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We propose a scheme for triggering a dissipation-dominated highly efficient excitation transfer from a single-
photon wave packet to a single quantum emitter. This single-photon-induced optical pumping turns dominant
dissipative processes, such as spontaneous photon emission by the emitter or cavity decay, into valuable tools for
quantum information processing and quantum communication. It works for an arbitrarily shaped single-photon
wave packet with sufficiently small bandwidth provided a matching condition is satisfied which balances the
dissipative rates involved. Our scheme does not require additional laser pulses or quantum feedback and does
not rely on high finesse optical resonators. In particular, it can be used to enhance significantly the coupling of
a single photon to a single quantum emitter implanted in a one-dimensional waveguide or even in a free space
scenario. We demonstrate the usefulness of our scheme for building a deterministic quantum memory and a
deterministic frequency converter between photonic qubits of different wavelengths.
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I. INTRODUCTION

Achieving highly efficient excitation transfer from a single
photon to a material quantum system with the possibility
of a controlled manipulation of the resulting quantum state
is a crucial prerequisite for advancing quantum technology
with potential applications ranging from quantum communi-
cation [1] and computation [2] to fundamental tests of quantum
mechanics [3]. Coherent quantum processes provide powerful
tools for such an excitation transfer on the single-photon level.

With the help of electromagnetically induced transparency
[4,5], for example, a single-photon wave packet of quite
arbitrary pulse shape can be stored in a collective excitation
of a macroscopically large number of atoms [5] or in a
solid [6]. However, the controlled manipulation of the resulting
macroscopic excitation for purposes of quantum information
processing is highly challenging. In contrast, excitation trans-
fer from a single photon to a single quantum emitter, such as a
trapped atom, offers the advantage that the resulting quantum
state can be manipulated with high accuracy [7–12]. Based
on coherent processes an early protocol suitable for scalable
photonic quantum information processing has been proposed
by Cirac et al. [7] and has been implemented experimentally
by Ritter et al. [8]. However, this protocol requires detailed
knowledge of shape and of arrival time of the photon wave
packet for triggering an appropriate coherent laser-induced
process. A coherent scheme overcoming the complications of
such a conditional pulse shaping has been proposed by Duan
and Kimble [9]. It takes advantage of a trapped atom’s state
dependent frequency shift of the cavity mode which results in a
phase flip of an incoming single photon reflected by the cavity.
This scheme has been used to build a nondestructive photon
detector [10], a quantum gate between a matter and a photonic
qubit [11], and a quantum memory for the heralded storage
of a single-photonic qubit [12]. However, for the heralded
storage of a single-photonic qubit the outgoing photon has to
be measured and quantum feedback has to be applied. Thus
the efficiency is limited by the efficiency of the single-photon
detector.

The natural question arises whether it is possible to achieve
highly efficient excitation transfer from a single photon with
a rather arbitrary pulse shape to a single quantum emitter

also in a way that the challenging complications arising from
conditional tailoring of laser pulses and from imperfections
affecting postselective photon detection processes can be
circumvented. We present such a scheme which is capable of
accomplishing basic tasks of quantum information processing,
such as implementing a deterministic single atom quantum
memory or a deterministic frequency converter for a photonic
qubit. Contrary to previous proposals based on coherent
quantum processes our scheme is enabled by an appropriate
balancing of dissipative processes, such as spontaneous photon
emission and cavity decay. It is demonstrated that this way
a single-photon wave packet of rather arbitrary shape can
trigger a highly efficient excitation transfer to a material
quantum emitter. For photon wave packets with sufficiently
small bandwidths the high efficiency of this excitation transfer
is independent of the photon wave packet’s shape.

This single-photon-induced optical pumping [13] does not
require an optical resonator and is applicable to various
scenarios including highly efficient coupling of a single
atom to a single photon propagating in a one-dimensional
waveguide, such as a nanowire [14,15], or a nanofiber [16], or
in a coplanar waveguide (circuit QED) [17], or even in free
space [18,19]. A schematic representation of a suitable cavity-
and fiber-based scenario as well as a schematic representation
of an atom coupled to the evanescent field surrounding a
one-dimensional waveguide is depicted in Figs. 1(a) and 1(b).

The scheme presented in this article paves the way to
scalable quantum communication networks, as it relaxes the
requirements on the synchronization of the nodes of the net-
work, i.e., detailed knowledge on the arrival time and shape of
the photons is not required, and it is not limited by the
efficiency of single-photon detectors.

