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Elementary quantum electrodynamical processes in
multimode scenarios - a photon path representation for
multiphoton states

Nils Trautmann and Gernot Alber

The field of quantum optics has experienced remarkable experimental developments
during the last decades [1, 2, 3]. Progress in controlling single quantum emitters,
such as trapped atoms or ions, and the ability to tailor the mode structure of the elec-
tromagnetic radiation field by using high finesse cavities has enabled new possibili-
ties in studying resonant light-matter interactions. This led to a variety of of remark-
able experiments [4, 5, 6] probing the interaction between single quantum emitters
and selected modes of the radiation field and demonstrating quantum communication
and quantum information processing [7, 8, 9, 10, 11]. However, the implementation
of quantum networks based on high finesse cavities coupled to suitable waveguides
is still challenging due to lossy connections between cavities and waveguides.

A new approach for harnessing the nonlinear interaction between light and single
quantum emitters is to enhance matter field couplings in the absence of a strongly
mode selective optical resonator by confining the photons to sub wavelength length
scales. This can be achieved by suitable one-dimensional waveguides, such as
nanowires [12, 13, 14, 15, 16], nanofibers [17, 18], in coplanar waveguides (circuit
QED) [19, 20], or even in free space [21] by focusing the light using a parabolic
mirror. However, these approaches are inherently connected to multimode scenarios
in which a large number of field modes participates in the coupling of the quantum
emitters to the radiation field. This vast number of degrees of freedom complicates
the theoretical investigation especially if highly non-classical multiphoton states,
such as photon number states, are involved in the systems dynamics. Such states
have already been realized in experiment [22, 23, 24] and are of significant interest
for applications in quantum information processing and quantum communication.
Hence, there is a need for developing suitable theoretical methods to treat such mat-
ter field interactions involving highly non-classical multiphoton states in multimode
scenarios.

In recent years several methods addressing this issue have been developed. The
Bethe-ansatz [25] as well as the the input output formalism [26] have been used to
analyze photon transport in waveguides with an embedded qubit and one and two-
photon scattering matrix elements have been evaluated [27, 28]. With similar tech-
niques also scattering matrix elements for even higher photon number states have
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been evaluated [29, 30, 31, 32]. Recently, the input-output formalism has been gen-
eralized to treat many spatially distributed atoms coupled to a common waveguide
[33]. Particular interesting phenomena arise if non Markovian processes are inves-
tigated. Recently, a multiphoton scattering theory has been developed to treat [34]
these kind of situations and has been used to evaluate the scattering matrix elements
for several scenarios of interest. Starting from initially prepared coherent states and
analogously to the technique developed by Mollow [35] displacement transforma-
tions are applied and generalized master equations have been derived for describing
the dynamics.

In this chapter we focus on this line of research and discuss a systematic diagram-
matic method for evaluating the time evolution of highly non-classical multiphoton
number states interacting with multiple quantum emitters in multimode scenarios. It
allows the interpretation of the system’s dynamics in terms of sequences of sponta-
neous photon emission and absorption processes interconnected by photon propaga-
tion between quantum emitters or involving reflection by the boundary of a waveg-
uide or a mirror. This photon path representation for multiphoton states allows us
not only to evaluate transition amplitudes between initial and final states in form of a
scattering matrix but also enables us to study the full time evolution of the quantum
state describing the closed system consisting of emitters, of the radiation field, and of
possible boundary surfaces. This photon path representation is not only restricted to
the description of one-dimensional waveguides but can also be used to evaluate the
time evolution of several quantum emitters interacting with the radiation field in large
or half-open cavities or even in free space. For the sake of simplicity, however, we
restrict our subsequent considerations to two-level systems. But it is straight forward
to generalize this multiphoton path representation also to more general multilevel
systems.

A major advantage of this photon path representation for multiphoton states is that
only a finite number of diagrams has to be taken into account for determining the
time evolution of finitely many photons over a finite time interval. This is achieved
by exploiting the retardation effects caused by the multimode radiation field and ba-
sic properties of initially prepared photon number states. The accuracy of this di-
agrammatic method is only limited by the typical quantum optical approximations,
namely the dipole approximation and the assumption that the timescale induced by
the atomic transition frequencies is by far the shortest one. Thus, this method offers
a systematic possibility to study non linear and non Markovian processes induced by
resonant matter-field interactions involving highly non-classical multiphoton states
and the full multimode description of the radiation field. This is not only interest-
ing from an applied perspective in order to accomplish tasks relevant for quantum
information processing, for example, but also from a fundamental point of view.

