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The influence of the center-of-mass motion of a trapped two-level system on efficient resonant single-photon
absorption is investigated. It is shown that this absorption process depends strongly on the ratio between the
characteristic time scales of spontaneous photon emission and of the two-level system’s center-of-mass motion.
In particular, if the spontaneous photon emission process occurs almost instantaneously on the time scale
of the center-of-mass motion, coherent control of the center-of-mass motion offers interesting perspectives
for optimizing single-photon absorption. It is demonstrated that time-dependent modulation of a harmonic
trapping frequency allows to squeeze the two-level system’s center-of-mass motion so strongly that high efficient
single-photon absorption is possible even in cases of weak confinement by a trapping potential.
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I. INTRODUCTION

Recent technological advances in the area of resonant
photon-matter interaction have opened new exciting experi-
mental possibilities [1–3]. One line of research in this direction
focuses on the development of efficient means for coupling a
single elementary quantum system, such as a trapped atom
or ion, to properly engineered multimode radiation fields in
order to achieve a controlled and almost perfect transfer of
excitation between few-photon multimode states and material
quantum systems [4,5]. Aside from being of fundamental
quantum optical interest, these investigations are also driven
by the desire to explore new possibilities for realizing efficient
ways of transferring quantum information between material
elementary two-level systems (stationary qubits) and photons
(flying qubits) [6].

Recently, it has been demonstrated experimentally that
by trapping a single elementary quantum system in the
center of a parabolic mirror, an efficient coupling to optical
photonic multimode states can be achieved [4,5,7]. Thereby, a
parabolic mirror constitutes a convenient tool for redirecting
and focusing an asymptotically incoming (almost) plane wave
containing a few photons onto an elementary material quantum
system trapped in the parabola’s focus. For focal lengths and
distances large in comparison with the wavelengths of optical
photons, the quantized radiation field dominantly coupling to
such a trapped material quantum system looks like a dipole
field in free space whose center is located in the focus of
the parabola. Guided by characteristic features of the spon-
taneous photon emission process, it has been demonstrated
theoretically that even in free space optimal single-photon
wave-packet states exist which are capable of exciting an
elementary two-level system at a fixed position in space
almost perfectly. However, the center-of-mass motion of an
absorbing material quantum system complicates the situation
considerably because, in general, single-photon absorption and
the subsequent spontaneous photon emission process together
with the resulting recoil effects [8] entangle the center of mass
and the photonic degrees of freedom in an intricate way. On
the basis of these general features it appears that achieving

almost perfect single-photon excitation in free space or with
the help of a parabolic mirror in the presence of center-of-mass
motion requires preparation of a highly entangled quantum
state of the center of mass and the photonic degrees of freedom.
Even by nowadays technological capabilities, the controlled
preparation of such entangled quantum states constitutes a
major technological obstacle and appears unrealistic.

Motivated by these developments, we explore the influence
of the center-of-mass motion of a trapped material two-
level system on single-photon absorption in free space or
equivalently in a parabolic cavity with large focal length. In
particular, we explore possibilities for optimizing this process
with the help of the particular single-photon wave packet [9]
which would achieve almost perfect absorption in the absence
of any center-of-mass motion. At first sight, one may be
tempted to conclude that almost perfect excitation of a trapped
two-level system by such an optimal single-photon wave
packet is only achievable in sufficiently strongly confining
traps with large trap frequencies. However, our investigations
demonstrate that almost perfect photon absorption from such
an optimal single-photon wave packet is possible even in
weakly confining traps and for initially prepared thermal states
of the center-of-mass motion provided the trap frequency is
modulated periodically in an appropriate way. Our analysis
exhibits also the crucial role played by the characteristic dy-
namical parameters, namely, the spontaneous photon emission
rate of the electronic transition involved and the trap frequency.
The investigation of the impact of the center-of-mass motion
on atom field interactions for high-finesse cavities has recently
also attracted attention in the literature (see [10] for example).

This paper is organized as follows. In Sec. II, the quantum
electrodynamical model describing single-photon absorption
by a trapped moving two-level system is presented. Based on
the dipole and rotating-wave approximations, the dynamics
of the single-photon excitation process and its relation to the
relevant field correlation function is discussed in Sec. III. In
Sec. IV, characteristic features of the excitation probability and
its deviation from the ideal motionless case are investigated for
tightly confining trapping potentials. In the subsequent Sec. V,
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these results are generalized to weakly confining trapping
potentials with particular emphasis on the experimentally
interesting dynamical regime of spontaneous photon emission
rates large in comparison with relevant trapping frequencies.
Section VI finally explores possibilities to optimize the
excitation probability by periodic modulation of the trap
frequency of a harmonic trap.