The body of this article is divided into four parts. In Sec. II
we introduce the Hamiltonians for modeling the dynamics for
a fiber- and cavity-based scenario as well as for a waveguide
or free-space scenario. Based on these models, we analyze
the dynamics of these systems in Sec. III, and derive the
conditions for triggering an efficient excitation transfer. A
key step in the derivation of these analytical results is an
adiabatic approximation. In Sec. IV, we supplement these
analytical results by a numerical investigation. We show that
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FIG. 1. (a) Schematic representation of a fiber and cavity based
scenario. A single three-level atom is trapped inside the cavity and
a single photon is propagating through the fiber. (b) Schematic
representation of a three-level atom coupled to the evanescent field
surrounding a one-dimensional waveguide with a single photon
propagating along this waveguide.

our scheme allows one to trigger an efficient state transfer
also with photons of a finite bandwidth. Finally, in Sec. V
we show possible application of our scheme for building a
deterministic quantum memory and a deterministic frequency
converter between photonic qubits of different wavelengths.

II. QUANTUM OPTICAL MODEL

Let us start by considering a fiber- and cavity-based system
as schematically depicted in Fig. 1(a). A three-level atom is
interacting resonantly with two modes of a surrounding high
finesse cavity. A photon propagating through a fiber can enter
this cavity by transmission through a mirror of the single-sided
cavity. Spontaneous decay of the three-level atom is modeled
by coupling to the continua of electromagnetic field modes
orthogonal to the modes of the resonant cavity and of the fiber.
We assume that the dipole and rotating-wave approximations
are applicable. In the interaction picture the Hamiltonian reads

Ĥ
cavity
int (t)/� = [

iges â
C†
es |s〉〈e| + igef â

C†
ef |f 〉〈e| + H.c.

]
+ [√

2κes â
Fes (t)âC†

es +√
2κef âFef (t)âC†

ef +H.c.
]

− 1

�

[
e−iωes (t−t0)des · Ê−

Bes
(t)|s〉〈e|+H.c.

]
− 1

�

[
e−iωef (t−t0)def · Ê−

Bef
(t)|f 〉〈e|+H.c.

]
,

(1)

âC
es and âC

ef being the annihilation operators of the cavity
modes. These modes couple resonantly to the atomic tran-
sitions |e〉 ↔ |s〉 and |e〉 ↔ |f 〉 with the atomic transition
frequencies ωes and ωef and the corresponding vacuum Rabi
frequencies ges and gef . These couplings are either due to
different polarizations or different frequencies of the cavity
modes. Strictly speaking, the modes in the cavity are not modes

but isolated resonances, i.e., bound states in the continuum, as
they have a finite spectral width, which is determined by the
corresponding cavity loss rates 2κes and 2κef . In the following
we assume that the photons in the cavity dominantly leak out
through one mirror of the single-sided cavity directly into the
fiber. We take this into account by using a Fano-Anderson-type
model [20–22]. Hereby, the coupling between cavity modes
and fiber modes can be described by collective annihilation
operators of the fiber [23], i.e.,√

2κkâ
Fk (t) =

∑
j∈Fk

cj âj e
−i(ωj −ωk)(t−t0) for k ∈ {es,ef },

with âj (j ∈ Fes(Fef )) describing the orthogonal fiber modes
with frequencies ωj coupling to the cavity mode described
by the annihilation operator âC

es (âC
ef ). The coupling of the

atomic transition |e〉 ↔ |s〉 (|e〉 ↔ |f 〉) to the electromagnetic
background modes Bes (Bef ) is characterized by the electric-
field operator whose negative frequency parts are denoted
Ê−

Bes
(t) (Ê−

Bef
(t)) and the dipole matrix element des (def ).

As it turns out, our scheme can also be applied in the absence
of a cavity. It can be used to couple a photon propagating
along a waveguide to a quantum emitter placed in the vicinity
of a waveguide as depicted in Fig. 1(b). This can even be
generalized to coupling a photon propagating in free space to
a single atom or ion. In the interaction picture, the Hamiltonian
describing the dynamics of a three-level atom coupling to a
photon propagating along a one-dimensional waveguide or in
free space is of a similar form and reads

Ĥ
wg
int (t) = −[e−iωes (t−t0)des · Ê−(xA,t)|s〉〈e| + H.c.]

− [e−iωef (t−t0)def · E−(xA,t)|f 〉〈e| + H.c.].

