (t )〉� and |σ+
A (t )〉� can be

obtained from (A1). Therefore, at times (t − t0) � 1/� long
after the interaction with emitter A but before interaction with
emitter B the pure quantum state of the emitter-field system is
given by

|�(t )〉 =
√

pW
(|σ−

A (t )〉� + |σ−
A (t )〉�)|1〉A|0〉B

+ (√
pWes |σ+

r (t )〉� +
√

pW |σ+
r (t )〉�)|0〉A|0〉B.

(37)

The wave packet components of the spontaneously emitted
photon propagate in both directions inside the ring-shaped
waveguide along the arms of lengths L1 (�) and L2 (�)
towards quantum emitter B. In order to describe the inter-
action of the spontaneously emitted photon with emitter B
within the theoretical framework of Sec. II we identify the
relevant mode reservoirs in the following way: Wes = W +

� ∪
W +

� , We f = W −
� ∪ W −

� , and Bes = Be f = ∅. The correspond-
ing spontaneous decay rates fulfill the relations γW

es = γW
e f =

2γW and γ B
es = γ B

e f = 0. Thus, according to (15) the efficiency
for excitation transfer at emitter B is given by η′ = 2η = 1.
This is due to the fact that the σ+-polarized components
of the spontaneously emitted photon of emitter A interfere
constructively at the position of the quantum emitter B.

Analogously to (19) and (25), at the position of emitter B
long after interaction with emitter A the one-photon amplitude
of the field modes in the Wes reservoir is given by

f B
in (t ) = eiωL1/c

√
2

(
fin(t − L1/c) + i

√
γW ψe(t − L1/c)

)

+ eiωL2/c

√
2

i
√

γW ψe(t − L2/c). (38)

If the interfering fractions of the photon wave packet ar-
rive at emitter B simultaneously, i.e., |L1 − L2| 
 c/�ω,
and the emitter positions xA and xB fulfill the condition of
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complete destructive interference, i.e., eiω(L1−L2 )/c = −1, this
one-photon amplitude becomes proportional to the initially
prepared time-shifted one-photon amplitude, i.e.,

f B
in (t ) = eiωL1/c

√
2

fin(t − L1/c). (39)

In view of recent experimental advancements [22,23] the
necessary control over the path lengths L1 and L2 of the ring-
shaped waveguide ensuring complete destructive interference
is feasible. In contrast to the setup along a line considered
in Sec. III A, the orthogonal distortions of both pulse compo-
nents cancel themselves out at the location of emitter B. The
relation ∫ ∞

t0

∣∣ f B
in (t )

∣∣2
dt = 1

2
(40)

implies that in the extreme adiabatic limit the transfer prob-
ability of emitter B is given by ps→ f = η′ × 1/2 = 1/2. The
probability for photon emission into the waveguide reservoirs
W −

� and W −
� is given by pWe f /2 = η2s = pW [cf. (17)].

As a result after the second interaction with emitter B the
pure quantum state of the emitter-field system is of the form

|�fin(t )〉 =
√

pW
(|σ−

A (t )〉� + |σ−
A (t )〉�)|1〉A|0〉B

+
√

pW
(|σ−

B (t )〉� + |σ−
B (t )〉�)|0〉A|1〉B

+ √
1 − R|�other(t )〉�,� (41)

with the normalized state |�other(t )〉�,� describing all events
with unsuccessful excitation transfer.

The optical circulators ensure that after interaction with
emitter A or B the spontaneously emitted σ−-polarized pho-
ton can be detected by one of the two photon detectors (cf.
Fig. 3). By arguments analogous to the ones presented in
Sec. III A the photon states resulting from emitter B with
σ− polarization are indistinguishable from the corresponding
ones resulting from emitter A. Thus, at the position of the
� detector the one-photon amplitudes of the photon states
|σ−

A (t )〉� and |σ−
B (t )〉� are equal as the latter involves a phase

factor eiωL1/c [cf. (39)] and the former involves additional
propagation along the distance L1 separating both emitters. At
the position of the � detector the one-photon amplitudes of
the photon states |σ−

A (t )〉� and |σ−
B (t )〉� differ by a phase of

magnitude π as the latter involves a phase factor eiωL1/c and
the former involves additional propagation along the distance
L2 separating both emitters. As a result, conditioned on the de-
tection of a σ−-polarized photon the two emitters are prepared
in one of the Bell states

|��
ent〉 = (|0, 1〉 + |1, 0〉)/

√
2, (42)

|��
ent〉 = (|0, 1〉 − |1, 0〉)/

√
2 (43)

depending on whether the � detector or the � detector has
detected the σ−-polarized photon. The detection probability
is equal for both detectors and is given by

R = 4pW = 4η2s. (44)

Since our setup yields η = 1/2, in the extreme adiabatic limit,
i.e., s → 1, this detection probability approaches unity. Thus,

under extreme adiabatic conditions one of these Bell states
can be prepared deterministically by this setup.