II. A QUANTUM ELECTRODYNAMICAL MODEL

We consider a single trapped atom or ion, whose internal
electronic dynamics is modeled by a two-level system reso-
nantly coupled to an optical single-photon radiation field and
explore its capability of absorbing this single-photon almost
perfectly. Inspired by recent experiments [4,5,7] we assume
that the center of the trap is positioned in the focal point
of a large parabolic mirror which is capable of focusing a
well-directed asymptotically incoming single-photon radiation
field towards the two-level system trapped close to the focal
point of the parabola. This excitation process is depicted in
Fig. 1 schematically.

In order to describe the dynamics of this single-photon
excitation process, we take advantage of the fact that in
the optical frequency regime, typical wavelengths are large
in comparison with the Bohr radius characterizing spatial
extensions of atoms or ions in energetically low-lying bound
electronic states. Therefore, the interaction between the two-
level system and the radiation field can be described in the
dipole approximation. Furthermore, we assume that the time
scale of typical optical transitions is orders of magnitude
smaller than all other interaction-induced time scales, i.e.,
the optical transitions frequency ωeg is large in comparison to
the spontaneous decay rate in free space �. For atoms or ions
interacting with the radiation field in the optical frequency

FIG. 1. Single-photon absorption process in a parabolic cavity: a
two-level system trapped close to the focal point x = 0 of a parabolic
cavity is excited by an asymptotically incoming single-photon wave
packet. This wave packet couples to the two-level system in the same
way as a single-photon wave packet capable of exciting this two-level
system almost perfectly in free space [see Eq. (3.4)]. A suitable setup
with a trapped ion at the focal point of the parabolic mirror has been
described in [4,7,11].

regime, this is well satisfied (see for example the parameters
of the experiment described in [7]) (with � = 1.2 × 108 s−1

and ωeg = 5.1 × 1015 s−1). In this regime, the rotating-wave
approximation is applicable. In addition, the velocity of the
two-level system’s center-of-mass motion is assumed to be
negligible in comparison with the speed of light in vacuum
c so that the dynamics of the center-of-mass motion can be
described in the nonrelativistic approximation. Under these
conditions, the total Hamiltonian governing the dynamics of
the quantum electrodynamical interaction between the moving
two-level system and the radiation field is given by

Ĥ = ĤE + ĤT + ĤF + Ĥint. (2.1)

The free evolution of the radiation field is described by the
Hamiltonian ĤF = �

∑
i ωi â

†
i âi with the photonic destruction

and creation operators âi and âi† and with i indexing the modes
with frequency ωi of the transverse radiation field. The Hamil-
tonians ĤE = Eg|g〉〈g| + Ee|e〉〈e| and ĤT = p̂2/2m + VT(x̂)
describe the dynamics of the electronic degrees of freedom
and of the center of mass of the trapped two-level system.
The frequency of the relevant electronic transition is denoted
ωeg = (Ee − Eg)/� and x̂, p̂, and m are position operator,
momentum operator, and mass of the two-level system’s
center-of-mass degrees of freedom. The Hamiltonian Ĥint =
−Ê(+)(x̂) · d|e〉〈g| + H.c. describes the interaction between
the two-level system and the transverse radiation field in the
dipole and rotating-wave approximations with the two-level
system’s dipole matrix element d = 〈e|d̂|g〉 and its dipole
operator d̂. The mode decomposition of the positive part of
the transverse electric field operator is given by

Ê(+)(x) =
∑

j

i

√
�ωj

2ε0
gj (x)âj . (2.2)

The orthonormal transverse mode functions gi(x) are solutions
of the Helmholtz equation with appropriate boundary condi-
tions and with unit normalization per field mode. (ε0 is the
dielectric constant of the vacuum.)

In order to describe the dynamics of the absorption
by a single photon, we have to solve the time-dependent
Schrödinger equation with Hamiltonian (2.1). In particular,
we are interested in its solution with a separable pure state of
the form

|ψ0〉 = |g〉 |ψT〉 |ψF〉 (2.3)

prepared initially at time t = t0. Thereby, |ψT〉 describes the
pure initial state of the center-of-mass degree of freedom and
|ψF〉 denotes the initial one-photon state of the radiation field.
In the following, we are particularly interested in the center-
of-mass induced dynamics of this single-photon excitation
process for a photon state which is capable of exciting a
two-level system located at the fixed position x = 0, such as
the focal point of a parabolic mirror, almost perfectly.

III. DYNAMICS OF SINGLE-PHOTON ABSORPTION

In this section, we explore the dynamics of optimal resonant
single-photon absorption (in free space) by a moving trapped
two-level system whose Hamiltonian is given by Eq. (2.1).
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In view of the rotating-wave approximation, the Hamilto-
nian (2.1) conserves the numbers of excitations. Therefore,
for an initial state of the form of Eq. (2.3) the general
solution of the Schrödinger equation is given by a pure
quantum state which is a superposition of the photonic vacuum
state correlated with the excited two-level system and of a
single-photon multimode state correlated with the two-level
system in its ground state and with its center-of-mass degrees
of freedom generally entangled with the field modes. As the
center-of-mass motion is assumed to be nonrelativistic, the
resulting modification of the spontaneous photon emission
process from the excited two-level system is negligible so
that it is still described by the spontaneous decay rate � in free
space, i.e.,