Hereby, Ê−(xA,t) and Ê+(xA,t) are the negative and positive
frequency parts of the electric-field operator. The detailed
description of the waveguide or the free-space scenario at
hand is encoded in the structure of the modes entering the
field operator Ê±(xA,t). For analyzing the waveguide scenario
we will assume that we can split the set of modes of the
electromagnetic radiation field into four subsets of orthogonal
mode functions, i.e., solutions of the Helmholtz equation with
appropriate boundary conditions, corresponding to the four
photonic reservoirs Fes , Fef , Bes , and Bef . The reservoirs Fes

and Fef involve the modes describing the propagation of pho-
tons along the waveguide, with the reservoir Fes coupling to the
transition |e〉 ↔ |s〉 and with the reservoir Fef coupling to the
transition |e〉 ↔ |f 〉. The reservoirs Bes and Bef correspond
to the modes describing the propagation of photons not guided
by the waveguide. They are used to model the emission of
photons out of the waveguide and are also grouped according
to their coupling to the transitions |e〉 ↔ |s〉 and |e〉 ↔ |f 〉.
Accordingly, we can decompose the electric-field operator

Ê±(x,t) = Ê±
Fes

(x,t) + Ê±
Fef

(x,t) + Ê±
Bes

(x,t) + Ê±
Bef

(x,t)

into four parts corresponding to these four reservoirs.
In general, the splitting of the set of modes into the four
reservoirs listed above is connected with some approximations,
as effects such as the damping of photons propagating along
the waveguide are not described by this ansatz. However, our
model allows us to take the most important loss effect, the
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emission of a photon by the atom out of the waveguide, into
account. Furthermore, a more detailed model, transcending the
splitting of the set of modes into the four reservoirs requires
detailed knowledge of the structure of the mode functions and,
hence, depends on the details of the experimental setup under
consideration. As we intend to discuss general waveguide
scenarios our subsequent discussion is based on the model
introduced above which allows us to take the most important
physical effects into account.

III. DYNAMICS AND CONDITIONS FOR AN EFFICIENT
EXCITATION TRANSFER

In this section we investigate the dynamics of the quantum
optical model of Sec. II. We derive a set of conditions for
triggering an efficient state transfer of the atom by a single
incoming photon.

A. Cavity

We start with the cavity- and fiber-based scenario described
by the Hamiltonian Ĥ

cavity
int (t) of Eq. (1). We consider an initial

state |ψ(t0)〉 in which a single photon with frequencies centered
around ωes is propagating though the fiber towards the left
mirror. The remaining parts of the radiation field are assumed
to be in the vacuum state and the atom is initially prepared in
state |s〉, i.e.,

|ψ(t0)〉 = |s〉|ψin〉Fes |0〉Fef |0〉C
es |0〉C

ef |0〉Bes |0〉Bef .

The initial state of the single photon propagating through the
fiber is denoted |ψin〉Fes and |0〉C

es , |0〉C
ef , |0〉Fef |0〉Bes |0〉Bef

are the vacuum states of the cavity modes, of the initially
unoccupied fiber modes, and of the modes of the electro-
magnetic background. By applying the methods developed
in [23–25] the dynamics of the pure quantum state |ψP(t)〉 can
be described by the equation

d

dt
|ψP(t)〉 = −iĜ|ψP(t)〉 + |S〉

√
2κesfin(t), (2)

with the non-Hermitian generator

Ĝ = i[ges |S〉〈E| + gef |F 〉〈E| − H.c.]

− iκes |S〉〈S| − iκef |F 〉〈F | − i
γef + γes

2
|E〉〈E|. (3)

The anti-Hermitian part of Ĝ describes the depletion of the
population out of the subspace spanned by |S〉, |E〉, |F 〉. The
atomic and photonic excitations inside the cavity are described
by the orthonormal quantum states

|E〉 ≡ |e〉|0〉Fes |0〉Fef |0〉C
es |0〉C

ef |0〉Bes |0〉Bef ,

|S〉 ≡ |s〉|0〉Fes |0〉Fef |1〉C
es |0〉C

ef |0〉Bes |0〉Bef ,

|F 〉 ≡ |f 〉|0〉Fes |0〉Fef |0〉C
es |1〉C

ef |0〉Bes |0〉Bef .

The inhomogeneity of Eq. (2) with amplitude

ifin(t) = Fes 〈0 | âFes (t) | ψin〉Fes (4)

characterizes the incoming single photon. The spontaneous
decay rates of the dipole transitions |e〉 ↔ |s〉 and |e〉 ↔ |f 〉
are denoted γes and γef . A schematic representation of the
coupling of the states |E〉, |S〉, and |F 〉 among each other as

FIG. 2. Schematic representation of the couplings between the
states |E〉, |S〉, and |F 〉 as well as their couplings to the reservoirs
Fes , Fef , Bes , and Bef .

well as their couplings to the reservoirs Fes , Fef , Bes , and
Bef as described by Eq. (2) is illustrated in Fig. 2. In the
Appendix, we derive an equation similar to Eq. (2) for the
waveguide scenario in the absence of a cavity. The derivation
of Eq. (2) follows the same lines.