In order to demonstrate the possibility of deterministic Bell
state generation in this ring-shaped setup we have assumed
that the quantum emitters couple to the waveguide perfectly
and that photon emission outside of the waveguide is negli-
gible. Let us comment finally on possible effects of photon
emission outside of the waveguide within a simplified model.
For this purpose let us assume that the excited emitter states
can decay spontaneously with a decay rate γ other also to an
energy level outside of the state manifold considered so far.
Thus, it is assumed that the resulting spontaneously emitted
photon has a different frequency so that its field modes are
orthogonal to the field modes already taken into account so far.
In this case adiabatic excitation transfer can still be described
in analogy to Sec. II with the replacement � �→ � + γ other

thus yielding a modified efficiency η̃ for adiabatic excitation
transfer, i.e.,

η �→ η̄ = 2γW

4γW + γ other
. (45)

Thus, the ideal success probability for entanglement gen-
eration as described by (44) decreases accordingly but the
conditionally prepared Bell states are not affected. It is also
worth mentioning that the extreme adiabatic limit is not nec-
essary for achieving maximal entanglement. Nonadiabatic
effects, i.e., s < 1, only result in a lower success probability
R as described by (44). This is mainly due to the fact that as a
result of destructive interference the ring setup annihilates un-
wanted effects originating from wave packet distortions of the
σ+ photon at the location of the second emitter B. For these
interference effects, however, it is important that effects of
decoherence or dissipation between the wave packet compo-
nents propagating along different paths inside the waveguide
are suppressed and that quantum coherence is maintained.

The presented scheme for deterministic generation of Bell
states in the extreme adiabatic limit may offer advantages
in comparison with other probabilistic schemes [24,25] by
requiring only a single photon detection as a herald for entan-
glement instead of coincident two-photon measurements and
by offering high success probabilities. As our scheme is rather
insensitive to the pulse form of the photon wave packet it may
also offer advantages over previously proposed “send-receipt”
schemes [4]. As adiabatic excitation transfer has already been
realized in a cavity scenario [5] and has led to entanglement
generation schemes in this regime [20] our proposal might be
particularly interesting for applications involving waveguide
geometries.

IV. QUANTUM CLONING

In this section it is shown that it is possible to copy an
arbitrary qubit state of the polarization degrees of freedom
of a single-photon wave packet onto two quantum emitters
by exploiting the indistinguishability of different pathways
of the spontaneously emitted photon in adiabatic excitation
transfer processes. Thereby it is possible to realize not only
universal optimal symmetric quantum cloning processes, as
discussed in Sec. IV A, but also more general asymmetric
cloning processes, as discussed in Sec. IV B.
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FIG. 4. Quantum cloning is achieved with the same setup as for
entanglement generation with the only difference of polarization-
insensitive photon detectors. The quantum emitters are initially
prepared in a Bell state. The part inside the dashed box (�) is only
present in the asymmetric cloning scheme. For asymmetric cloning
the incident photon is split, e.g., by a beam splitter (not depicted),
and injected via two paths into the waveguide ring. Detection of a
photon at either photon detector heralds successful cloning.

A. Symmetric cloning of a photonic qubit onto two
quantum emitters

We consider the same ring-shaped setup as described in
Sect. III B for entanglement generation under the same ide-
alized assumptions. Thus, two distant quantum emitters A
and B are interconnected by a waveguide ring as depicted in
Fig. 4. They are excited adiabatically by a single-photon wave
packet in such a way that the coupling of this photon outside
of the waveguide is negligible. The only major difference
is that now the two photon detectors are insensitive to the
polarization of the spontaneously emitted photon emitted by
the emitters, i.e., they are assumed to perform a von Neu-
mann measurement without selecting a particular polarization
component.