� = ω3
eg|d|2

3πε0�c3
. (3.1)

Thus, from the time-dependent Schrödinger equation we find
that the probability of detecting at time t the two-level system
in its excited state |e〉 is given by

Pe(t) =
∫ t

t0

dt1e
i(ωeg+i�/2)(t−t1)

∫ t

t0

dt2e
−i(ωeg−i�/2)(t−t2)

×d∗

�
· 〈ψT |G(1)(x̂I (t1),t1,x̂I (t2),t2))|ψT 〉 · d

�
. (3.2)

This excitation probability is determined by the mean value of
the normally ordered field correlation tensor of first order, i.e.,

G(1)(x̂I (t1),t1,x̂I (t2),t2)

= 〈ψF |Ê−(x̂I (t1),t1) ⊗ Ê+(x̂I (t2),t2)|ψF 〉,
averaged over the two-level system’s initially prepared center-
of-mass state |ψT 〉. Thereby, the position operator

x̂I (t) = exp[iĤT (t − t0)/�]x̂ exp[−iĤT (t − t0)/�]

denotes the time evolution of the center-of-mass position of the
two-level system in the interaction picture. In this interaction
picture, the transverse electric field operators Ê(+)(xI (t),t) and

Ê(−)(xI (t),t) = [Ê(+)(xI (t),t)]
†

are defined by

Ê(+)(x,t) =
∑

j

i

√
�ωj

2ε0
gj (x)e−iωj (t−t0)âj . (3.3)

Let us now concentrate on an initially prepared one-photon
state |ψF 〉 which achieves almost perfect excitation of a two-
level system positioned at the fixed position x = 0 in free
space. It has been demonstrated [9] that the pure single-photon
state

|ψF 〉 =
∑

j

â
†
j |0〉1

�

√
�ωj

2ε0

d∗ · gj (x = 0)

ωj − ωeg − i�/2
eiωj (tout−t0) (3.4)

prepared at time t0 with �(tout − t0) � 1 achieves such an
almost perfect excitation at time tout in the absence of any
center-of-mass motion. The frequencies ωi of this one-photon
state are distributed according to a Lorentzian spectrum
centered resonantly around the two-level system’s transitions
frequency ωeg . The relative phases between these modes are
determined by the parameter tout which describes the time at
which a two-level system at the fixed position x = 0 is excited

almost perfectly. If the two-level system were positioned
in the center of a spherically symmetric cavity of radius
R with ideally conducting walls, for example, the discrete
orthonormal mode functions coupling to the two-level system
in the dipole approximation would be given by

gn(x) =
√

1

R
∇ × [

j1(ωnr/c)x × ∇Y 0
1 (θ,ϕ)

]

= −
√

3

4πR

ωn

c

[
eiωnr/cg(+)

ωn
(x) + e−iωnr/cg(−)

ωn
(x)

]
(3.5)

with

g(+)
ω (x) = −er cos θ

[
1

(ωr/c)2
+ i

(ωr/c)3

]

− eθ

sin θ

2

{
1

(ωr/c)2
− i

[
1

(ωr/c)
− 1

(ωr/c)3

]}
(3.6)

and with the angular momentum eigenfunction Y 0
1 (θ,ϕ) [12].

For real-valued frequencies ω the relation g(−)
ω (x) = [g(+)

ω (x)]
∗

applies. Here, j1(u) = sin u/u2 − cos u/u denotes the spher-
ical Bessel function of fractional order [12] and r = |x|. The
angle between the direction of the dipole matrix element d
and x is denoted θ . Furthermore, er and eθ are the spherical
coordinate unit vectors in the r and θ directions with the
z direction oriented parallel to the dipole vector d. In the
continuum limit of large cavity sizes, i.e., ωegR/c � 1,
the mode frequencies are given approximately by ωn =
cπ (n + 1)/R with n � 0 being integer.

In accordance with current experimental activities [4,5,7]
and with the scenario depicted in Fig. 1, this excitation process
can be realized with the help of a parabolic mirror with large
focal length f and with the two-level system’s trap centered
in the parabola’s focal point x = 0. In the geometric optical
limit in which f is large in comparison with the photon’s
wavelengths, the optimal single-photon state of Eq. (3.4) can
be prepared by focusing an appropriately polarized (almost)
plane-wave single-photon state which asymptotically enters
the parabola along the direction of its symmetry axis [13].

