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Abstract
In this contribution the main ideas underlying recent work aiming at the construction of mutually
unbiased bases in finite dimensional Hilbert spaces are discussed. This approach relies on a systematic
use of group and graph theoretical concepts announced by Charnes and Beth (2005 ERATO Conf. on
Quantum Information Science) and extended significantly by Charnes (2018 in preparation) recently.
A principal feature of this method is its independence of prime number restrictions thus distinguishing
it from almost all previous constructions which have relied on finite fields and related concepts of
finite geometry. This group and graph theoretical approach offers the possibility to gain new insight
into the intricate relation between quantum theoretical complementarity as encoded in mutually
unbiased bases and characteristic geometrical structures of the Hilbert space involved.
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1. Introduction

Mutually unbiased bases have interesting applications in
quantum information processing ranging from quantum cryp-
tography and quantum communication to applications in
quantum tomography [1–8]. Since the seminal work of Wootters
and Fields [4] which demonstrated that in a d-dimensional
Hilbert space the maximum possible number of mutually
unbiased bases is (d+1), numerous theoretical proposals have
appeared for constructing maximal sets of mutually unbiased
bases saturating this upper bound. Practically all these proposals
are variants of the two constructions in odd and even char-
acteristic finite fields developed by Wootters and Fields [4]
which demonstrated that in Hilbert spaces, whose dimensions
are prime powers, complete sets of mutually unbiased bases
exist. With the help of these methods it has been shown con-
structively that the upper bound of (d+1) can be saturated for
prime power Hilbert space dimensions.

Despite these interesting results and significant theor-
etical efforts these approaches still leave open numerous
questions in particular as far as properties of mutually
unbiased bases in Hilbert space dimensions are concerned
which are not prime powers. Thus, it is still an open question,

for example, whether the upper bound of (d+1)=7 can be
saturated for Hilbert spaces with dimension d=6.

Our contribution aims at describing and exploring the main
ideas of a recently developed group and graph theoretical
approach [9, 10] targeting the construction of large sets of
mutually unbiased bases systems systematically and to
demonstrate this group and graph theoretical approach by
examples. Besides practical advantages this approach also
offers novel conceptual advantages as it is independent of prime
number conditions of previous approaches. With the help of this
approach it can be demonstrated that the construction problem
of mutually unbiased basis systems can be formulated as a
clique finding problem in Cayley graphs of groups which are
naturally associated with sets of mutually unbiased bases.

2. Mutually unbiased bases, unitary groups and
Cayley graphs

Based on the early work of Charnes and Beth [9] in this
section basic definitions are summarized which specify
relations between mutually unbiases bases, their basis groups
and associated Cayley graphs capable of encoding their
characteristic features.
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2.1. Mutually unbiased bases

Let us consider a d-dimensional Hilbert space d with a given
scalar product, say . .á ñ∣ , and with an ordered canonical ortho-
normal basis d; 1, ,a añ = (∣ ). By choosing a particular
ordering every other orthonormal basis of this Hilbert space, say
B B i d; 1,iñ = ≔ (∣ ), is characterized by its associated uni-
tary matrixMB with matrix elements M BB i i *a= á ña( ) ∣ and with
i d, 1, ,a Î { }. Correspondingly the unit matrix Ed is asso-
ciated with the canonical basis itself. Furthermore, the group of
unitary d×d matrices U(d) acts transitively on the possible
ordered bases of the Hilbert space d , i.e. after the choice of a
particular ordering of the states of each basis each pair of bases,
say B and C, determines a unique unitary matrix UäU(d)
mapping B→C by right multiplication, i.e. MBU=MC.