The scheme depicted in Fig. 4 aims at cloning an initially
prepared pure qubit state involving an arbitrary linear super-
position of a σ+-polarized and a σ−-polarized single-photon
wave packet injected into the � direction of the ring-shaped
waveguide with the help of an optical circulator. The two
quantum emitters A and B are initialized in a Bell state. This
preparation may be achieved with the help of the entangle-
ment generation scheme discussed in Sec. III B, for example.
Using the notation of Sec. III B, the initial quantum state of
the emitter-field system is given by

|�(t0)〉 = (
α|σ+〉� + β|σ−〉�)

⊗ (|1〉A|1〉B + |0〉A|0〉B
)
/
√

2 (46)

with |α|2 + |β|2 = 1. Assuming that the propagation prop-
erties inside the waveguide are polarization independent, at
the location of emitter A the one-photon amplitudes f A

+ (t )
and f A

− (t ) associated with the normalized single-photon states
|σ+〉� and |σ−〉� are identical and fulfill the relations∫ ∞

t0
| f A

+ (t )|2dt = ∫ ∞
t0

| f A
− (t )|2dt = 1. As spontaneous decay

out of the waveguide is assumed to be negligible the efficiency
of adiabatic quantum state transfer at emitter A is given by
η = 1/2 [cf. (27)].

The resulting pure quantum state of the emitter-field sys-
tem after two interactions with both emitters A and B can be
determined by considering the components of the initial state
(46) individually. The initial state component |σ+〉�|0〉A|0〉B

has served as the initial state in Sec. III B and according
to (41) it leads to an entangled Bell state between both
emitters. In view of the symmetry of the excitation scheme
the same consideration applies to the initial state compo-
nent |σ−〉�|1〉A|1〉B. The other two components of the initial
emitter-field quantum state in (46), namely |σ+〉�|1〉A|1〉B and
|σ−〉�|0〉A|0〉B, will not cause an excitation transfer at emitter
A or B. This is due to the fact that a σ+ (σ−)-polarized photon
cannot excite quantum emitter A or B if it is initially prepared
in the ground state |1〉A (|0〉A) or |1〉B (|0〉B). Thus, after both
interactions in the extreme adiabatic limit, i.e., �ω/� → 0
implying s → 1 and r → 0, the final quantum state of the
emitter-field system is given by

|�fin(t )〉 = α√
2
|σ+〉�|1〉A|1〉B + β√

2
|σ−〉�|0〉A|0〉B

+ α√
8

(
[|σ−

A (t )〉� + |σ−
A (t )〉�]|1〉A|0〉B

+ [|σ−
B (t )〉� + |σ−

B (t )〉�]|0〉A|1〉B
)

+ β√
8

(
[|σ+

A (t )〉� + |σ+
A (t )〉�]|0〉A|1〉B

+ [|σ+
B (t )〉� + |σ+

B (t )〉�]|1〉A|0〉B)
(47)

with all photon states involved being normalized to unity.
Corrections to this extreme adiabatic limit can be obtained in
a straightforward way from the general relation (41) on which
this result is based. After the completion of both interactions
the photon acts as an ancilla for a symmetric cloning process.
This becomes apparent by determining the reduced density
operators of emitter A or B. Thereby, two cases may be distin-
guished depending on whether the two orthogonal directions
of propagation � and � are selected or not.

First of all let us consider the case where a photon is
detected in the W� reservoir without selecting its polarization.
In the extreme adiabatic limit at the position of the photon
detector xD the one-photon amplitudes of the photon states
|σ±

A (t )〉� = |σ±
B (t )〉� are indistinguishable. This is apparent

from (25). Furthermore, apart from a factor of (−1) the one-
photon amplitudes of the photon states |σ±(t )〉� are identical
to the ones of (23) at this detector position. This factor of
(−1) may be absorbed in the correlated emitter state so that
the orthonormal photon basis is mapped onto the orthonor-
mal emitter basis according to the relations |σ+〉� �→ |1〉
and |σ−〉� �→ −|0〉. As a result the initially prepared pho-
ton polarization state α|σ+〉� + β|σ−〉� is mapped onto the
ideal emitter reference state |�ref〉i = α|1〉i − β|0〉i of emitter
i ∈ {A, B}. This is apparent from the reduced density operator
of emitter A, for example, resulting from this projective von
Neumann measurement in the extreme adiabatic limit. Tracing
out the degrees of freedom of the field (F ) and of emitter B
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yields the result

ρ�
A = TrB,F

(
P�|�fin(t )〉〈�fin(t )|)/p�

= 1
6 1A + 2

3 |�ref〉AA〈�ref|. (48)

Thereby, the projection operator P� = ∑
j=+,− |σ j〉�〈σ j |�

characterizes the von Neumann measurement of the photon
propagating in the � direction without selection of polariza-
tion. An expression of the same form is obtained for emitter
B. These emitter states are optimal copies and in the extreme
adiabatic limit are heralded with a photon detection proba-
bility of p� = 〈�fin(t )|P�|�fin(t )〉 = 3/4. The quality of this
cloning process can be measured by the fidelity F� of emit-
ter A or B, i.e., F� = A〈�ref|ρ�

A |�ref〉A = B〈�ref|ρ�
B |�ref〉B.