For the pure one-photon state |ψF 〉, the first-order correla-
tion tensor factorizes, i.e.,

G(1)(x̂I (t1),t1,x̂I (t2),t2) = F∗(x̂I (t1),t1) ⊗ F(x̂I (t2),t2)

with the effective one-photon operator F(x̂I (t),t) =
〈0|Ê(+)(x̂I (t),t)|ψF 〉. For our initial state, we get

F(x,t) = i

2ε0

∑
n

ωngn(x)e−iωn(t−t0)

× d∗ · gn(x = 0)

ωn − ωeg − i�/2
eiωn(tout−t0)

= i

ε0

∑
n

ω3
n

4πRc2

[
e−iωnt+g(+)

ωn
(x) + e−iωnt−g(−)

ωn
(x)

]

× d∗ · ez

ωn − ωeg − i�/2
(3.7)
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with t± = t − tout ∓ r/c. In the continuum limit, i.e., R → ∞,
we can replace the sum by an integral. We obtain

F(x,t) =
R→∞

i

4c3ε0π2

∫ ∞

0
dω[e−iωt+g(+)

ω (x) + e−iωt−g(−)
ω (x)]

× ω3d∗ · ez

ω − ωeg − i�/2
. (3.8)

By extending the region of integration to −∞ (which is
well justified for ωeg � �) and by applying Cauchy’s residue
theorem, we obtain the following analytical expression:

F(x,t) = − ��3

d · ez2
[g(+)

ω (x)	(−t+)e−iωt+

+ g(−)
ω (x)	(−t−)e−iωt− ]|ω=ωeg+i�/2. (3.9)

Close to the ideal position x = 0 of the two-level system, i.e.,
for η = ωegr/c 
 1, this one-photon operator simplifies to

F(x,t) = − ��

d · ez

ei(ωeg+i�/2)(tout−t)	(tout − t)

×
[

ez

(
1 − η2

10

)
+ eθ sin θ

η2

10
+ O(η4)

]
. (3.10)

Inserting Eq. (3.9) into Eq. (3.2) yields the time dependence of
the excitation probability Pe(t). For a two-level system fixed at
position x = 0 and for times t � t0, this one-photon excitation
probability reduces to

Pid (t) = e−�|tout−t |(1 − e−�(τ−t0))2 (3.11)

with τ = t	(tout − t) + tout	(t − tout). Thus, for large inter-
action times, i.e., �(τ − t0) � 1, the single-photon state of
Eq. (3.4) achieves almost perfect excitation of the two-level
system at time tout apart from terms exponentially small in the
parameter �(τ − t0) � 1.

Depending on the ratio between the characteristic time
scale of the center-of-mass motion and of the single-photon
absorption and spontaneous emission process, two extreme
dynamical cases can be distinguished. If the trap frequency
ωT of a harmonically trapped two-level system is much larger
than the spontaneous decay rate �, the spontaneous decay
process is so slow that details of the center-of-mass motion are
averaged out in the time integrals of Eq. (3.2). Consequently,
the excitation probability dominantly depends on the time-
averaged center-of-mass motion. In the opposite limit, i.e.,
ωT 
 �, the spontaneous photon emission process occurs
almost instantaneously on the time scale of the center-of-mass
motion. Consequently, the time evolution of the excitation
probability depends on details of the two-level system’s
center-of-mass motion in the trap.

IV. SINGLE-PHOTON ABSORPTION AND STRONG
CONFINEMENT OF THE CENTER-OF-MASS MOTION

Inserting Eq. (3.10) into Eq. (3.2), a systematic under-
standing of the influence of the two-level system’s center-
of-mass motion on the single-photon absorption process can
be obtained in cases in which this motion is confined to a
region close to the ideal position x = 0 in the sense that
η = ωegr/c 
 1. From Eqs. (3.10) and (3.2), we obtain the

result

Pe(t)

= �2
∫ t

t0

dt1

∫ t

t0

dt2	(tout − t1)	(tout − t2)e−�(t+tout−t1−t2)

×
{

1 − 2
ω2

eg

10c2
〈ψT |[ẑ2

I (t2) + 2x̂2
I (t2) + 2ŷ2

I (t2)
]|ψT 〉

+O(η4)

}
(4.1)

with x̂I (t), ŷI (t), ẑI (t) denoting the time-dependent Cartesian
x, y, z components of the position operator of the center-of-
mass degrees of freedom in the interaction picture. Thereby,
the z direction is oriented parallel to the dipole vector d.

Let us investigate the center-of-mass motion in an
anisotropic harmonic trapping potential of the form

VT (x) = mω2
zz

2/2 + mω2
xx

2/2 + mω2
yy

2/2 (4.2)

in more detail. In the interaction picture, the resulting dynamics
of the z component of the center-of-mass position is given by

ẑI (t) = ẑ cos[ωz(t − t0)] + p̂z

mωz

sin[ωz(t − t0)] (4.3)

with analogous expressions for the other Cartesian compo-
nents. Position and momentum operators in the Schrödinger
picture are denoted by ẑ and p̂z, etc. Inserting these position
operators into Eq. (4.1) yields the result

Pe(t)

Pid (t)
= 1 − ω2

eg

5c2

⎡
⎣�Az(τ )

2mωz

+ 2
∑

j=x,y

�Aj (τ )

2mωj

⎤
⎦ (4.4)

with τ = t	(tout − t) + tout	(t − tout) and with

Aj (τ ) = 〈ψT |b̂j
†2|ψT 〉�e2iωj (τ−t0)

� + 2iωj

1 − e−(�+2iωj )(τ−t0)

1 − e−�(τ−t0)

+〈ψT |(b̂j
†
b̂j + 1/2)|ψT 〉 + c.c. (4.5)

for j = x,y,z. The creation and destruction operators of the
harmonic oscillators in the Cartesian directions j = x,y,z are
denoted by b̂

†
j and b̂j .