Two arbitrarily ordered orthonormal bases of this Hilbert
space, say B and C, are defined to be mutually unbiased with
respect to each other iff

B C M M
d

1
1i j C B ji

2 2á ñ = =∣ ∣ ∣ ∣( ) ∣ ( )†

for all i, j ä {1,L, d}.
In physical terms this condition guarantees that a non-

selective sequential quantum measurement of two obser-
vables, whose eigenbases are mutually unbiased, always
results in the completely mixed (chaotic) state irrespective of
the order in which these non-selective measurements are
performed. Therefore, two mutually unbiased bases capture a
characteristic feature of ‘quantum complementarity’. They are
capable of erasing all previous information about a quantum
state by such a sequential non-selective measurement process.
This characteristic property becomes apparent by denoting the
Hermitian operators of these two observables by

B b B B C c C C, . 2
i

d

i i i
j

d

j j j
1 1

å å= ñá = ñá
= =

ˆ ∣ ∣ ˆ ∣ ∣ ( )

A non-selective measurement, say first of observable B̂ and
subsequently of observable Ĉ , changes an arbitrary initially
prepared quantum state with density operator 0r and Tr(ρ)=
1 into the completely mixed (chaotic) quantum state [11]
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C C
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C C
d

1
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j

d

j j
i

d

i i i i

j j
j

d

j j

1 1

1

å å

å

r r=
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∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ( )

Thereby, the completeness relation C1
j

d
j1å=

=
∣ ⟩ Cjá =∣

i
d

1å = B Bi iñá∣ ∣ and the unit normalization condition of the
quantum state ρ, i.e. Tr r =( ) B1 i

d
i1= å á= ∣ Bir ñ =∣ Cj

d
j1å á= ∣

Cjr ñ∣ , have been used. The same result is obtained if the
sequential measurement process is performed in the reverse
order. It should also be pointed out that the introduction of an
ordering within each basis system B B i d; 1,iñ = ≔ (∣ ) is
physically relevant since each projector B Bi iñá∣ ∣ is associated
with the physically observable eigenvalue bi of the observable B̂
of equation (2). Although each of these projectors is independent
of phase changes of the various elements of this basis, such

phase changes induced by a unitary operator diagonal in this
basis are observable by their effect on arbitary pure quantum
states which are linear superpositions of these basis states.

2.2. Unitary basis groups and their associated Cayley graphs

According to section 2.1 the group of unitary matrices U(d)
acts transitively on all possible ordered orthonormal bases of a
d-dimensional Hilbert space by right multiplication. In order to
capture characteristic structural features of a system of mutually
unbiased bases it is useful to define the concept of an associated
basis group. Accordingly, a basis group G of a set of (pairwise)
mutually unbiased ordered bases, say {B(1), B(2),L, B( l)}, of a d-
dimensional Hilbert space is defined by the particular unitary
subgroup of U(d) generated by the unitary matrices associated
with these mutually unbiased bases, i.e. G M M, ,B B l1á ñ≔ ( ) ( ) .
Consistent with our previous conventions, the elements of this
basis group G act on themselves by right multiplication. It
should be pointed out that in general not all pairs of elements of
such a basis group are mutually unbiased and that in general
there is no guarantee that the basis group of a set of mutually
unbiased bases is finite. The structure of the mutually unbiased
pairs generated by such a basis group G is captured conveniently
by its associated basis Cayley graph Γ(G, S). The vertices of this
basis Cayley graph are the elements of the basis group G and
its vertex x is directly connected to its vertex y, i.e. x→y, iff
yx−1 ä S. Thereby the set of edges S of this Cayley graph is
defined by all those members of the basis group G which are
mutually unbiased with respect to the canonical orthonormal
basis represented by the unit matrix Ed.

In the following some basic properties of such a basis
Cayleigh graph Γ(G, S) are summarized:

• As the set S contains with each unitary basis matrix, say
MB j( ), also its inverse M

B j
†

( ) the basis Cayley graph Γ(G, S)
is undirected.

• Edge connectedness is defined by left multiplication
and group multiplication within the unitary subgroup G
by right multiplication. Therefore, group multiplication
preserves the incidence relation. Consequently the basis
group G is also a subgroup of the automorphism group
Aut G S,G( ( )) of the basis Cayley graph Γ(G, S).

• As special instances of general Cayley graphs all basis
Cayley graphs Γ(G, S) are connected, i.e. there is an edge
connected path between each possible pair of vertices.

• As special instances of general Cayley graphs all basis
Cayley graphs Γ(G, S) are regular, i.e. each vertex is
connected to the same number of neighbors, i.e. it has the
same valency.