Including also non-adiabatic corrections this fidelity is given
by

F� = 2

3
[1 + (s2 + r2)/4 + |αβ|2(s2 + r2 − 1)]

= 5

6

[
1 − 4

5
(1 + 4|αβ|2)

�ω2

�2
+ O

(
�ω4

�4

)]
(49)

with the corresponding detection probability

p� = 〈�fin(t )|P�|�fin(t )〉

= 3

4
+ 2�ω2

�2
+ O

(
�ω4

�4

)
. (50)

This detection probability does not depend on α, β, because
the probabilities for excitation transfer and hence the optical
paths of the photon are polarization-independent. In the ex-
treme adiabatic limit, the cloning process is universal, i.e.,
its fidelity F� is independent of α and β, and attains the
well-known optimal value of F� = 5/6 [26]. In this case its
success probability is given by p� = 3/4.

If a photon is detected in the W� reservoir, from (47)
we easily deduce the final emitter states as ρ�

A = 1
2 1A and

ρ�
B = 1

2 1B in the extreme adiabatic limit. Hence, all infor-
mation about the initially prepared photon state is lost. This
process takes place with a photon detection probability of
p� = 1 − p� and, including nonadiabatic corrections, the re-
sulting fidelity reads

F� = 1

2
− 2�ω2

�2
+ O

(
�ω4

�4

)
. (51)

Alternatively, if the single photon is measured at either de-
tector in a von Neumann measurement without selection of
the measurement result, in each single shot of the photon
detection process a copy is obtained with fidelity

Fone-shot = p�F� + p�F�. (52)

Hence, in this case universal cloning is achievable with a
fidelity of 3/4 in the extreme adiabatic limit. This fidelity is
still well above the classical threshold of 2/3 [27].

The scheme discussed in this section intrinsically ensures
that both output emitter states are equal. In the subsequent
section we consider a modification of the ring setup which
breaks this symmetry and allows for more general cloning
scenarios.

B. Asymmetric cloning of a photonic qubit onto two
quantum emitters

In this section we investigate a variation of the previously
considered situation as depicted in Fig. 4 (including area
labeled “�”). A photon wave packet is split into two equal am-
plitudes by a polarization-independent balanced beam splitter,
is injected into the waveguide at two entry points, and propa-
gates towards quantum emitter A. The two quantum emitters
A and B are prepared in a Bell state. This preparation can be
achieved by the entanglement generation scheme of Sec. III,
for example. Thus, the initial state of the photon-emitter quan-
tum system is given by

|�(t0)〉 = (
α(|σ+〉� + |σ+〉�) + β(|σ−〉� + |σ−〉�)

)
/
√

2

⊗ (|1〉A|0〉B + |0〉A|1〉B)
/
√

2 (53)

with |α|2 + |β|2 = 1. It should be mentioned that the symmet-
ric scheme of Sec. IV A employed a different Bell state.

We assume that the propagation properties inside the
waveguide are polarization independent so that at the location
of emitter A the normalized one-photon amplitudes f A

+,�(t ),
f A
+,�(t ), f A

−,�(t ), and f A
−,�(t ) associated with the four frac-

tions of the photon wave packet in (53) are identical. Hence,
by detection of an emitted photon it is not possible to deter-
mine its previous path. For this purpose the first emitter A
has to be placed in such a position that the constructive in-
terference conditions eiω(L′

1−L′
2 )/c = 1 and |L′

1 − L′
2| 
 �ω/c

are satisfied. Thereby, L′
1, L′

2 are the two path lengths from
the balanced beam splitter to emitter A. These conditions are
analogous to the ones discussed in Sec. III B for the second
emitter, and enable perfect excitation transfer at emitter A in
the extreme adiabatic limit.