According to Eq. ( 4.4) for long interaction times, i.e.,
τ − t0 � 1/�, and for small spontaneous photon emis-
sion rates, i.e., � 
 ωj , the excitation probability Pe(t)
is determined by the time-averaged center-of-mass motion.

In this dynamical regime we have Aj (τ ) = 2〈ψT |(b̂j
†
b̂j +

1/2)|ψT 〉 + O(�/ωj ) so that the deviation of the excitation
probability Pe(t) from its ideal value Pid (t) is proportional to
the mean energy of the center-of-mass degrees of freedom in
the harmonic trap, i.e.,

Pe(t)

Pid (t)
= 1 − ω2

eg

5c2

⎡
⎣�ωz〈ψT |(b̂z

†
b̂z + 1/2)|ψT 〉

mω2
z

+ 2
∑

j=x,y

�ωj 〈ψT |(b̂j
†
b̂j + 1/2)|ψT 〉

mω2
j

⎤
⎦. (4.6)

As the mean energy of a harmonic oscillator is lower
bounded by its zero-point energy in this dynamical regime, the
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excitation probability Pe(tout) assumes its maximal value if the
center-of-mass degrees of freedom are prepared in the ground
state of the harmonic trap so that b̂j |ψT 〉 = 0 for j = x,y,z.

According to Eq. (4.4) in the opposite limit of long
interaction times, i.e., τ − t0 � 1/�, but large spontaneous
photon emission rates, i.e., � � ωj , the excitation probability
Pe(t) is determined by the center-of-mass motion at time
τ = t	(tout − t) + tout	(t − tout). In this dynamical regime
we obtain the approximate result

Aj (τ ) = 〈ψT |(b̂j
†
eiωj (τ−t0) + b̂j e

−iωj (τ−t0))2|ψT 〉 (4.7)

by neglecting terms of the order of O(ωj/�). The resulting
strong dependence of the excitation probability Pe(t) on
the center-of-mass motion at time τ can be exploited for
minimizing the deviations of the excitation probability from
its ideal values Pid (t). This can be achieved by preparing
appropriate initial states |ψT 〉 which minimize the quantities
Aj (τ ). For this purpose, squeezed vacuum states [14] of the
center-of-mass motion of the form

|ψT 〉 = Ŝ(ξz)Ŝ(ξx)Ŝ(ξy)|0T 〉 (4.8)

offer interesting possibilities. In Eq. (4.8), |0T 〉 denotes the
ground state of the harmonic trap, i.e., b̂j |0T 〉 = 0 for j =
x,y,z and

Ŝ(ξj ) = eξ∗
j b̂2

j /2−ξj b̂
†2
j /2 (4.9)

are the squeezing operators for the Cartesian components j .
For complex-valued squeezing parameters of the form ξj =
rj exp(2iϕ) with rj > 0, for example, we obtain the result

Pe(t)

Pid (t)
= 1 − ω2

eg

5c2

(

z2

0e
−2rz + 2
x2

0e−2rx + 2
y2
0e

−2ry
)

(4.10)

at all times t for which sin[ωj (τ − t0) − ϕ] = 0. Thereby, the
quantities 
z0 = √

�/(2mωz), etc., denote the extensions of
the ground state of the harmonic trap along the corresponding
Cartesian directions. In contrast, at times for which cos[ωj (τ −
t0) − ϕ] = 0 these extensions are enhanced periodically by
corresponding factors of e2rz , etc. Thus, strong squeezing of
the initial state of Eq. (4.8) in all directions, i.e., rj � 1,
implies a significant increase of the excitation probability at
all interaction times t with sin[ωj (τ − t0)] = 0 and may lead
to significantly more efficient single-photon excitation than
achievable in cases of small spontaneous decay rates.

V. SINGLE-PHOTON ABSORPTION AND WEAK
CONFINEMENT OF THE CENTER-OF-MASS MOTION

If the center-of-mass motion is not confined to a region
around the ideal position x = 0 small in comparison with
the wavelength of the resonantly absorbed photon, a Taylor
expansion of the mode functions gn(x) around x = 0 is no
longer adequate. In this case, we start from the general form
of the one-photon operator as given by Eq. (3.9). Inserting this
expression into Eq. (3.2) yields the excitation probability.