The solution of Eq. (2) is given by

|ψP(t)〉 =
√

2κes

∫ t

t0

e−iĜ(t ′−t0)|S〉fin(t ′)dt ′. (5)

We concentrate on the adiabatic dynamical regime in which
the bandwidth of the incoming single-photon wave packet, i.e.,

�ω =
√∫

R

∣∣∣∣ d

dt
fin(t)

∣∣∣∣
2

dt

/ ∫
R

|fin(t)|2dt, (6)

is much smaller than the eigenfrequencies of the generator Ĝ,
i.e.,

�ω � κes,∣∣∣∣κes + (γes + γef )/2

2
±

[(
κes − (γes + γef )/2

2

)2

− |ges |2 − |gef |2
]1/2∣∣∣∣. (7)

Such small bandwidth photons can be produced by the method
introduced in [7] and implemented in [8,26]. In this dynamical
regime [27], we arrive at the approximate result

|ψP(t)〉√
2κes

= fin(t)
∫ ∞

0
e−iĜt ′ |S〉dt ′ = −ifin(t)Ĝ−1|S〉

if the initial state has been prepared long before the wave
packet arrives at the cavity, i.e., t0 → −∞. Long after the
photon has left the cavity again, i.e., for t → ∞ the atomic
transition probability P|s〉→|f 〉 between initial and final states
|s〉 and |f 〉 is given by

P|s〉→|f 〉 =
∫
R

[2κef |〈F |ψP(t ′)〉|2 + γef |〈E|ψP(t ′)〉|2]dt ′

= η

∫
R

|fin(t)|2dt (8)

with the efficiency

η = 4χesχef

(χes + χef )2

2Ces

1 + 2Ces

, (9)

the transition rates χk = γk(1 + 2Ck), and the cooperativ-
ity parameters Ck = |gk|2/(κkγk) for k ∈ {es,ef }. Hereby,
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∫ t

t0
|fin(t ′)|2dt ′ is the probability that in the time interval [t0,t]

the single photon has arrived at the left mirror (not necessarily
entering the cavity). Provided the photon has arrived at the left
mirror [during the time interval [t0,∞)] the probability of the
resulting excitation transfer to state |f 〉 equals the efficiency
η. For an efficiency close to unity it is required that

χes = χef , 1 � Ces. (10)

The equality of the transition rates may be viewed as an
optical impedance matching condition. The second require-
ment implies that for unit efficiency the atom should not
decay from state |e〉 back to state |s〉 by photon emission
into the electromagnetic background. Interestingly, the optimal
efficiency achievable is limited by the spontaneous decay
|e〉 → |s〉 only and not by photon emission into the background
modes coupling to the transition |e〉 ↔ |f 〉. If the spontaneous
decay rate γef is sufficiently large we do not even require any
coupling of the transition |e〉 ↔ |f 〉 to one of the cavity modes
in order to achieve unit efficiency. Realistic parameters for
optical cavities [10–12] result in efficiencies of roughly 92%
provided the impedance matching condition is fulfilled. The
high efficiency of the scheme can be explained by a destructive
interference of the photons getting reflected by the cavity and
the photons which couple into the cavity, interact with the atom
and leak out back to the reservoir Fes .

It might be of interest for experimental implementations
to take the background-induced radiative decay of the excited
state |e〉 to states other than |s〉 and |f 〉 into account. By
doing so, we obtain the following efficiency for triggering a
state transfer (i.e., not finding the atom in the state |s〉 after
t → ∞),

η = 4χes(χef + γeo)

(χes + χef + γeo)2

2Ces

1 + 2Ces

, (11)

with γeo being the spontaneous decay rate of the state |e〉 to
states other than |s〉 and |f 〉. Hence the rate χef is effectively
replaced by χef + γeo. The efficiency for triggering a state
transfer and finding the atom finally in state |f 〉 is given by

η|s〉→|f 〉 = η
χef

χef + γeo

. (12)

B. Waveguide and free space

Optimizing this excitation transfer by balancing the relevant
dissipation-induced rates as described by condition (10) is
not only applicable to fiber- and cavity-based scenarios. Our
scheme can also be applied to couple a quantum emitter
to a single photon propagating through a one-dimensional
waveguide or even in free space. In the following we assume
that initially a single photon resonantly coupling to the
atomic transition |e〉 ↔ |s〉 is propagating along a waveguide.
Furthermore, the radiative background as well as the modes
of the reservoir Fef are assumed to be initially in the vacuum
state with the atom being initially prepared in the state |s〉.
Thus the pure initial state is given by

|ψ(t0)〉 = |s〉|ψin〉Fes |0〉Fef |0〉Bes |0〉Bef ,

with |ψin〉Fes being the initial state of the single photon propa-
gating through the waveguide. As the number of excitations is

a conserved quantity, in the rotating-wave approximation the
time evolution of the quantum state of the system is of the form

|ψ(t)〉 = ψe(t)|e〉|0〉Fes |0〉Fef |0〉Bes |0〉Bef

+ |s〉|ψes(t)〉Fes ,Bes |0〉Fef |0〉Bef

+ |f 〉|ψef (t)〉Fef ,Bef |0〉Fes |0〉Bes , (13)