Analogous to the cloning scheme of Sec. IV A, the in-
teractions with each emitter can be described by a linear
superposition of two excitations induced by the σ+ and the σ−
components. Correspondingly, for the σ+ component the rele-
vant mode reservoirs are Wes = W +

� ∪ W +
� , We f = W −

� ∪ W −
� ,

and Bes = Be f = ∅. Analogously, for the σ− component the
relevant mode reservoirs are Wes = W −

� ∪ W −
� , We f = W +

� ∪
W +

� , and Bes = Be f = ∅.
In order to realize different cloning scenarios within this

setup we include an additional orthogonal decay channel for
each of the excited emitter states, as discussed in (45). It is as-
sumed that for each of the emitters such a spontaneous decay
channel produces a photon with a different frequency which
is subsequently lost. Denoting the spontaneous decay rates of
these additional decay channels by γ other

i for i ∈ {A, B}, the
efficiency for adiabatic excitation transfer by emitter i is given
by

ηi = η̄2
i , with η̄i = 4γW

i

4γW
i + γ other

i

. (54)

Thus, the efficiencies can be tuned by modifying these ad-
ditional decay rates γ other

i [28,29] so that various excitation
transfer probabilities within the interval [0,1] can be realized
for each emitter. In the following it is demonstrated that this
way various cloning scenarios can be realized.

For the sake of simplicity in the following we concentrate
on the extreme adiabatic limit, i.e., �ω/� → 0 implying
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s → 1, r → 0. Lowest order corrections to this limit scale
similarly as for the scheme discussed in Sec. IV A. Hence,
provided a photon arrives at emitter A with unit probability,
the probabilities for excitation transfer at the first emitter
are given by ps→ f = p0→1 = p1→0 = η̄2

A. The probabilities
for spontaneous photon emission by this emitter are given
by pWes = (1 − η̄A)2, pWe f = η̄2

A, and pBes = pBe f = 0 with re-
spective choices of es or e f for each polarization component
of the one-photon wave packet. Spontaneous photon emission
via the orthogonal decay channel characterized by γ other

A takes
place with probability pother

A = 2(1 − η̄A)η̄A. Analogous prob-
abilities hold for emitter B with η̄B.

The interaction of the various fractions of the one-photon
wave packet with both emitters can be determined analo-
gously to the procedure used in Sec. III B. In particular,
in the extreme adiabatic limit the photon amplitudes of
all polarization components are not distorted by the exci-
tation processes [cf. (23) and (25)]. They only experience
possible phase-shifts of magnitude π . As a result, after in-
teractions with both emitters the final photon-emitter state is
given by

|�fin(t )〉
= +α

2

(
(1 − η̄A)

[|σ+(t )〉� + |σ+(t )〉�]|0〉A|1〉B

− (
η̄A(1 − η̄B) + η̄B

)[|σ−(t )〉� + |σ−(t )〉�]|1〉A|1〉B

+ (
η̄Aη̄B + (1 − η̄B)

)[|σ+(t )〉� + |σ+(t )〉�]|1〉A|0〉B
)

+ β

2

(
(1 − η̄A)

[|σ−(t )〉� + |σ−(t )〉�]|1〉A|0〉B

− (
η̄A(1 − η̄B) + η̄B

)[|σ+(t )〉� + |σ+(t )〉�]|0〉A|0〉B

+ (
η̄Aη̄B + (1 − η̄B)

)[|σ−(t )〉� + |σ−(t )〉�]|0〉A|1〉B
)

+ C|�other(t )〉 (55)

with C =
√

η̄A(1 − η̄A) + (1 − η̄A)2η̄B(1 − η̄B). The normal-
ized state |�other(t )〉 describes all events in which the photon
was spontaneously emitted via one of the additional orthog-
onal decay channels characterized by γ other

i for i ∈ {A, B}.
These events take place with probability C2. In the extreme
adiabatic limit the field states |σ±(t )〉 are equal to the initial
states |σ±〉.

The quantum state of (55) describes a general cloning
process in which the one-photon wave packet acts as an
ancilla and in which the orthogonal photonic polarization
states are mapped onto emitter states according to the rela-
tion |σ+〉 �→ |1〉 and |σ−〉 �→ −|0〉. As a result the initially
prepared pure photonic polarization state α|σ+〉 + β|σ−〉 is
mapped onto the emitter states |�ref〉i = α|1〉i − β|0〉i with
i ∈ {A, B}. Similarly as in the previous section the resulting
one-shot cloning process becomes apparent if the field degrees
of freedom are averaged out from this pure photon-emitter
quantum state. However, higher and even optimal fidelities
can be achieved by conditioning this final state on detection
of the spontaneously emitted photon by one of the photon
detectors, as this conditioning excludes photon loss via the
decay channels characterized by the decay rates γ other

i with
i ∈ {A, B}. It is apparent from the structure of the final state

(55) that both photon detectors yield identical results if a von
Neumann measurement without selection of the polarization
is performed. Such a measurement process is described by
a projection operator of the form P� = ∑

j=+,− |σ j〉�〈σ j |�.
The resulting quantum state of emitter A is given by

ρ�
A = ρ�

A = TrB,F
(
P�|�fin(t )〉〈�fin(t )|)/p�

= R|α2| + (1 − η̄A)2(|β2| − |α2|)
R

|1〉〈1|

+ R|β2| + (1 − η̄A)2(|α2| − |β2|)
R

|0〉〈0|

− 2
(η̄A + η̄B − η̄Aη̄B)(1 − η̄B + η̄Aη̄B)