This chapter is organized as follows. In Sec. 1.1 we introduce a generic theoretical
model and discuss the main approximations. The multiphoton path representation for
describing the time evolution of relevant quantum mechanical transition amplitudes
is presented in Sec. 1.2 and is applied to physical scenarios in Sec. 1.3 .
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1.1
A generic quantum electrodynamical model

We investigate the dynamics of N quantum emitters, e.g. atoms or ions, situated at
the positions x 4 (A € {1,2,...N}) interacting almost resonantly with the radiation
field in a large or half-open cavity or in free space. For the sake of simplicity we
assume that the quantum emitters can be modelled by identical two-level atoms or
qubits whose center of mass motion is negligible. The dipole matrix element of atom

A is denoted by d4 = (e|, d 4 |g) 4 and the corresponding transition frequency is
Weg- In the following we assume that the dipole and the rotating-wave approximation
(RWA) are applicable. For justifying the RWA we assume that the timescale induced
by the atomic transition frequency weg4 is by far the shortest one. The interaction
between the two-level atoms and the quantized (transverse) electromagnetic radiation
field is described by the Hamiltonian

i = fo + By i
with
N

HO = Zmidjdi =+ hweg Z |6>A <e|A ’

i A=1

N

H = - Ej(xa)-dj+Hc

A=1

(1.2)

and with the dipole transition operator

5 Nt .
dy = (dﬁ) =d} |9) 4 (ela (1.3)

of atom A. The coupling to the radiation field is modeled by introducing the elec-

tric field operators Ef (x4) of the transverse modes of the radiation field. In the
Schrodinger picture they are given by

E](x) = (EI (x))T = —iZ \/ ;L:Z gi(x)dz (1.4)

with the orthonormal mode functions g;(x). The mode function g;(x) solves the
Helmbholtz equation and fulfills the boundary conditions modelling the presence of a
possible cavity or of a wave guide.

1.2
The multiphoton path representation

A solution of the time dependent Schrodinger equation of the generic quantum elec-
trodynamical model with Hamiltonian (1.1) can be obtained conveniently with the
help of a photon path representation.
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1.2.1
Analytical solution of the Schrédinger equation

Let us consider the time evolution of an initially prepared quantum state with np
photonic and n 4 atomic excitations, i.e.

W(to)) = [ (Z f;"’(twa;) 00 TT le)a, (gla, [6)*, (15)

i=1 \ j k=1

with [0)” denoting the vacuum state of the radiation field and with |G)* =
|9)1 - 19) v denoting the ground state of all two-level atoms. Each of the sums
5, £ (to)a} represents a single photon wave packet and the amplitudes £ (to)

fulfill the normalization condition (v (t0), ¥ (o)) = 1.
The Schrodinger equation with Hamiltonian (1.1) fulfilling this initial condition is
equivalent to an integral equation whose solution can be obtained with the help of

a fix-point iteration procedure. In the interaction picture with Hamiltonian Hi(t) =
el/hHo(t—to) f, ¢~i1/RHo(t~to) and quantum state |¢(¢)) this Schrodinger equation and
its associated integral equation are given by

in - 13(6) = Hi()19), [5(6)) = —+ / Hu (1) [9(t2)) dta + hb(to)) - (1.6)

In order to develop an iteration procedure for solving this equation which terminates
after a finite number of iterations for any given finite time interval of duration ¢ — g it
is necessary to take into account directly all processes describing spontaneous photon
emission and reabsorption before a photon has had time to leave the atom. These
processes take place during a time interval of the order of 1/w,g4 and are responsible
for spontaneous decay of an excited atom and for a small level shift of its transition
frequency wegy [35, 36]. It turns out that all the other possible photon emission and
absorption processes are delayed by retardation effects caused by photon propagation
and characterized by the finite speed of light in vacuum c. These retardation effects
cause the corresponding iteration procedure to terminate after a finite number of
iterations in any finite interval or for a finite number of initially prepared photons.