From its definition it is apparent that the cliques of a basis Cayley
graph Γ(G, S), i.e. its completely connected subgraphs, are
associated with mutually unbiased bases. As a consequence the
search problem for maximal sets of mutually unbiased bases can
be reformulated as a search problem for the largest clique of a
basis Cayley graph Γ(G, S), i.e. the size of its largest complete
subgraphs. For a given dimension d of the Hilbert space this
clique number cannot exceed the maximum possible number of
mutually unbiased bases (d+1) [4].
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3. Mutually unbiased bases and the structure of their
basis Cayley graphs

In this section the main ideas underlying a recently estab-
lished connection [10] between the structure of basis Cayley
graphs and the existence of a maximum set of (d+1)
mutually unbiased bases in a d-dimensional Hilbert space are
discussed.

According to section 2.2 a set of l mutually unbiased
bases can be associated with a clique of size l, i.e. a com-
pletely connected subgraph with l vertices, of a basis Cayley
graph Γ(G, S). Therefore, it is of major interest to establish a
quantitative relation between the clique number of basis
Cayley graphs, i.e. the number of vertices of the largest
possible completely connected subgraphs, and other char-
acteristic features of Cayley graphs. It is a major recent result
[10] that such a relation can be established for finite basis
Cayley graphs which also restricts some of their structural
properties.

In order to establish a general quantitative connection
between the clique size of a basis Cayley graph Γ (G, S) and
some of its other structural properties, we can take advantage
of its regularity. If in addition, the basis Cayley graph under
consideration is finite, advantage can be taken of powerful
general relations which have already been established for
regular finite graphs [12, 13]. For this purpose let us consider
a general finite and regular graph of size n and valency k. A
lower bound on the clique number of such a k-regular graph is
given by n/(n− k). This lower bound has been improved
further by Wilf [12] with the help of spectral methods. Later
Yildirim [13] derived closed form expressions for this lower
bound and established that the clique number of a regular
graph equals n/(n− k) provided this regular graph is also
complete multipartite, i.e. it can be partitioned into disjoint
non empty sets, so called independent sets or ‘colorings’, so
that there is an edge between every pair of vertices from
different independent sets and that vertices of an independent
set are not connected among themselves.

Based on these developments the following theorem has
been established recently [10]:

Theorem. Let G be a finite basis group of order G n=∣ ∣
whose basis Cayley graph has an edge generating set S of
size S k=∣ ∣ . If the condition

n

n k
d 1 4

-
= + ( )

is fulfilled the k-regular basis Cayley graph G S,G( ) has
clique number d 1+ and it is complete multipartite. This
complete multipartite basis graph consists of d 1+ indepen-
dent sets and has n k d 1- +( ) maximum cliques each of
size d 1+ .

According to this theorem the existence of a k-regular
complete multipartite basis Cayley graph with n vertices
fulfilling equation (4) is sufficient for the existence of

(n− k)d+1 cliques each of which contains a maximum set of
d+1 mutually unbiased bases of a d-dimensional Hilbert
space. As a consequence the construction of maximum sets of
d+1 mutually unbiased bases in a d-dimensional Hilbert
space requires the following steps:

• Select a finite edge generating set, say S MB 1= { ( ), ,
MB k }( ) , so that the unitary matrices MB

l( ) with l=1,L, k
are mutually unbiased with respect to the unit matrix Ed

but not necessarily mutually unbiased among themselves;
• construct the group G MB 1= á ( ), M, B k ñ ( ) generated by
these unitary matrices;

• choose the generating unitary matrices of the set S in such
a way that G is finite, say of order n, and that the
condition of equation (4) is fulfilled. As a result of the
structure theorem the resulting Cayley graph Γ(G, S) will
be k regular and complete multipartite.

4. Examples of basis Cayley graphs associated with
mutually unbiased bases

In this section examples of finite unitary basis groups acting
in two and three dimensional Hilbert spaces are presented
which generate sets of mutually unbiased bases and whose
Cayley graphs are complete multipartite. These examples
illustrate the general property formulated in the structure
theorem of section 3. However, these examples also show that
basis groups which do not generate maximum sets of
mutually unbiased bases can also result in associated com-
pletely multipartite Cayley graphs and, moreover, that a
complete multipartite graph can be the Cayley graph of dif-
ferent basis groups. These examples take advantage of the fact
that unitary generators of finite orders, say U1 and U2 with
U E Un n

1 2 2
1 2= = , which are mutually unbiased with respect to

the canonical basis represented by the unit matrix Ed and
which imply that also their products are of finite orders,
constitute convenient generators for basis groups.