with ψe(t) being the probability amplitude of finding the
atom in the excited state and with the (unnormalized) state
|ψes(t)〉Fes ,Bes (|ψef (t)〉Fef ,Bef ) describing a single photon in
the reservoir Fes , Bes (Fef , Bef ). We can derive the following
differential equation characterizing the probability amplitude
of finding the atom in an excited state:

d

dt
ψe(t) = −1

2
(	es + 	ef + γes + γef )ψe(t) + i

√
	esfin(t),

(14)

with√
	esfin(t) = 1

�
eiωes (t−t0)〈0|d∗

es · [E−
es(xA,t)]†|ψin〉Fes (15)

describing the influence of the incoming single-photon
wave packet. Hereby, the relevant matter field couplings
in the absence of a cavity are characterized by the rates of
spontaneous photon exchange through the waveguide caused
by the transitions |e〉 ↔ |s〉 and |e〉 ↔ |f 〉, say 	es and 	ef ,
and by the analogous rates γes and γef of spontaneous photon
emission out of the waveguide into orthogonal modes of the
electromagnetic background. The derivation of Eq. (14) can
be found in the Appendix. Its solution is given by the integral
representation

ψe(t) = i
√

	es

∫ t

t0

e−(	es+γes+	ef +γef )(t−t ′)/2fin(t ′). (16)

In the following, we again focus on the adiabatic dynamical
regime in which the bandwidth of the incoming single-photon
wave packet �ω is much smaller than the total spontaneous
decay rate of the excited state, i.e.,

�ω � (	es + γes + 	ef + γef )/2. (17)

In this adiabatic regime the probability amplitude of finding
the atom in the excited state follows the temporal profile of
the incoming single-photon wave packet. Thus, after a partial
integration, we obtain from Eq. (16) the approximate result

ψe(t) = i
2
√

	es

	es + γes + 	ef + γef

fin(t) (18)

if the initial state has been prepared long before the photon
wave packet arrives at the atom, i.e., t0 → −∞. As discussed
in the case of a cavity, we can use the above result to evaluate
the probability for triggering an efficient excitation transfer
from state |s〉 to state |f 〉. Long after the photon has left
the atom again, i.e., for t → ∞, the corresponding atomic
transition probability is given by

P|s〉→|f 〉 = (	ef + γef )
∫
R

|〈e|ψ(t ′)〉|2 (19)

= η

∫
R

|fin(t ′)|2dt ′. (20)
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It is possible to achieve∫
R

|fin(t ′)|2dt ′ = 1 (21)

in a chiral waveguide [28–30] or in a nonchiral waveguide if
one side of the waveguide is terminated by a mirror causing
constructive interference of the electric fields of the incoming
and reflected wave packet at the position of the atom. In
general, the presence of a mirror results in non-Markovian
effects. However, if the distance of the atom to the mirror is
small compared to c/(	es + γes + 	ef + γef ) with c being the
speed of light, these non-Markovian effects can be neglected.
The corresponding efficiency for triggering the state transfer
is given by

η = 4χesχef

(χes + χef )2

	es

	es + γes

, (22)

with

χes = γes + 	es, (23)

χef = γef + 	ef (24)

in analogy to the transition rates discussed in the fiber- and
cavity-based scenarios. Note the close similarity to Eq. (9)
describing the efficiency for the cavity- and fiber-based
scenario. Optimal state transfer in the absence of a cavity
is achievable if

χes = χef , γes � 	es. (25)

The emission of photons by the atom into the waveguide
is enhanced by confining the field propagating along the
wavelength to subwavelength length scales. For realistic ex-
perimental parameters [31], we obtain a transfer efficiency of
32% (provided the impedance matching condition is satisfied).

The free-space scenario without any waveguides can be
described by interpreting the modes Fef as the only modes
which couple to the atomic transition |e〉 ↔ |f 〉 so that
γef = 0. In such a case the continuum Fes may be interpreted
as the modes by which the three-level system is excited by the
incoming single photon with the rate 	es . Consequently, the
background modes Bes have to be interpreted as the additional
orthogonal background modes to which the atomic transition
|e〉 ↔ |s〉 can also decay with rate γes . In a free-space scenario,
perfect excitation of the transition |s〉 → |e〉 [32] corresponds
to the case γes = 0 in which unit efficiency is achievable
for the state transfer |s〉 → |f 〉 provided the impedance
matching condition 	es = 	ef is fulfilled . The condition
γes = 0 requires the incoming photon impinging on the atom
forming an inward moving dipole wave which couples to
the dipole allowed transition |s〉 → |e〉 in an optimal way
(γes � 	es can be realized by using a parabolic mirror [19]). In
free space, the impedance matching condition can be fulfilled
in two electron atoms with strict LS coupling, for example. A
suitable candidate is 40Ca. It has a nuclear spin of I = 0 and
suitable level schemes can be found within the triplet manifolds
with the electron spin S = 1. A possible level scheme is

|s〉 ≡ |3p63d4s 3D J = 3 mJ = 1〉 ,

|f 〉 ≡ |3p63d4s 3D J = 3 mJ = −1〉 ,

|e〉 ≡ |3p63d4p 3D J = 3 mJ = 0〉 .