For this iteration procedure the solution of the integral equation (1.6) is split into
two parts according to
D) = =+ [1 Hi(t) [t dty — & [ Ha(t) [9(00)) ds + [b(to))  (17)
with eweq > 1. Inserting Eq. (1.7) into the Schrodinger equation (1.6) yields
ihd [5(0) = Ha(0) [0t — ) — & [£ Hi(OH1(t) [(0)) dta - (18)
By applying the definition of H () we get
Hit)Hi(t) = Hi(t)Hi(t) 4+ 3 leda, (9la, 19)4, (ela,
1,12

elweg (t2—1t1) [Ei(x,qwtg) . dAz’EI(xAl ,t1) - dzl] (1.9)

with Ef (Xq,t) denoting the electric field operators in the interaction picture and
with : ... :denoting normal ordering. The commutator in the last term of Eq. (1.9)
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can be associated with the propagation of a photon emitted by atom A; to atom As
where it is absorbed again. As outlined in the Appendix for photon propagating in
vacuum this commutator can be related to a dyadic Green operator of the d’Alembert
equation. As the dispersion relation of the radiation field is linear this commutator
can be evaluated in a straight forward way yielding the result

elweg (t2—t1) [Ei(xAz,tz) . dAz,EI(xAl,tl) . dZJ = 5A11A2h21—‘5(t1 —t2) (1.10)
forall [t; — t2| < Ta,,4, and T = ||d 4, ||*w?,/(3cimeoh) being the spontaneous
decay rate of an atom in free space with the dielectric constant of the vacuum €g. The
constant 74, 4, > 0 is the time a photon emitted by atom A; needs to propagate
to atom As. In the special case A; = As it is the time a photon emitted by A;
needs to return againto the same atom after being reflected by the boundary of a
waveguide or by the surface of a cavity. In free space such a recurrence is impossible,
ie. Ta, 4, = 00. The delta distribution appearing in Eq. (1.10) originates from
the rotating wave approximation in which physical processes taking place during
time scales of the order of 1 /w4 are approximated by instantaneous processes [35].
Thus, Eq. (1.10) reflects the fact that spontaneous emission and reabsorption of a
photon before it has left the atom again requires a time scale of the order of 1/we,q
and is responsible for the spontaneous decay of an atom in free space. Furthermore,
Eq. (1.10) assumes that the small shift of the transition frequency (Lamb-shift) has
already been incorporated in a properly renormalized atomic transition frequency
w

eUsmg Eq. (1.10) and choosing 0 < € < Ta,, 4, for all A;, A the Schrodinger
equation (1.6) simplifies to

L0y = 0/2180) - RO - )

1

t A A ~
_ﬁ/t—e PHi (D) H(t) : [$(t) dha (1.11)

with ' = T Z le) 4 (e| 4. Together with the initial condition (1.5) Eq. (I.11) is

equivalent to the integral equation

~ . i t . A -
lv(t) = e_F(t_tO)/QW(to))—%/ e POt 2Hy (t1) [(t1 — €)) dty
to
1 t2
—ﬁ/ /t2 . e TU=1)/2 ;i (1) Ha (1) : [9(0)) ditdta (1.12)

which can be solved by using a fix point iteration starting with |¢)(£)) = 0. In the
limit ¢ — 0 in the physical sense of 1/w.y < € < 1/I its solution is given by the
multiphoton path representation

8

(1)) = Z (—%) llrn fto ftm € t3 € :02'6 e—T(t—tm)/2

T Hfi (t)e " Tti—ti-1— EW] [¥(to)) dt1dta...dty,—1dtm (1.13)
=1

with 7 denoting the time ordering operator. In this solution it has been taken into
account that the contributions from the last line of Eq. (1.12) vanish in the physically
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Figure 1.1 Diagrammatic representation of the excitations contributing to the initial state
|(to)) of Eq. (1.5): representation of (a) an initial atomic excitation, (b) an initial photonic
excitation and (c) the initial state |1 (t0)).

relevant limit € — 0. The sum of normally ordered terms appearing in Eq. (1.13)
can be evaluated by introducing the functions

A1,Ag 1 _ A i )
T1 LAZ(4, _4) = ﬁelweg(h t1) Ej:(xAgytZ)'dAQaEl(xA17t1)'dA1

—-(5A2,A1F5(t2 —tl). (1.14)

They describe the retardation effects arising from spontaneous photon emission and
reabsorption processes. Thus, only finitely many terms contribute to the sum of Eq.
(1.12), if a finite time interval and an initial photon state with a finite number of
photons are considered.