4.1. Complete sets of mutually unbiased bases in d ¼ 2

4.1.1. The complete tripartite graph K 1;1;1. The simplest
complete multipartite graph associated with a maximum set of
unbiased bases fulfilling equation (4) for d=2 is a triangle
with the characteristic parameters (n, k, d)=(3, 2, 2) as
depicted in figure 1. So it yields (n− k)d+1=1 set consisting
of the maximum number of d+1=3 mutually unbiased
bases in a d=2-dimensional Hilbert space.

This graph is a trivial example of a complete 3-partite
graph denoted by K1,1,1. It has 3 independent sets partitioning
its vertices, and there is an edge between every pair of vertices
from different independent sets. The notation K1,1,1 indicates
its 3-partite nature and the fact that each independent set
contains a single vertex only. According to our previous
discussion K1,1,1 is a 2-regular 3-partite graph which can be
interpreted as a basis Cayley graph Γ(G, S) of a cyclic group
G MBá ñ≔ of order n=3, i.e. its single generator fulfills the
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relation M EB
3

2= . This graph is isomorphic to the complete
graph K3 on three vertices and to the 1-skeleton of the
simplex α2, see [14].

According to the discussion of section 3 the set
S M M,B B≔ { }† is an edge set of this basis graph if and only
if the pairs MB and MB

†, and E2 and MB are both mutually
unbiased. In the canonical basis the unitary 2×2-matrix MB

associated with the generating basis B has the most general
form

M
e

2
e e
e e

. 5B

i i i

i i-

g j y

y j- -

⎛
⎝⎜

⎞
⎠⎟≔ ( )

Consistent with the mutual unbiasedness of MB, MB
†, and

E2 the periodicity condition requires either cos 3p =( )
cos 2j and γ=π/3 implying j=±π/4 or cos 2 3p =( )
cos 2j and γ=0 implying j=±3π/4. In either case the
phase ψ is arbitrary so that there exists a continuous family of
different unitary cyclic basis groups G MBá ñ≔ of order three
for this particular basis Cayley graph.

A particular member of this continuous family is
identified by the values of its phases ψ ä [0, 2π),
j ä{±π/4,±3π/4} and the corresponding value of γ. The
d+1 elements of each of these groups form a maximum
number of cyclic mutually unbiased bases in dimension
d=2. As these basis groups are Abelian all their two
dimensional representations are equivalent.

4.1.2. The complete tripartite graph K 2;2;2—the octahedron.
Another k-regular complete multipartite graph fulfilling
equation (4) for d=2 has the parameters (n, k, d)=(6, 4,
2). It is a complete 3-partite graph denoted by K2,2,2. This
graph is the 1-skeleton of the regular octahedron or cross
polytope β3 in three dimensional Euclidean space [14, 15].

Each of its three independent coloring sets contains two
vertices and as a consequence of its complete multipartite
nature there is an edge connecting every pair of vertices from
different color sets, while vertices within an independent set
are unconnected. In view of this particular partitioning each
vertex is the starting point of k=4 edges. This 4-regular
complete 3-partite graph can be interpreted as a basis Cayley
graph Γ(G, S) of various basis groups G of order
G n 6= =∣ ∣ . In the following we discuss two continuous
families of such basis groups which can be associated
naturally with the octahedron.

Let us denote the six vertices of the octahedron chosen in
some order by the numbers m=1, K, 6. The first family of
basis groups can be taken to be cyclic of order 6 so that each
member of this family is characterized by a generating unitary
2×2-matrix MA, i.e. G MAá ñ≔ , with M EA

6
2= . Thus, in the

canonical basis the most general form of this generator is
given by

M
1

2
e e

e e
6A

i 4 i

i i 4

A

A
=

-

p y

y p

-

-

⎛
⎝⎜

⎞
⎠⎟ ( )

with the arbitrary phase ψA ä [0, 2π).