This scheme is suitable as the decay from state |e〉 to
|3p63d4s 3D J = 3 mJ = 0〉 is not dipole allowed and the de-
cay rates 	es and 	ef are equal. The only limiting factor stems
from the decay of |e〉 to the manifold 3p63d4s 3D J = 2.
However, the decay rate from |e〉 to the manifold
3p63d4s 3D J = 2 is suppressed by a factor of 8, as compared
to the decay rate to the manifold 3p63d4s 3D J = 3 [33]. It
might be possible to find more favorable level schemes in other
multielectron atoms or isotopes with a different nuclear spin.
As the decay of the excited state |e〉 to states other than |s〉 and
|f 〉 is a limiting factor, a quantitative description of this effect
is of interest. In close similarity to the fiber- and cavity-based
scenario, we obtain the following efficiency for triggering a
state transfer (i.e., not finding the atom in the state |s〉 after
t → ∞),

η = 4χes(χef + γeo)

(χes + χef + γeo)2

	es

	es + γes

, (26)

with γeo being the spontaneous decay rate of the state |e〉 into
states other than |s〉 and |f 〉. Hence the rate χef is effectively
replaced by χef + γeo. The efficiency for triggering a state
transfer and finding the atom finally in state |f 〉 is given by

η|s〉→|f 〉 = η
χef

χef + γeo

. (27)

Note that our scheme is surprisingly robust against deviations
from the ideal branching ratio. If we consider a level system
in which 	es and 	ef differ by a factor of 2, for example, our
scheme still results in a transfer probability of P|s〉→|f 〉 = 8

9 ≈
89%. In addition, tuning of the spontaneous decay rates may
be achieved with the help of additional dressing lasers [34], for
example. Thereby, the spontaneous decay rates of the dressed
states can be tuned by controlling their overlap with the bare
states.

IV. NUMERICAL INVESTIGATION

For demonstrating the independence of this transition
probability from the shape of the incoming wave packet, we
have numerically evaluated the time evolution for two different
temporal envelopes, namely a symmetric Gaussian envelope

f (1)
in (t) = 4

√
2�ω2/πe−�ω2t2

and an antisymmetric envelope

f (2)
in (t) = 2 4

√
2/π�ω3/2t e− 1

3 �ω2t2/
33/4.

They are normalized so that
∫
R |f (1,2)

in (t)|2dt = 1, i.e., the
photon certainly arrives at the left mirror of the cavity (in
the fiber and cavity scenario) or in a suitable waveguide
implementation (see previous section) the photon certainly
arrives at the atom. The results are depicted in Fig. 3 for the
cavity scenario and in Fig. 4 for the waveguide scenario.

The solid lines in Figs. 3 and 4 correspond to the ideal
scenario with high transfer efficiencies as described by
Eqs. (10) for the fiber- and cavity-based scenario and by
Eq. (25) for the waveguide scenario. As long as the bandwidth
of the incoming photon wave packet is sufficiently small [see
Eqs. (7) and (17)] the efficiency of the excitation transfer is
close to unity and independent of the shape of the photon
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FIG. 3. Dependence of the state transfer efficiency |s〉 → |f 〉 on
the bandwidth �ω of the photonic wave packet for the fiber and
cavity scenario (in units of ges): the red (or lighter gray) lines are
results of the Gaussian envelope f 1

in(t) and the blue (or darker gray)
lines of the antisymmetric envelope f 2

in(t). The parameters are ges =
gef = κes = κef and γes,γef → 0 [solid lines; i.e., conditions for high
transfer efficiencies in (10) are fulfilled]; ges = gef /

√
2 = κes = κef

and γes,γef → 0 [dashed lines; 2χes = χef first condition in (10) is
violated].

wave packet. The dashed lines in Figs. 3 and 4 describe cases
with 2χes = χef so that a violation of the first condition in
Eq. (10) or in Eq. (25) limits the efficiency. If this impedance
matching condition is violated the efficiency for triggering
a state transfer is always below unity even in the limit of
infinitely small bandwidth photons.