1.2.2
Graphical representation of the multiphoton path representation

For applying the previously derived multiphoton path representation of Eq. (1.13)
and for giving a physical interpretation in terms of subsequent photon emission and
absorption processes a diagrammatic method can be developed. Thereby, each term
generated by applying Eq. (1.14) in order to bring Eq. (1.13) into a normally ordered
form is represented graphically by a diagram. By generating the finite number of all
possible diagrams and summing up their contributions allows to determine the time
evolution of the quantum state [t)(¢)) for any finite time. In the following we list
the basic elements constituting such a diagram, provide a list of rules for generating
all possible diagrams, and discuss the connection between these diagrams and the
corresponding analytical expressions in the multiphoton path representation of Eq.
(1.13).

Let us start with the graphical representation of the initial state |¢)(t()) of Eq. (1.5).
An initial atomic excitation of an atom A; is represented by a graphical element of
the form depicted in Fig. 1.1 (a) and an initial photonic excitation corresponding to a
term ) ; f]m (to)a; is represented by an element of the form depicted in Fig. 1.1 (b).
Correspondingly, the initial state defined in Eq. (1.5) is represented by the diagram
depicted in Fig. 1.1 (c).

We can also represent the excitations contributing to the state |</)( )) of Eq. (1.13)
in a similar way. Thereby, each atomic excitation of the state [)(t)) is represented
by a graphical element of the form depicted in Fig. 1.2 (a) and denotes an outgoing
atomic excitation. Each photonic excitation of the state [1(t)) is represented by an
element of the form depicted in Fig. 1.2 (b) and denotes an outgoing photonic exci-
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Figure 1.2 Diagrammatic representation of the excitations contributing to the state |J(t))
of Eq. (1.13): representation of (a) an outgoing atomic excitation, (b) an outgoing photonic
excitation and (c) the excitations of the state |1(¢)).

a) b) )y — A d)y

owiy,
sy,
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Figure 1.3 Diagrammatic representation of basic processes: representation of (a) an
emission of a photon by an excited atom, (b) an absorption of a photon by an atom in the
ground state, (c) propagation of an atomic excitation (atomic excitation line) and (d)
propagation of a photonic excitation (photonic excitation line).

tation. Correspondingly, the state |LZ(t)> is represented by the diagram of Fig. 1.2
(c).

Photon emission and absorption processes involving an atom A at the intermediate
time step t,,, (with t > t,, > t¢), are represented by the diagrams of 1.3 (a) and 1.3
(b). The propagation of atomic or photonic excitations during these processes are
represented by the diagrams depicted in Figs. 1.3 (c) and Fig. 1.3 (d). These atomic
and photonic excitation lines connect emission processes, absorption processes, and
initial and outgoing excitations. In a diagram, an atomic excitation line refers to a
single atom only, i.e. its beginning and its end connect the same atom.

These graphical elements are assembled to a complete diagram according to a set
of rules. For a process involving m absorption and emission processes taking place
at intermediate time steps t;...t,, With tg < t1 < to < ... < t; < t these rules are as
follows:

1) At each emission process exactly one photon line starts and exactly one atomic
excitation line ends.

2) Ateach absorption process exactly one atomic excitation line starts and exactly one
photon line ends.

3) Each atomic excitation line starts either at an initial atomic excitation or at an ab-
sorption process and it ends either at an outgoing atomic excitation or at an emis-
sion process.

4) Each photon line starts either at an initial photonic excitation or at an emission
process and it ends either at an outgoing photonic excitation or at an absorption
process.

5) Atomic excitation lines corresponding to the same atom cannot coexist.

In particular, the last rule encodes effects originating from the saturation of an atomic
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Figure 1.4 A forbidden diagram: The diagram describes a process in which an already
excited atom A absorbs a photon. By excluding such diagrams all saturation effects are
taken into account which characterize the excitation of two-level atoms.