R

× (αβ∗|1〉〈0| + H.c.). (56)

The resulting quantum state of the second emitter is analo-
gous. The success probabilities p� (p�) of this von Neumann
measurement for detecting a � (�) photon are given by p� =
p� = R/2 with

R = 1 − η̄A(1 − η̄A) − (1 − η̄A)2η̄B(1 − η̄B). (57)

The fidelity Fi = 〈�ref|ρ�
i |�ref〉 = 〈�ref|ρ�

i |�ref〉 with which
an initially prepared qubit state is copied onto emitter i is
given by

FA = 1 − (1 − η̄A)2 1 − 8|αβ|2η̄B(1 − η̄B)

2R
, (58)

FB = 1 − (1 − η̄B + η̄Aη̄B)2 − 8|αβ|2η̄A(1 − η̄A)(1 − η̄B)

2R
.

(59)

Therefore, within the full range of possible values of the
efficiencies η̄A, η̄B ∈ [0, 1] a variety of possible cloning pro-
cesses can be realized. This is apparent from Fig. 5 in which
for each pair of possible fidelities (FA, FB) resulting from a
pair of efficiencies (η̄A, η̄B) the corresponding success prob-
ability R = p� + p� for detection of a photon by one of
the two photon detectors is depicted. Thereby, these fideli-
ties are averaged over all possible pure input states on the
Bloch sphere [26,30]. Also shown are three lines of con-
stant efficiencies η̄B together with the dependence of their
success probabilities R on the efficiency η̄A of emitter A. It
is apparent from (58) and (59) that efficiencies fulfilling the
relation η̄B = η̄A/(1 − η̄A) with η̄A � 1

2 describe symmetric
but not necessarily universal quantum cloning processes as, in
general, their fidelities FA = FB depend on the pure photonic
input state.

Optimal symmetric or asymmetric cloning processes are
described by the upper boundary of the surface in Fig. 5.
These cases are characterized by the absence of any addi-
tional orthogonal decay channel of the second emitter B, i.e.,
γ other

B = 0, so that η̄B = 1 and perfect excitation transfer takes
place at emitter B in the extreme adiabatic limit. Under these
conditions the fidelities become independent of the photonic
input state. This optimal universal cloning is realized with
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FIG. 5. Success probabilities R = p� + p� [cf. (57)] and achiev-
able fidelities FA and FB [cf. (58), (59)] averaged uniformly over all
input states on the Bloch sphere [26,30]: (a) Each possible cloning
process given by a pair of efficiencies η̄A and η̄B [cf. (54)] is plotted
as a point with coordinates of the fidelities (FA, FB) of emitters A
and B. Its corresponding success probability R is represented by
color coding. Also shown are three lines of constant values of the
efficiency of the second emitter, namely η̄B = 1.0 (black, upper line),
η̄B = 0.75 (brown, middle line), η̄B = 0.5 (grey, lower line). (b) The
success probability R over the fidelity FA of emitter A for these three
lines of constant efficiencies η̄B.

fidelities

F opt
A = 1 + η̄2

A

2
(
1 − η̄A + η̄2

A

) , F opt
B = 1 + (1 − η̄A)2

2
(
1 − η̄A + η̄2

A

) . (60)

In general it is asymmetric as FA �= FB. The corresponding
success probability for detection of a photon by any of the two
photon detectors is given by R = 1 − η̄A(1 − η̄A). The lowest
success probability of all these optimal cloning processes is
achieved with a success probability R = 3/4 for η̄A = 1/2.
In this case a symmetric universal cloning process is real-
ized with the well known optimal fidelities FA = FB = 5/6
for an optimal symmetric cloner [30]. The same fidelities
are achieved by the symmetric cloning scheme presented in
Sec. IV A.