V. APPLICATIONS

Our scheme can serve as a basic building block for
various tasks of quantum information processing. In this
section, we discuss possible applications of our scheme for
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FIG. 4. Dependence of the state transfer efficiency |s〉 → |f 〉 on
the bandwidth �ω of the photonic wave packet for the waveguide
scenario (in units of 	es): the red (or lighter gray) lines are results
of a Gaussian envelope f 1

in(t) and the blue (or darker gray) lines
of an antisymmetric envelope f 2

in(t). The parameters are 	es = 	ef

and γes = γef = 0 [solid lines; i.e., conditions for high transfer
efficiencies in (25) are fulfilled]; 2	es = 	ef and γes = γef = 0
[dashed lines; 2χes = χef first condition in (25) is violated].

FIG. 5. Atomic level structure for converting a polarization
encoded photonic qubit encoded into a matter qubit (a) and for
converting the frequency of a polarization encoded photonic qubit (b).

building a single-atom single-photon quantum memory and for
implementing a deterministic frequency converter of photonic
qubits.

A. Single-atom single-photon quantum memory

A photonic qubit stored in a polarization degree of freedom
of a photon wave packet, for example, can be converted to
a matter qubit and stored in the atomic level structure of
the atom (for the reverse process, see [7,8,35]). This can be
achieved by using an atom with a level structure depicted
in Fig. 5(a), for example, with the atom initially prepared
in state |s〉 and with the qubit states |0〉 and |1〉 constituting
long-lived stable states. If the properties of the photon emitted
during this storage process are independent of the state of the
initial photonic qubit no information about this photonic input
state is transferred to the background or to the fiber modes
involved. Thus the photonic excitation transfer to the material
degrees of freedom does not suffer from decoherence. For a
cavity this condition can be fulfilled by choosing equal vacuum
Rabi frequencies and cavity loss rates for the σ± transitions,
i.e., gσ− = gσ+ and κσ− = κσ+ . In the absence of a cavity
for this purpose one has to choose equal photon emission
rates into the waveguide, i.e., 	σ− = 	σ+ . Hence the scheme
can be used to implement a heralded quantum memory with
a fidelity close to unity. A deterministic quantum memory
with near-unit fidelity can be implemented if the impedance
matching conditions are fulfilled and Cσ± � 1 in the case of
a cavity or γσ± � 	σ± in the absence of a cavity. Hereby, a
coupling of the cavity modes to the � polarized transitions
is not required, as these transitions can also be induced by
spontaneous decay processes.

A possible level scheme for the free-space scenario
can again be found in 40Ca, for example. The states
|3p63d4s 3D J = 1 mJ = ±1〉 could be used to encode the
qubit, the states |3p63d4p 3D J = 1 mJ = ±1〉 could serve
as intermediate excited states, and the state |3p63d4s 3D J =
1 mJ = 0〉 could serve as initial state. In this level scheme
all the branching ratios are equal. The limiting factor is the
decay to the manifold 3p63d4s 3D J = 2. The decay rate of
the states in the manifold 3p63d4p 3D J = 1 to the manifold
3p63d4s 3D J = 2 is suppressed by a factor of 3, as compared
to the decay rate to the manifold 3p63d4s 3D J = 1 [33].
However, more favorable level schemes might be found in
other atoms, isotopes, or artificial atoms. In the waveguide
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scenario or the cavity scenario the impedance matching
condition stated in Eqs. (10) and (25) cannot be connected
directly to the dipole matrix elements of the optical transitions,
as the modification of the mode structure due to the presence
of the waveguide or the cavity (vacuum Rabi frequencies and
leakage parameters) are also of relevance. However, this also
allows for a greater tunability of the systems parameters. Hence
in a cavity or a waveguide it might be easier to fulfill the
impedance matching condition than in the free-space scenario.

B. Frequency converter

Our scheme can also be used for a deterministic frequency
converter of photonic qubits. A possible atomic level structure
performing frequency conversion of a polarization encoded
photonic qubit is depicted in Fig. 5(b). For converting the
frequency of the photon the atom has to be prepared either in
state |g0〉 or in state |g1〉 depending on whether the frequencies
of the photon should be decreased or increased. For ensuring
the emission of the resulting photon into a waveguide the
corresponding vacuum Rabi frequencies or emission rates into
the waveguide have to be sufficiently large. Hence, for a cavity,
it is required that γ >

σ± � 2|g>
σ±|2/κ>

σ± and γ <
σ± � 2|g<

σ±|2/κ<
σ± .

In the absence of a cavity, the conditions read γ >
σ± � 	>

σ± and
γ <

σ± � 	<
σ± . In addition to performing a frequency conversion,

the fact that only a single atom is involved allows us to perform
a nondestructive detection of the photon, by reading out the
state of the atom.