For typical spontaneous decay times 1/� of the
order of nanoseconds and extensions of center-of-mass wave
packets 
x small in comparison with a few meters so that

�
x/c 
 1, this one-photon operator can be further simpli-
fied to the expression

F(x,t) = − 3��

2d · ez

	(tout − t)e−i(ωeg+i�/2)(t−tout)

× [g(+)
ω (x)eiωr/c + g(−)

ω (x)e−iωr/c]
∣∣
ω=ωeg

. (5.1)

In many trapping experiments, typical spontaneous photon
emission rates of electronic transitions � are large in com-
parison with typical trap frequencies, i.e., � � ωT . In this
dynamical regime, the single-photon absorption process takes
place almost instantaneously on the characteristic time scale
induced by the trapping potential. In particular, we demand
that for the typical velocities 
v(t) =

√
〈ψT |[ d

dt
x̂I (t)]

2|ψT 〉
the condition


v(t)/(λeg�) 
 1 (5.2)

is fulfilled within a time interval of the order of a few lifetimes
of the excited state, i.e., 1/�, around tout (λeg is the wavelength
of the optical transition |e〉 → |g〉.). For a thermal state of the
harmonic trap, we obtain


v(t) =
√

〈Ĥj 〉/m for j ∈ {x,y,z} (5.3)

with Ĥj denoting the Hamiltonian describing the dynamics
of the center-of-mass motion along the j axis. By using this
result, we get for the ground state


v(t) = √
ωj�/(2m) for j ∈ {x,y,z}. (5.4)

By using the experimental parameters given in [7] (trapping of
174Yb, ωT = 2π × 480 kHz, � = 1.2 × 108 s−1, and λeq =
369 nm), we obtain 
v(t)/(λeg�) = 5.3 × 10−4 
 1 for the
ground state and 
v(t)/(λeg�) = 3.3 × 10−3 
 1 for the
thermal state in the Doppler limit. Hence, the condition is well
satisfied for typical experimental parameters. Condition (5.2)
can also be seen as a condition for a negligible Doppler
shift in comparison with the spontaneous decay rate of the
atomic transition. Thus, the integration over times t1 and t2
appearing in Eq. (3.2) can be performed with the help of
partial integration [15] and the excitation probability at time
t is determined dominantly by the position operators x̂I (t1)
and x̂I (t2) at time τ = t	(tout − t) + tout	(t − tout) and at the
initial time t0. Consequently, for large interaction times, i.e.,
�(τ − t0) � 1, and neglecting terms exponentially small in
this parameter, Eq. (3.2) simplifies to

Pe(t)

Pid (t)
= 9

4
〈ψT |{ez · g(+)

ω [x̂I (τ )]eiω|x̂I (τ )|/c + ez · g(−)
ω [x̂I (τ )]

× e−iω|x̂I (τ )|/c}2|ω=ωeg
|ψT 〉. (5.5)

For a spherically symmetric trapping potential, a simple
analytical relation can be obtained from Eq. (5.5) if at the ob-
servation time t the center-of-mass degrees of freedom can be
described by an isotropic Gaussian state ρ̂T (τ ) centered around
x = 0 with spatial variance Tr[ρ̂T (τ )x̂2] ≡ Tr[ρ̂T x̂2

I (τ )], i.e.,

Pe(t)

Pid (t)
= 3e−2η2

0

10η6
0

[−2η4
0 − η2

0 + (
2η4

0 − η2
0 + 1

)
e2η2

0 − 1
]

(5.6)
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FIG. 2. Probability Pe(t) of exciting a two-level system in a
spherically symmetric trap and its dependence on the effective
Lamb-Dicke parameter η0 [see Eq. (5.7)]: the center-of-mass state
ρ̂T (τ ) is assumed to be an isotropic Gaussian state. The spontaneous
decay rate is assumed to be large compared to the trap frequency, i.e.,
� � ωtrap.

with the effective (time-dependent) Lamb-Dicke parameter

η0 = ωeg

c0

√
Tr

[
ρ̂T x̂2

I (τ )
]/

3. (5.7)

This result can be applied to a large class of center-of-mass
states including squeezed vacuum and thermal states (with
respect to the isotropic trapping potential). The dependence of
the excitation probability Pe(t)/Pid (t) on the effective Lamb-
Dicke parameter η0 is depicted in Fig. 2 for � � ωT. The
corresponding time dependence of the excitation probability
Pe(t) is illustrated in Fig. 3 for several values of η0. It
is apparent that for small effective Lamb-Dicke parameters
η0, almost perfect excitation is achievable at time tout. For
all effective Lamb-Dicke parameters, almost instantaneous
excitation with a large spontaneous decay rate, i.e., � � ωT , is
more effective than excitation with a small spontaneous decay
rate, i.e., � 
 ωT .

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8
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FIG. 3. Time dependence of the excitation probability Pe(t) in
a spherical symmetric trap for an isotropic Gaussian center-of-mass
state ρ̂T (τ ): the parameter η0 characterizing the center-of-mass state
is chosen to be η0 → 0 (blue), η0 = 1 (orange), and η0 = 2 (red).
The trapping frequency is small, i.e., � � ωT , so that the time
dependence of η0 can be neglected. The interaction time is large, i.e.,
�(τ − t0) � 1.