TN

transition. Thus, diagrams containing parts, such as the one depicted in Fig. 1.4 are
forbidden. Ignoring this latter rule would result in a time evolution in which atoms
would behave similarly as harmonic oscillators which do not show any saturation
effects.

The rules connecting each diagram of this graphical representation with a corre-
sponding term of the multiphoton path representation of [1/(t)) of Eq. (1.13)) are as
follows:

1) To a photon line connecting an emission process of atom A, at time t. with
an absorption process at time t, (t, > t.) by atom A, we associate the term
~PRefal, =) .

2) To a photon line connecting an initial photonic excitation f(*)(¢y) with an absorp-
tion process at atom A, and time ¢, we associate a term
% [Ej(anata) dag, 2 f](-i)(to)a} elweg(ta—to)

3) To aphoton line connecting an initial photonic excitation f(i) (to) with an outgoing
photonic excitation we associate a term 3 fj(.i)(to)a} .

4) To a photon line connecting an emission process of atom A, at time ¢, with an
outgoing photonic excitation we associate a term +E 7 (x4, , te) - d e~ @es(teTto)

5) To an atomic excitation line not ending at an outgoing atomic excitation and starting
and ending at times t; and t. we associate a term e~ F(te—t)/2

6) To an an outgoing atomic excitation and starting at time £, we associate a term
e~ TE=t)/2|e) , (g4 -

The expression assigned to a complete diagram is given by the product of all these
terms acting on the state |G)“ [0)¥ and being integrated over all intermediate time
steps tq,to...ty, With to < 1 < t2 < ... < tm < t. The quantum state at time ¢, ie.
|1(t)), is obtained by summing over all possible equivalence classes of diagrams
which can be constructed by these rules. Thereby, each equivalence class of diagrams
appears in this sum only once. Two diagrams are considered to be equivalent if the
corresponding photon and atomic excitation lines connect emission and absorption
processes which involve the same atoms at the same time steps ¢1...t, and the same
initial and final excitations.

So far, we have restricted our discussion to identical two level systems. However,
it is straight forward to generalize this multiphoton path representation also to mul-
tilevel atoms by following the steps of the previous subsection 1.2.1. This way an
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Figure 1.5 (a)-(c): Diagrammatic representation of the spontaneous photon emission of a
single atom (atom 1) in free space or in an open waveguide. (d): Diagram describing a
transfer of the excitation from the initially excited atom 1 to atom 2 mediated by a single
photon.

expression quite similar to Eq. (1.13) can be derived and can be represented by an
analogous diagrammatic procedure.

1.3
Examples

1.3.1
Processes involving only a single excitation

In order to discuss basic features of the multi-photon path representation and of
the corresponding diagrammatic representation let us consider the simplest quantum
electrodynamical processes involving a single excitation only. This way a direct con-
nection can be established between this multiphoton path representation and photon
path representations which have been discussed in the literature previously in con-

nection with single photon processes [37, 38, 39].

Let us consider the spontaneous decay of a single initially excited atom coupled to
the radiation field in free space or in an open waveguide. In free space this process
is described by the diagrams depicted in Figs. 1.5 (a) and 1.5 (b). According to the
rules of the previous section the diagram depicted in Fig. 1.5 (a) is associated with
the contribution

e—T(t—to)/2 le), |0yF (1.15)

to Eq. (1.13). It describes the decay of the excited atomic state due to the sponta-
neous emission of a photon. The emitted single-photon wave packet is described by
the contribution to Eq. (1.13) associated with the diagram of Fig. 1.5 (b), i.e.

. t )
%Igh/ BT (x1,t1) - df [0)7 e~ (T/2Hiweg)(t1=to) g, (1.16)
v to
The diagram of next higher order is depicted in Fig. 1.5 (c) and corresponds to the
term

—le)y [0)7 [y 2 e~T(t=t2)/2 11 (15 — t1)e~T(t1—0)/2dt, dt, (1.17)

with T*! (to — t) describing the return and reabsorption of a photon by atom
1 after having being emitted by the same atom. In general, such a process gives
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fA)  fD(to) g r

Figure 1.6 A schematic setup: Two photons with initial states f(1) (o) and £(2)(to)
propagate in a one-dimensional waveguide and interact with a two-level atom.