VI. CONCLUSIONS

In conclusion, we have proposed a dissipation-dominated
scheme for triggering highly efficient excitation transfer from
a single-photon wave packet of arbitrary shape but small
bandwidth to a single quantum emitter. We have shown
that by balancing the decay rates characterizing relevant
dissipation processes, such as spontaneous photon emission
into waveguides or the electromagnetic background, appro-
priately these processes can be turned into a valuable tool

for purposes of quantum information processing. Our scheme
offers the advantage that no additional control of the system
by additional laser fields or by postselection is required.
Thus the scheme presented in this article paves the way to
scalable quantum communication networks as it relaxes the
restrictive requirements on the synchronization of the nodes of
the network (detailed knowledge on the arrival time and shape
of the photons is not required) and as it is not limited by the
efficiency of single-photon detectors. We have demonstrated
that our scheme can be applied to a variety of different
scenarios including fiber- and cavity-based architectures as
well as architectures without any optical resonators. It can
serve as a basic building block for various protocols relevant
for quantum information processing. As examples we have
discussed setups for a deterministic single-atom single-photon
quantum memory and a deterministic frequency converter
between photonic qubits of different wavelengths which could
serve as an interface between several quantum information
processing architectures.
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APPENDIX: DERIVATION FOR WAVEGUIDE

In this Appendix, we give a detailed derivation of Eq. (14),
which describes the dynamics of the quantum emitter for the
waveguide scenario. The derivation of Eq. (2) for the fiber
and cavity scenario follows along the same lines. We start our
considerations with the ansatz for the time evolution of the
wave function of Eq. (13). The Schrödinger equation induced
by the Hamiltonian Ĥ

wg
int (t) is equivalent to the following set

of differential equations:

d

dt
ψe(t) = i

�

∑
k∈{es,ef }

eiωk (t−t0)〈0|Fk 〈0|Bk d∗
k · (

Ê+
Fk

(xA,t) + Ê+
Bk

(xA,t)
)|ψk(t)〉Fk ,Bk , (A1)

|ψk(t)〉Fk ,Bk = i

�
e−iωk (t−t0)dk · (

Ê−
Fk

(xA,t) + Ê−
Bk

(xA,t)
)|0〉Fk |0〉Bkψe(t) for k ∈ {es,ef }. (A2)

A general solution of the second equation is of the form

|ψk(t)〉Fk ,Bk = i

�

∫ t

t0

e−iωk (t ′−t0)dk · (
Ê−

Fk
(xA,t ′) + Ê−

Bk
(xA,t ′)

)|0〉Fk |0〉Bkψe(t ′)dt ′ + |ψk(t0)〉Fk ,Bk for k ∈ {es,ef }.

Inserting this expression into Eq. (A1) and using the initial condition, i.e.,

|ψes(t0)〉Fef ,Bef = |ψin〉Fes |0〉Bef , |ψef (t0)〉Fef ,Bef = |0〉Fef |0〉Bef ,

we obtain the equivalent integro-differential equation

d

dt
ψe(t) = − 1

�2

∑
k∈{es,ef }

∫ t

t0

eiωk (t−t ′)〈0|Fk 〈0|Bk
[
d∗

k · (
Ê+

Fk
(xA,t) + Ê+

Bk
(xA,t)

)][
dk · (

Ê−
Fk

(xA,t ′) + Ê−
Bk

(xA,t ′)
)]

× |0〉Fk |0〉Bkψe(t ′)dt ′ + i

�
eiωes (t−t0)〈0|Fes d∗

k · Ê+
Fes

(xA,t)|ψin〉Fes .
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Within the framework of the above-mentioned approximations
this expression yields a complete description of the one-photon
excitation process of the three-level system. In particular, it
also describes all possible non-Markovian effects. However,
it is well known that in the optical regime with spontaneous
decay rates much smaller than atomic transition frequencies
and for setups in which a photon emitted by an atom does not
return to the atom at a later time, such as in free space or in an
open waveguide, these non-Markovian effects are negligible
(see e.g. [24] for an early free-space treatment). Hence, in
the absence of such photon recurrence phenomena, the above
expression simplifies significantly and we obtain

d

dt
ψe(t) = −1

2
(	es + 	ef + γes + γef )ψe(t) + i

√
	esfin(t),

(A3)

with

√
	esfin(t) = 1

�
eiωes (t−t0)〈0|d∗

es · (E−
es(xA,t))†|ψin〉Fes

(A4)

describing the influence of the incoming single-photon wave
packet. The spontaneous decay rates induced by the reservoir
modes Fes , Fef , Bes , and Bef are denoted by 	es , 	ef , γes , and
γef . Note that the basic structure of Eq. (A3), especially the
inhomogeneous term defined in Eq. (A4), closely resembles
Eq. (2) describing the dynamics in the cavity scenario.
In fact, the derivation of both equations follows the same
reasoning.
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