VI. OPTIMIZING SINGLE-PHOTON ABSORPTION
BY COHERENT CONTROL OF THE

CENTER-OF-MASS MOTION

As discussed in Sec. V, the maximum probability for
exciting the two-level system in the regime � � ωtrap is mainly
limited by the spatial width of the center-of-mass state during
the short time of the order 1/� in which the absorption process
takes place. This limitation is of particular significance in
cases in which no sub-Doppler cooling techniques are applied
and in which this spatial width is not sufficiently small. A
straightforward strategy to overcome this hurdle is to increase
the depth of the trap and thus increase the confinement of the
center-of-mass degrees of freedom. This procedure, however,
is typically limited by experimental constraints and therefore
cannot constitute an ultimate solution. As discussed in Sec. IV,
even if the relevant trapping frequency becomes larger than
the spontaneous photon emission rate, the achievable spatial
confinement of the center-of-mass state is limited ultimately by
the zero-point fluctuations in the trap. However, as discussed
in Sec. V, if the photon absorption process takes place
almost instantaneously, it is possible to increase the excitation
probability by preparing a center-of-mass state whose width
is sufficiently small during the photon absorption process,
such as a squeezed state, for example. The squeezing of the
center-of-mass state in ion traps has already been demonstrated
in experiment [16,17]. One method for achieving significant
squeezing is to modulate the trapping frequency with twice
the trapping frequency [18,19]. This way, highly efficient
one-photon excitation can be achieved even in a weakly
confining harmonic trapping potential.

For this purpose, let us consider the dynamics of the
center-of-mass motion of a nonrelativistic particle of mass m

in a periodically modulated spherically symmetric harmonic
trapping potential of the form

VT (x,t) = 1
2mω2(t)x2,

ω2(t) = ω2
T + ω2

T δ sin[ωM (t − t0)]. (6.1)

The trapping potential above corresponds to the well-studied
problem of a parametric oscillator. The time evolution of the
classical as well as the quantum mechanical problem can
be expressed by using solutions of the Mathieu differential
equation [12]. It is well known that the solutions of the Mathieu
equation become unstable in the region ωM ≈ 2ωT [12]. This
phenomenon of parametric resonance can be used to achieve
significant squeezing of the center-of-mass state.

If the modulation strength of the trapping potentials is
small, i.e., |δ| 
 1, and ωM = 2ωT the dynamics of the
center-of-mass motion can be determined perturbatively. The
unperturbed dynamics is defined by the modulation strength
δ = 0 and by the corresponding explicitly time-independent
Hamiltonian Ĥ0 = p̂2/(2m) + mω2

T x2/2. The resulting time
evolution of an initially prepared pure state |ψT 〉 is given by

|ψT (t)〉 = Ŝ(ξx(t))Ŝ(ξy(t))Ŝ(ξz(t))e−iĤ0(t−t0)/�|ψT 〉 (6.2)

with the time-dependent squeezing parameters ξx(t) = ξy(t) =
ξz(t) = r(t)e−2iϕ(t) being approximately determined by

r(t) = ωT δ(t − t0)/4, ϕ(t) = ωT (t − t0) − π/2 . (6.3)
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FIG. 4. Time evolution of the squeezing parameter r(t) for δ =
0.5: numerically exact results for modulation frequencies ωM = 2ωT

(orange solid line), ωM = 2.2ωT (green solid line), ωM = 2.3ωT (blue
solid line), and the associated approximation (dotted line).

The time evolution of the squeezing parameter r(t) is
depicted in the numerical results of Fig. 4 for several scenarios.
The plot illustrates that for ωM = 2ωT the numerical results
are in excellent agreement with the approximate analytical
expression of Eq. (6.3) even for moderately large modulation
amplitudes. Even if the condition ωM = 2ωT is violated,
significant squeezing can be achieved. For larger deviations of
ωM form 2ωT [roughly |ω2

M − (2ωT )2| � 2δω2
T ] a transition

from an unstable solution of the Mathieu equation to a stable
solution takes place. Squeezing can also be achieved in the
stable region, but in this case the value of the squeezing
parameter is bounded from above (see solid blue line in Fig. 4).

For an initially prepared energy eigenstate of the unper-
turbed trapping Hamiltonian Ĥ0, the corresponding mean
values and variances of the position operator are given by

〈x̂I (t)〉 = 0,

〈x̂2
I (t)〉 = 〈ψT |Ĥ0|ψT 〉

mω2
T

[e−2r(t) cos2 ϕ(t) + e2r(t) sin2 ϕ(t)].