From (58) and (59) it is also apparent that phase-covariant
quantum cloning can be realized by this scheme [27] with
input states restricted to the equatorial line of the Bloch
sphere, i.e., |α| = |β| = 1/

√
2. In this case the fidelities of

(58) and (59) become independent of the input state. Choosing

η̄B = (1 + η̄A)−1 the fidelities become optimal, i.e.,

F pc
A = 1

2
+ η̄A

1 + η̄2
A

, F pc
B = 1

1 + η̄2
A

. (61)

Thus, in general this scheme achieves optimal universal asym-
metric phase covariant quantum cloning [31]. In the special
case of η̄A = √

2 − 1 this cloning process is symmetric with
FA = FB = (2 + √

2)/4 and with a success probability of R =
4(3 − 2

√
2) ≈ 69%.

V. CONCLUSION

We have generalized our recently proposed resonant
dissipation-enabled adiabatic quantum state transfer processes
[13]. These processes are capable of transferring passively
the quantum state of the polarization degrees of freedom of
a single-photon wave packet to material quantum emitters.
In this generalization we have particularly concentrated on
the so far unexplored properties of the spontaneously emitted
photon. In addition, we have taken into account nonadia-
batic corrections describing physical situations in which the
Fourier-limited bandwidth of the exciting single-photon wave
packet is not vanishingly small in comparison with the rele-
vant dissipative decay rates.

It has been demonstrated that the degrees of freedom
of the spontaneously emitted photon can be exploited for
quantum information processing. For this purpose we have
proposed schemes for realizing entanglement generation be-
tween distant quantum emitters and quantum state cloning
of the polarization degrees of freedom of a single pho-
ton within the framework of waveguide scenarios. As these
schemes are passive they do not require any external con-
trol of pulse shapes of the single-photon wave packet or
active feedback beyond postselection by photon detection.
Although our theoretical investigations have concentrated on
waveguide scenarios, their results are expected to be relevant
also for other scenarios as long as the processes involved
are adiabatic so that the Fourier-limited bandwidth of the
resonantly exciting single-photon wave packet involved is
small in comparison with the relevant dissipative rates. As
the investigated adiabatic processes exploit a balancing of the
dissipative processes involved, for experimental realizations it
is important to take into account properly all relevant radiative
couplings of the quantum emitters to the relevant electromag-
netic field modes which induce these dissipative processes.
Our investigations also suggest other quantum technological
applications of these resonant adiabatic dissipation-enabled
processes, such as the implementation of quantum logical
gates. First steps forward in this direction have already been
taken [20,32].
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APPENDIX A: TIME EVOLUTION IN THE
WEISSKOPF-WIGNER APPROXIMATION

In this Appendix the dynamics of the quantum emitter ex-
cited by a single photon is investigated. Within the framework
of the Weisskopf-Wigner approximation [14] the differential

equation (6) is derived for the excitation amplitude �e(t ) of
the excited emitter state.

Starting from the Hamiltonian of (1) and the ansatz of
(5) for the quantum state, a direct integration of the time
dependent Schrödinger equation yields the results

|�es(t )〉Wes,Bes = i

h̄

∫ t

t0

e−iωes (t ′−t0 )d∗
es · (

Ê−
Wes

(xA, t ′) + Ê−
Bes

(xA, t ′)
)|0〉Wes,Bes�e(t ′)dt ′ + |ψin〉Wes |0〉Bes , (A1)

|�e f (t )〉We f ,Be f = i

h̄

∫ t

t0

e−iωe f (t ′−t0 )d∗
e f · (

Ê−
We f

(xA, t ′) + Ê−
Be f

(xA, t ′)
)|0〉We f ,Be f �e(t ′)dt ′. (A2)

According to the ansatz of (5) these field states are not normalized. Correspondingly, the probability amplitude of the excited
emitter state �e(t ) fulfills the integrodifferential equation

d

dt
�e(t ) = − 1

h̄2

∑
j∈{es,e f }

∫ t

t0

dt ′eiω j (t−t ′ ) Wj ,Bj 〈0|[de j · (
Ê+

Wj
(xA, t ) + Ê+

Bj
(xA, t )

)]

× [
d∗

e j · (
Ê−

Wj
(xA, t ′) + Ê−

Bj
(xA, t ′)

)]|0〉Wj ,Bj �e(t ′) + i

h̄
eiωes (t−t0 ) Wes〈0|des · Ê+

Wes
(xA, t ′)|ψin〉Wes . (A3)

The inhomogeneous term of this equation involving the one-
photon amplitude

fin(t ) = eiωes (t−t0 )

h̄
√

γW
es

Wes〈0|des · Ê+
Wes

(xA, t )|ψin〉Wes .

describes the excitation by the incident single photon. Insert-
ing the electric field operator of (2) into the integral on the
right-hand side of (A3) and taking into account the orthogo-
nality of the waveguide and background modes, we obtain the
result

d

dt
�e(t ) = − 1

h̄2

∑
j∈{es,e f }

∫ t

t0

dt ′ ∑
ω∈Wj ,Bj

ei(ω j−ω)(t−t ′ )

× h̄ω

2ε0

∑
λ∈Wj ,Bj

∣∣d∗
e j · uω,λ(xA)

∣∣2
�e(t ′)+i

√
γW

es fin(t ).