10

rise to non Markovian effects. In free space or in an open waveguide in which a
spontaneously emitted photon cannot return again to the same atom such a recurrence

contribution is impossible so that T11 o1 (ta—t1) and the term (1.17) both vanish. The
same argument applies to all other diagrams of higher order. Thus, only the diagrams
depicted in Figs. 1.5 (a) and 1.5 (b) contribute to the pure quantum state describing
this process, i.e.

L

B() = e 2070 e), j0)”

. t .
+% l9)4 / BT (x1,t1) - d} [0)F e~ (T/2Hweq)(t1~t0) g,

to

If many atoms are present the excitation of one atom can be transfered to another
atom by the exchange of a photon which is emitted spontaneously by an excited atom
and absorbed again later by an unexcited atom. In general such an excitation transfer
from one atom to another mediated by the exchange of a single photon wave packet
leads to non Markovian effects, especially if the distance between the two atoms is
larger than the characteristic length co/I" of the photon wave packet. A diagram
describing such a process is depicted in Fig. 1.5 (d). This diagram describing the
excitation transfer from atom 1 to atom 2 is associated with the term

—le)g [0)7 [i: [i2 e7T(t=t2)/2T 12 4y — 1y )e~T(t1—t0)/2dt, dt 5 . (1.18)

1.3.2
Scattering of two photons by a single atom

The photon path representation of Eq. (1.13) also describes saturation effects prop-
erly which come into play as soon as more than a single excitation is present in the
atom-field system. In the following we investigate the scattering of two photons prop-
agating in free space or in a waveguide by a single two-level atom at the fixed position
X1 . We assume that the atom is initially prepared in its ground state |g), and that
two initial photonic excitations are present in the system. Thus, the initial state is
given by

[e(to)) = (£, 117 (to)a})) (2, £ t0)al) 10)7 Ig), -

A corresponding sketch of a possible experimental setup using a one-dimensional
waveguide is depicted in Fig. 1.6. The five diagrams contributing to the particular

part of the quantum state |?Z (t)) which describes two outgoing photons are depicted
in Fig. 1.7. By adding up the associated terms we obtain the result

[ (8)) = [F9()) + [F0(2)) + [9O(8)) + [O(B)) + [ (1)) -
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Thereby, the diagram depicted in Fig. 1.7 (a) corresponds to the term

159() = (o) = (S, £ (t)al) (T, £ to)al) 1007 o),

and describes the unperturbed time evolution of both incoming photons. The dia-
grams in Figs. 1.7 (b) and 1.7 (c) describe scattering processes in which one of the
two photons is absorbed by the atom at time ¢; and the atom emits the photon again
spontaneously at the later time to. The other photon is propagating in an unperturbed
way. These diagrams correspond to the terms

— t ta ,
0 = [ [ (ET6an)-di) (Zf;”(to)a})

|0>P l9); o (iweg+I/2)(t2—t1) |:E_T_(X1,t1) . dl’zfg(l)(to)a;:l dt1dts
J

and

o & te , .
0w = =5z [ (BT6u.t)-di) (Zf}”(to)a})

J

10)P |g)y e~ (wea+T/2)(t2=t2) !Ei (x1,t1) - du, Zf]m(to)a;} dtidty .
J

The diagrams in Figs. 1.7 (d) and 1.7 (e) correspond to the terms

t t t
0wy = o [ [0 [ dndadtsdrse (e
h4 to Y to to to
(B7Gerta) - di) (B (xa,t2) - df ) 100 lg)y
[EI(xhtl) -dl,ZfJ(l)(to)a;f-] [Ei(m,ta) -dl,ZfJ(-z)(to)a}]
) J
and
|J(E)(t)) _ i/t /t4 /t3 /t2 dtldtzdtht4e_(iweg+r/2)(t2+t4—t1—t3)
h4 to Jto to to
(B7Gerta) - di) (BT Gxa,t2) - df ) 100 lg)y
[Ei(xl,%)'dl,Zfél)(to)a;] |:Ei(X1,t1)'dlaZf;Q)(tO)a;} )
J J

They describe scattering processes in which the atom absorbs and re-emits both of
the photons one after the other. Thereby, the nonlinear features of these processes
induced by saturation effects originates from the rule that the atom can only absorb
a second photon after the first absorbed photon has already been re-emitted again.