The graph of figure 2 can be interpreted as the basis
Cayley graph Γ(G, S) of this cyclic group with the edge
generating set S M M M M M M, , ,A A A A A A

5 2 2 4= =≔ { }† † by
choosing a mapping of ordered orthonormal basis systems
to the vertices such as

M M M M

M M

1, 2, 3, 4,

5, 6. 7
A A A A

A A

6 3 4 2

5

   

  ( )

In this way a continuous one-parameter family of basis groups
is obtained whose members are identified by a particular
value of the phase ψA ä [0, 2π). According to equation (6)
M MA

m
A
m 3= - + for mä{1, 2, 3} so that the basis vectors of

pairs of ordered orthonormal bases systems associated with m
and m+3 differ by a single global phase only. These three
pairs form the three independent sets with different colors of
the complete 3-partite graph K2,2,2. They can be associated
with the three cosets E M M, ,A A2

2[ ] [ ] [ ] of the normal subgroup
C E M, A2 2

3= { } in G MA= á ñ, i.e. M g G g M hi iÎ =[ ] ≔ { ∣
h Cfor all 2Î } with i=0, 1, 2.

As every pair of vertices from different independent sets
is connected by an edge and vertices within each independent
set are unconnected this complete multipartite graph can be
simplified by collapsing each of these independent sets to a
single (structured) vertex using for example the map

1, 2 1, 3, 6 2, 4, 5 3.  { } { } { }

In this way the octahedron can be regarded as a triangle in
which each (structured) vertex is formed by a pair of ordered
orthonormal bases whose members differ by a single global
phase only. This triangle captures the fact that apart from this

Figure 1. The complete 3-partite graph K1,1,1 which forms a triangle:
each vertex constitutes an independent set and all vertices are
connected.

Figure 2. The complete 3-partite graph K2,2,2: the 1-skeleton of the
regular octahedron or cross polytope β3.

4
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single global phase there are only 3 mutually unbiased bases
generated by this cyclic basis group of order 6. These bases
are represented by the cosets E M M, ,A A2

2[ ] [ ] [ ].
An example of a non-cyclic basis group of order 6 whose

Cayley graph is the 1-skeleton of the regular octahedron is
generated by the two non-commuting unitary 2×2-matrices

M i
i

M

M M

1

2
1

1
,

1 0 e
e 0

. 8

C C

D D

i 4

i 4

-
-

=

- =
p

p-

⎛
⎝⎜

⎞
⎠⎟

( )≔

≔ ( ) ( )

†

†

It is apparent that both generators are of order 2, i.e. MC
2 =

M ED
2

2= , their product is of order 3, i.e. M M EC D
3

2=( ) with

M M
1

2
e e

e e
9C D

3i 4 i 4

i 4 3i 4
=

-

p p

p p

-

-

⎛
⎝⎜

⎞
⎠⎟ ( )

and M M M MD C C D
2= ( ) . The resulting non-Abelian group

G M M M M M, ,C D C C Dá ñ º á ñ≔ has order 6 and is isomorphic
to the symmetric group S3. Its group multiplication table is
summarized in the appendix.

The graph of figure 2 can be interpreted as the basis
Cayley graph Γ(G, S) of this symmetric group S3 with the edge
generating set S M M M M M M M M M: , , ,D C D D C D C C D= ={ ( )†
M M M M M MC D D C C D

2= =( ) ( ) }† . The mapping between
ordered orthonormal basis systems and the vertices of the
octahedron can be defined by

M E M M

M M M M M M

1, 2, 3,

4, 5, 6, 10
D C D

C D C D C D

2
2

  
  ( ) ( )

for example. The basis group G M M,C Dá ñ≔ is a two
dimensional irreducible representation of S3.