(6.4)

This implies that also for any incoherent mixture of energy
eigenstates, such as a thermal state, for δ > 0 at times t with
sin[ϕ(t)] = 0 the position uncertainties are squeezed signifi-
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FIG. 5. Influence of squeezing of initially prepared thermal
center-of-mass states on excitation probability Pe(t): the parameters
are r = 0 (blue), r = 1 (green), and r = 2 (orange). The solid lines
correspond to sin2[ϕ(t)] = 0 and the dashed lines correspond to
sin2[ϕ(t)] = 1 during the short time the absorption of the photon
takes place. For the experimental parameters given in [7] (trapping
of 174Yb, ωT = 2π × 480 kHz, � = 1.2 × 108 s−1, and ωeg =
5.1 × 1015 s−1), we obtain ω2

eg〈Ĥ0〉t0/3c2mω2
T = 1.7 × 10−2 (ground

state) and ω2
eg〈Ĥ0〉t0/3c2mω2

T = 0.7 (thermal state in Doppler limit).

cantly. For a thermal state, the mean energy of the unperturbed
isotropic harmonic motion in the trap at temperature T is
given by 〈Ĥ0〉 = 3�ωT (1/2 + 1/{exp[�ωT /(kT )] − 1}). The
squeezing r(t) induced by the periodic modulation of the
trapping frequency with twice the trapping frequency ωT

increases linearly with the interaction time (t − t0). Thus,
it is capable of reducing the uncertainty around the mean
position 〈x̂I (t)〉 = 0 significantly even for an initially prepared
thermal state. Consequently, even if the center-of-mass motion
is confined only weakly by a trapping potential, the excitation
probability can achieve values very close to the ideal motion-
less case.

The influence of squeezing of initially prepared thermal
center-of-mass states on the excitation probability Pe(t) is
illustrated in Fig. 5 for several scenarios. These results were
derived under the assumption that the condition stated in
Eq. (5.2) is satisfied. If the degree of squeezing becomes too
large, this condition may be violated and our results no longer
apply. We can take this into account by using the results from
Sec. IV. By using Eq. (4.4), we obtain the following probability
for exciting the atom for a squeezed thermal center-of-mass
state with sin2[φ(tout)] = 0:

Pe(tout) = 1 − ω2
eg

5c2

{
2

�2m2

[〈
p̂2

z (tout)
〉 + 2

〈
p̂2

x(tout)
〉 + 2

〈
p̂2

y(tout)
〉] − 2

�2

[
ω2

z

〈
ẑ2
I (tout)

〉 + 2ω2
x

〈
x̂2

I (tout)
〉 + 2ω2

y

〈
ŷ2

I (tout)
〉]

+ 〈
ẑ2
I (tout)

〉 + 2
〈
x̂2

I (tout)
〉 + 2

〈
ŷ2

I (tout)
〉} + O

(
ω3

x,y,z

�3

)
(6.5)

for (tout − t0)� � 1. For a spherically symmetric trapping potential, this simplifies to

Pe(tout) = 1 − ω2
eg〈ψT |Ĥ0|ψT 〉

3mc2

[(
1 − 2ω2

T

�2

)
1

ω2
T

e−2r(tout) + 2

�2
e2r(tout)

]
+ O

(
ω3

T

�3

)

≈ 1 − ω2
eg〈ψT |Ĥ0|ψT 〉

3mc2

[
1

ω2
T

e−2r(tout) + 2

�2
e2r(tout)

]
. (6.6)
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By using the above expression, we find that squeezing is
increasing the probability for absorbing the photon as long
as

r � ln[�/(
√

2ωT )]/2. (6.7)

For the parameters of the experiment described in [7] (ωT =
2π × 480 kHz, � = 1.2 × 108 s−1), we obtain

r � 1.7.

For smaller trapping frequencies or higher decay rates, even
larger squeezing parameters r are still beneficial. Hence, for
typical experimental parameters a significant increase of the
excitation probability can be achieved.

Although our discussion has concentrated on a spherically
symmetric harmonic trapping potential, generalizations to
anisotropic cases are straightforward. They lead to different
degrees of squeezing in different directions.

VII. CONCLUSION

We have investigated the influence of the center-of-mass
motion of a trapped two-level system on resonant single-
photon absorption. In particular, we have concentrated on
single-photon excitation by an optimal photon wave packet
which is capable of exciting a two-level system at a fixed
position almost perfectly.

It has been demonstrated that the achievable excitation
probability depends crucially on the ratio between the time
scales of spontaneous photon emission and absorption on the

one hand and of the center-of-mass motion in the trap on
the other hand. If single-photon absorption and emission takes
place on a time scale long in comparison with the characteristic
time scale of the center-of-mass motion in the trap, it is the
time-averaged center-of-mass motion which determines and
limits the achievable single-photon excitation probability. In
the opposite limit of fast spontaneous photon emission and
absorption, it is the spatial width of the center-of-mass wave
packet at the absorption time which limits the achievable
single-photon excitation probability. This latter dependence
can be exploited for increasing the achievable excitation
probabilities significantly by squeezing the spatial width of
the center-of-mass wave packet. By modulating the harmonic
trapping frequency appropriately, such a significant squeezing
at particular times during the periodic center-of-mass motion
can be achieved. This way, the single-photon wave packets
considered can achieve highly efficient excitation of a two-
level system in free space even if the center-of-mass motion is
only weakly confined and prepared in a thermal state initially.
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