1.3.3
Dynamics of two atoms

The photon path representation of Eq. (1.13) can also describe the dynamics of many
atoms interacting with a radiation field or the non-Markovian retardation effects aris-
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Figure 1.7 Diagrams describing the scattering of two photons by a single two-level atom.
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Figure 1.8 Two atoms coupled to a multimode radiation field: Photonic excitations can
propagate from one atom to the other through a one-dimensional waveguide (a); photons
are guided by two parabolic mirrors in free space (b). Both setups lead to the same atomic
dynamics.

ing from the presence of a cavity. Such processes share the characteristic feature that
a photon emitted by one atom can return again to the same atom at a later time or
it may interact later with one of the residual atoms. In the following we investi-
gate such a situation involving two two-level atoms as depicted schematically in Fig.
1.8 (a) for a waveguide or in Fig. 1.8 (b) for free-space scenario with two half open
parabolic cavities. Both cases result in the same dynamics.

The setup depicted in Fig. 1.8 (a) consists of two atoms coupled to a common
waveguide which forms a loop. Consequently, a photon emitted by one of the atoms
can travel to the other atom or it can return again to the original atom. We assume
that the atoms couple on to the modes of the radiation field which are guided by the
one-dimensional waveguide. The corresponding free space setup is depicted in Fig.
1.8 (b). It consists of two parabolic mirrors facing each other and of two atoms. Each
of these atoms is supposed to be trapped close to the focal points x; and X2 of these
parabolic mirrors. For the sake of simplicity we also assume that the dipole matrix
elements of these atoms are oriented along the axis of symmetry of the setup. The
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Figure 1.9 Time dependence of the probability of exciting both atoms: Exact solution
obtained from the diagrammatic method (solid line), harmonic approximation replacing
both two-level atoms by harmonic oscillators (dashed line). The parameters are

1 = exp(i27weq) With I'r = 15 (a) and 't = 3 (b).

ideally conducting parabolic mirrors enhance the matter field interactions of the two
atoms. In this case the exclusive coupling to the radiation field guided by the one-
dimensional waveguide of Fig. 1.8 (a) corresponds to the limit that the mirrors cover
almost the full solid angle around the atoms.

In the following we discuss the time evolution of the initial state |¢(to)) =
le), le), |0)F with the radiation field in its vacuum state and the two atoms being
in their excited states. The waveguide as well as the free space scenario can be
described by using the relations

- A % I ra = -
h—g [Ei(xl,tg)'dl,E_L(Xl,tl)-dl] = ﬁ [Ei(XQ,tQ)'dQ,E‘L(X‘z,tl)'dz}
= T &(ta—t1 —2j7) (1.19)
JEZ
and
& [ET(xit2) - di, B (xo,t1) - df] =T S otz =t = (24 +1)7). (120)
3

The constant 7 denotes the typical time a photon needs to propagate from atom 1 to
atom 2 [40]. With the help of the path representation and the relations of Eqs. (1.19)
and (1.20), the time evolution of the matter-field system can be evaluated. A major
difficulty is caused by the non-linear behavior originating from the saturation effects
of the two excited atoms. However, by using the previously discussed diagrammatic
method the probability of finding both atoms in their excited states at a later time can
be determined in a straightforward way. The corresponding results are depicted in
Figs. 1.9 (a) and 1.9 (b). It is worth comparing these results with the ones in which
the non-linear behavior of the atoms is neglected. In such a harmonic approximation
the two atoms can be replaced by harmonic oscillators according to the substitutions

|9>7‘, <e|1‘, — by, |e>i <9|1: = bz» |e>i <e|i —* b;‘rbi ie {1,2} (1.21)

with bI and b; denoting the creation and annihilation operators of a harmonic os-
cillator. In such a harmonic approximation the evaluation of the time evolution is
simplified significantly because the Hamiltonian operator describes a system of cou-
pled harmonic oscillators. Comparing the situations depicted in Figs. 1.9 (a) and 1.9
(b) one realizes that the harmonic approximation is appropriate in the case of Fig.
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1.9 (a) but it fails completely in the case of Fig. 1.9 (b). This can be understood in a
simple way because in the case of Fig. 1.9 (a) we have I'T > 1 so that the probabil-
ity, for example, that atom 2 is still excited before the photon emitted by atom 1 can
reach it is very small. Consequently saturation effects are negligible. In the case of
Fig. 1.9 (b) we have I'7 so that this probability is no longer negligible. As a result
saturation effects are significant.