By slightly changing the generators of equation (9) basis
groups are obtained which do not generate maximum sets of
mutually unbiased bases in d=2. Nevertheless, their
associated Cayley graphs are complete multiparite. As an
example consider the group G M M,C Dá ñ≔ ˜ with the
generator MC of equation (8) and with

M 0 1
1 0

. 11D = ( ) ( )˜

Despite the similarity between MD of equation (8) and MD̃ of
equation (11) the groups G M M,C Dá ñ≔ and G M M,C Dá ñ≔ ˜
are very different. The group G M M,C Dá ñ≔ ˜ is isomorphic to
the dihedral group D8 of order 8. This group has center
E M M E, C D2

2
2º -{ ( ) }˜ . MC and MD̃ are of order two and

M MC D̃ generates a subgroup of order 4. The Cayley graph of
this group with respect to the edge generating set

S M M M M M M M

M M

, , ,

12
C C C C D C D

C D

= = - -

=

{
( ) } ( )

† ˜ ˜

˜ †

is depicted in figure 3. A mapping from the vertices to the
group elements is given by

M M M M M M

M E M E

1, 2, 3, 4,

5, 6, 7, 8,

13

C D C D C C

D D2 2

 -   - 

  -  - 

( )

˜ ˜

˜ ˜

for example. This Cayley graph is complete 2-partite with
the two independent sets {1, 2, 3, 4} and {5, 6, 7, 8}.
Its parameters (n, k, d)=(8, 4, 2) satisfy the relation
n/(n− k)=8/4=2 and do not saturate the upper bound of
(d+1)=3 for complete sets of mutually unbiased bases in
d=2. Nevertheless this Cayley graph is complete multipartite.

4.2. The complete tripartite graph K 16;16;16

A more complex complete multipartite graph fulfilling
equation (4) for d=2 is the complete 3-partite graph K16,16,16

characterized by the parameters (n, k, d)=(48, 32, 2). Each
of its three independent coloring sets contains 16 vertices and
in view of its complete multipartite nature there is an edge
connecting every pair of vertices from different independent
sets so that there all vertices within each of the independent
sets are unconnected. Therefore, each vertex is the starting
point of k=32 edges. This complete multipartite graph can
be interpreted as the Cayley graph Γ(G, S) of a basis group
G M M,C Eá ñ≔ of order G 48=∣ ∣ generated by the unitary
2×2 matrices MC of equation (8) and

M
1

2
e e
e e

. 14E

3i 4 i 4

i 4 3i 4
=

-

p p

p p- -

⎛
⎝⎜

⎞
⎠⎟ ( )

/ /

/ /

Despite the fact that the matrices ME of equation (14) and
MC MD of equation (9) differ only slightly in their phases
the groups generated by these matrices are very different. The
group G M M,A Eá ñ≔ is of order 48. It is isomorphic to the
direct product group Q8×D6, involving the quaternion
group Q8 of order 8 and the dihedral group D6 of order 6
which is also isomorphic to S3.

For convenience we summarize in the appendix the basic
properties of these groups together with their representations
which appear in the two dimensional matrix group
G M M,C Eá ñ≔ . From these representations it is apparent that
the bases associated with the 2×2 matrices representing the
quaternion group are not mutually unbiased. This property
also holds for all 6 possible cosets of Q8 in G. Denoting these
cosets by R g G M M g R h h Q, ,j C E j 8Î = á ñ = Î[ ] ≔ { ∣ }
with j=1, K, 6 representatives of these cosets are given by

R E R R M R M M

R R M M M

R R M M R R M

, , ,

,

, . 15

D C D

D C D

C D C

1 2 2 2 3

4 4

5 3
2

6 6

= = = =

= =

= = = =( ) ( )

†

†

† †

Figure 3. Cayley graph Γ(G, S) of the dihedral basis group of order 8.
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As Q8 is a normal subgroup these cosets also form a group,
namely the dihedral group D6 of order 6. Their representatives
{R1,L, R6} form an irreducible two dimensional representa-
tion of D6. Some characteristic features of D6 are summarized
in the appendix. In terms of these cosets the edge generating
set S of the Cayley graph Γ(G, S) is given by

S R R R R, , , . 163 4 5 6= {[ ] [ ] [ ] [ ]} ( )

Associating each of the 6 cosets of equation (15) with a
(structured) vertex of the octahedron of figure 2 a simplified
description of the complete multipartite structure of the
mutually unbiased bases is obtained. The underlying 3-partite
structure of these mutually unbiased bases becomes even
more apparent by defining three (structured) vertices with the
help of the mapping

R R R R
R R

, 1, , 2,
, 3 17

1 2 3 4

5 6

 


{[ ] [ ]} {[ ] [ ]}
{[ ] [ ]} ( )

and associating these three vertices with the vertices of the
triangle of figure 1. Each of the vertices of this triangle
represents one of the three independent sets of K16,16,16 each
of which contains 16 (unstructured) vertices whose associated
bases are not mutually unbiased. Furthermore, every pair of
these (unstructured) vertices belonging to different indepen-
dent sets is connected by an edge as their associated ordered
orthonormal bases are mutually unbiased.