(A4)

The integral on the right-hand side can be evaluated with
the help of the Weisskopf-Wigner approximation [14]. This
approximation is valid as long as the time evolution of �e(t ′)
is governed by a significantly longer timescale than the time
evolution of the integral kernel originating from the sum of all
relevant modes which couple to the quantum emitter. Thus, in
this approximation (A4) reduces to the final result

d

dt
�e(t ) = −γW

es + γ B
es + γW

e f + γ B
e f

2
�e(t ) + i

√
γW

es fin(t )

with the spontaneous decay rates

γ R
j = 2π

h̄

∑
(ω,λ)∈Rj

h̄ω

2ε0
δ(h̄ω j − h̄ω)

∣∣d j · uω j ,λ(xA)
∣∣2

. (A5)

According to the golden rule [15] γ R
j is the decay rate of

the excited quantum emitter state |e〉 originating from spon-
taneous emission of a photon with frequency ω j with j ∈
{es, e f } into the mode reservoir R ∈ {W, B}.

APPENDIX B: ADIABATIC LIMIT OF THE
TRANSFER PROBABILITY

In this Appendix it is shown that in the adiabatic limit the
transfer probability of (12) can be written in the equivalent
form of (13).

The one-photon amplitude fin(t ) of (8), which char-
acterizes the excitation of the quantum emitter at posi-
tion xA, vanishes initially at time t0 and after the in-
teraction, i.e., fin(t0) = fin(t → ∞) = 0. Furthermore, it
rises and diminishes slowly so that in the adiabatic
limit also all its relevant higher order derivatives van-
ish initially and at the end of the interaction, i.e.,
f (n)
in (t0) = f (n)

in (t → ∞) = 0 for all relevant n ∈ N0. There-
fore, by iterated partial integration we obtain the asymptotic
relations

∫ ∞

t0

∣∣∣∣∣
∞∑

n=0

(−2

�

)n

f (n)
in (t )

∣∣∣∣∣
2

dt

=
∫ ∞

t0

∞∑
n,m=0

(−2

�

)n+m

f (m)
in (t ) f ∗(n)

in (t )dt

=
∫ ∞

t0

∞∑
n,m=0

(−2

�

)n+m

(−1)m fin(t ) f ∗(n+m)
in (t )dt

=
∫ ∞

t0

∞∑
u=0

(−2

�

)u u∑
m=0

(−1)m fin(t ) f ∗(u)
in (t )dt

=
∫ ∞

t0

∞∑
u=0

(−2

�

)2u

fin(t ) f ∗(2u)
in (t )dt

=
∫ ∞

t0

∞∑
u=0

(
4

�2

)u

(−1)u f (u)
in (t ) f ∗(u)

in (t )dt,

which yield the result of (13).
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APPENDIX C: SCALAR PRODUCT RELATION
OF THE PHOTON STATE

In this Appendix the scalar product relation (20) is derived
between the field state |�es〉Wes,Bes of (A1) and the incident
field state |�in〉 = |ψin〉Wes |0〉Bes .

With the help of the one-photon amplitude fin(t ) of (8)
long after the interaction, i.e., at t → ∞, the scalar product
between the states |�in〉 and |�es〉Wes,Bes can be written in the
form

lim
t→∞〈�in|�es(t )〉Wes,Bes

= 1 + i
∫ ∞

t0

√
γW

es f ∗
in(t ′)�e(t ′)dt ′

= 1 − γW
es

�/2

∫ ∞

t0

f ∗
in(t ′)

∞∑
n=0

(−2

�

)n

f (n)
in (t )dt ′

= 1 − γW
es

�/2
(s + ir), (C1)

yielding the relation of (20). Thereby, the result of (11) was
used for �e(t ) in the second line of the derivation. The last
line of this derivation is a consequence of dividing the sum
over n into even and odd terms and performing iterated partial
integrations as in Appendix B. The contributions involving
even values of n constitute the quantity s [cf. (14)] and the
contributions involving odd values of n constitute the quantity
r [cf. (21)].
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