14
Conclusion

We have developed a diagrammatic method suitable for investigating the time evo-
lution of highly non-classical multiphoton number states interacting with multiple
quantum emitters in extreme multimode scenarios. This method can be applied to
study numerous cases of interest in quantum information processing, such as the
dynamics of quantum emitters coupled to one-dimensional waveguides or to the ra-
diation field in large or half-open cavities or even in free space. Thereby, each term
of this photon path representation can be represented by a descriptive photon path
involving sequences of spontaneous photon emission and absorption processes in-
volving multiple atoms and multiple photons simultaneously. The accuracy of this
diagrammatic method is only limited by the main standard quantum optical approx-
imations, namely the dipole approximation and the assumption that the timescale
induced by the atomic transition frequencies is by far the shortest one. Furthermore,
it offers the unique feature that in order to obtain exact analytical expressions for a
finite time interval only a finite number of diagrams has to be taken into account.
By applying this diagrammatic method we are able to study the matter field interac-
tion of single quantum emitters with highly non-classical multiphoton field states in
scenarios ranging from free space or half-open cavities to waveguides. In particu-
lar, our method allows us to study nonlinear and non Markovian effects induced by
matter field interactions on the single photon level. The investigation of these effects
is not only interesting for possible applications in quantum information processing
and quantum communication but also from the fundamental point of view. Thus, our
method could be used to design suitable protocols for quantum information process-
ing and quantum communication in a variety of architectures ranging from metallic
nanowires coupled to quantum dots to possible applications in free space.
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Appendix
Evaluation of the field commutator

In this section we evaluate the commutator
eiweg (t2—11) [Ej(xAz,tz) cday, BT (xa,,t1) - d;l]
= Zi:ei(“’eg_w")(tz_tl)g—:’o"‘ (g7 (x4,) - da,) <gi(XA1) 'dfql)
(22)
which is identical to

elweg (t2—t1) [EJ_(XAQatZ) ~da,, B (xa,,t1) 'dfql]

apart from terms negligible under the assumption that the timescale induced by w4
is by far the shortest for the system’s dynamics.  Thus, in this approximation we
conclude

eiweg (ta—t1) [Ei(xfxg,tz) cday, B (xa,,t1) 'df‘h]

= eiwea(t2=01) (B (x4,,2) - day, B1 (x4, t1) - d;l} . (23)
Furthermore, we have the relation

[EJ_ (xAgat2) : dA2 3 EJ_(XAl ) tl) ¢ d*Al:|

= —i—’ZdAz VXV X [G(xay,Xa,,t2 —t1) = G(Xay,Xa,,t1 —t2)] -dyy,  (24)

with G(x, x’, t) denoting the dyadic Green operator of the electromagnetic radiation
field. It satisfies the defining equation

OG(x,x',t) =63 (x —x')8(t) ,G(x,x',t) =0Vt <0 (25)

with (531 denoting the transversal delta distribution. This equation has to be solved
under the boundary conditions modelling a possible cavity. Combining Eqgs. (23)
and (24) we obtain the relation

[Ej(xAz,tg) cday, BT (x4, t1) - df«xl}

= —%CIA2 . [V x V x G(XAz,xAl,tg —t1) -V x VX G(XAz,xAl,tl —tz)] d*Al.

Due to the finite speed of light in vacuum ¢y the dyadic Green operator G(x, x’, t)
exhibits retardation effects. These retardation effects are inherited by the commuta-
tor [EI (XA, t2) - da,, BT (xa,,t1) - d%, | and lead to the properties described in Eq.
(1.10). Eq. (1.10) can be derived by using the well known expression for the dyadic
Green operator G(x,x’,t) in free space. In fact, Eq. (1.10) contains an addition-
al purely imaginary term which reflects a level shift (Lamb-shift) and which can be
incorporated into a properly renormalized atomic transition frequency weg.
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