4.3. Maximal sets of mutually unbiased bases in d ¼ 3

Let exp i2

3
w p≔ ( ) and

M

M

M

1

3

2 2
2 2 2
2 2 2

,

1

3

2 2
2 2 2
2 2 2

,

1

3
2 2

2 2

.

1

2 2 2

2 2 2

2 2 2

2

2 2 2

2 2 2

2 2 2

3

2 2 2

2 2 2

2 2 2

w w w w w w
w w w w w w
w w w w w w

w w w w w w
w w w w w w
w w w w w w

w w w w w w
w w w w w w
w w w w w w

- + - - - -
+ - - +
+ + - -

- - - - -
+ - - +
+ + - -

- - -
- - - +
- + - -

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

≔

≔

≔

These three matrices Mi together with E3 form a maximum set
of d 1 4+ = mutually unbiased bases in 3 . The entries of
M M3 , 31 2, and M3 3 are the Eisenstein integers of squared
norm 3. (Eisenstein integers have the form a+bω where a
and b are rational integers, and the squared norm is
a2−ab+b2.)

The quaternion group Q8 is naturally associated with
these mutually unbiased bases. If we take as the generating set
of the basis group to be M2 and M3 we obtain Q8. In this
group the Mi belong to the three conjugacy classes of ele-
ments of order 4. Calculating the character multiplicities from
the Q8 character table [16] shows that this 3-dimensional
representation of Q8 splits into irreducible constituents as
3 1 2= Å , i.e. the identity representation and the
2-dimensional unit quaternion representation (compare with
equation (20)). As a corollary of Maschke’s theorem there

exists a fixed matrix T such that all the matrices Mj of this
representation of the quaternion group Q8 can be put into
block diagonal form TM Tj

1- corresponding to this spliting.
The Cayley graph Γ(G, S) capturing the structural

properties of the mutually unbiased bases of this representa-
tion of the quaternion group is depicted in figure 4. Its edge
generating set is given by

S M M M M M M M M, , , , , . 182 3 3 2 2 3 2 3= { } ( )† † † †

It has parameters (n, k, d)=(8, 6, 3) and it is the 1-skeleton
of a 16-cell or β4 in four dimensional Euclidean space [14]. β4
contains (n− k)d+1=16 simplices α3 whose 1-skeletons are
the maximum cliques K4 of Γ(G, S). The vertex set of every
such K4 is a maximum set of mutually unbiased bases in 3 .

5. Conclusions and outlook

We have discussed and explored a recently developed group
and graph theoretical approach aiming at the construction of
maximum sets of mutually unbiased bases in finite dimensional
Hilbert spaces. Contrary to previously developed approaches it
is independent of prime number restrictions. The construction
of systems of mutually unbiased bases is reformulated as a
clique finding problem in Cayley graphs of finite basis groups
naturally associated with these basis systems. Besides offering
the possibility to enlarge and possibly complete previously
known systems of mutually unbiased basis systems, this
approach elucidates the intricate relation between quantum
mechanical complementarity as encoded in systems of
mutually unbiased bases and their underlying symmetries. As
the investigations presented constitute only the first steps in the
exploration of the group and graph theoretical approach,
numerous interesting open questions for further research
remain open. These open questions include:

• Which k-regular complete multipartite graphs fulfill
equation (4) for a given dimension d?

• What are their possible finite basis groups?
• Is it possible to construct maximum sets of mutually
unbiased basis systems in a Hilbert space of dimension d
in a systematic way by combining basis groups yielding
maximum sets of mutually unbiases bases in Hilbert
spaces of dimensions smaller than d?

Figure 4. Cayley graph Γ(G, S) of Q8: the 1-skeleton of cross
polytope β4.

6

Phys. Scr. 94 (2019) 014007 G Alber and C Charnes



As the referees have drawn our attention to two previous
investigations [17, 18], in which complete sets of mutually
unbiased bases are constructed in a graph theoretic setting, we
would finally like to comment on these investigations in order
to emphasize the similarities and differences to our results.

In [17] it was shown that bipartite entangled stabilizer
complete unbiased bases (BES MUB) correspond to the
maximum cliques of size p2−1 in Cayley graphs whose
vertices are elements of the two dimensional special linear
groups over Zp for prime p. The graphs have p(p2−1) ver-
tices and the connection sets have size G p2-∣ ∣ (G is the
group). The maximum cliques (if they exist) for a given p
produce complete sets of BES MUB in Hibert spaces of
dimension d=p2.

The graphs of [17] differ from ours in several important
aspects. Our Cayley graphs are defined by (certain) finite
subgroups of the complex unitary group U(d), the vertices are
d×d complex unitary matrices. As such the relation to
representation theory of finite groups is apparent [19]. The
incidence relation is different and the size of the connection
sets S is not fixed. Moreover if d is related to the order of the
group (the size of the vertex set), and the valency of the
graph by equation (4), the graph contains maximum cliques of
size d+1 (the MUB bound). It is regular and complete
multipartite. The vertices of the cliques correspond to
unrestricted complete sets of MUB in Hilbert spaces of
dimension d without any further restrictions of the kind
d=pn (with n integer), for example.

In [18] a graph-state formalism is developed which
produces complete sets of MUB in Hilbert spaces of dimen-
sion d=pn where p is a prime. The graphs underlying this
construction have multiple edges and loops, the adjaceny
matrices have entries in Zp for prime p. On the contrary, our
graphs are undirected and simple, i.e. there is at most a single
edge between any two vertices and they have no loops.
Maximum cliques are not considered in [18]. The construc-
tion depends on the existence of symmetric spread sets of size
pn over Zp.

Appendix

A.1. The symmetric group S3

The group multiplication table of the non-Abelian unitary
group G M M,C Dá ñ≔ of order 6 with the generators of
equation (8) is given by

This group is isomorphic to the symmetric group S3 of three
elements, say 1, 2, 3. Using the cycle notation for
permutations this is apparent from the mapping onto

permutations defined by

M M M M

M M M M M

12 , 23 , 123 ,

123 , 13 . 19
C D C D

C D D C D
2 2

  
 

( ) ( ) ( )
( ) ( ) ( ) ( )

A.2. The quaternion group Q8

The two dimensional irreducible representation of the qua-
ternion group appearing in the unitary group G M M,C Eá ñ≔
of order 48 involves the unitary 2×2 matrices

I i
i

J i
i

K IJ

0
0

i ,

0
0

i ,

0 1
1 0

i 20

3

1

2

s

s

s

= - = -

= -
-

= -

= - = = -

( )
( )
( ) ( )

with the Pauli matrices σ1, σ2, σ3. These matrices fulfill the
characteristic algebraic relations

I J K E IJK 212 2 2
2= = = - = ( )

with the equivalent relations for the Pauli matrices
E1

2
2
2

3
2

2s s s= = = and σ1σ2σ3=i. In view of the com-
mutation property σ1σ2=−σ2σ1 the unit matrix E2 and the
three Pauli matrices form an irreducible two dimensional ray
representation of the Klein group V4 [19]. The quaternion
group Q8 constitutes a lifting of this ray representation of V4

to an ordinary representation.

A.3. The dihedral group D6

The two dimensional irreducible representation of the dihedral
group appearing in the unitary group G M M,C Eá ñ≔ of order
48 is formed by the unitary 2×2 matrices {R1,L, R6} of
equation (15). It is isomorphic to the symmetric group S3. The
matrices N E R R R R, ,2 3

3
3 5 3

2º º≔ { } form a cyclic normal
subgroup of D6 of order 6/2=3 and {E2, R2}, {E2, R4},
{E2, R6} are subgroups ofG M M,C Eá ñ≔ of order 2. From this
irreducible representation the characteristic dihedral group
properties follow, such as R R R Rm m

2 3 2 3= † for m=1, 2,
3=6/2, which are also valid in an analogous way for dihedral
groups of any order.
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