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Suppressing systematic control errors to high orders
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Dynamical decoupling is a powerful method for protecting quantum information against unwanted interactions
with the help of open-loop control pulses. Realistic control pulses are not ideal and may introduce additional
systematic errors. We introduce a class of self-stabilizing pulse sequences capable of suppressing such systematic
control errors efficiently in qubit systems. Embedding already known decoupling sequences into these self-
stabilizing sequences offers powerful means to achieve robustness against unwanted external perturbations and
systematic control errors. As these self-stabilizing sequences are based on single-qubit operations, they offer
interesting perspectives for future applications in quantum information processing.
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I. INTRODUCTION

Realistic systems implementing quantum information pro-
cessing (QIP) are affected by various sources of errors. If
no precautions are taken, the errors cumulate with time,
destroying quantum information and thus preventing scala-
bility. Merely increasing the experimental precision is not
enough to achieve scalability, as there are fundamental limits
on precision, so that it cannot be increased indefinitely.
Nevertheless, it is possible to design the process itself in a
way that it protects the information from the effects of error
sources, without the need to increase experimental precision.

A powerful method to suppress errors is called dynamical
decoupling (DD). The idea of DD is to perform a sequence
of unitary operations on the system which effectively rotate
the quantum state of the system in its state space. The action
of an error caused by a Hamiltonian interaction depends on
the current rotated frame, and if the applied rotations are
chosen carefully, the error can be made to cancel itself up to a
certain order. DD is a generalization of techniques used in the
nuclear magnetic resonance community since the discovery
of the Hahn spin echo in 1950 [1]; a general framework was
formulated in [2,3]. Numerous results based on this framework
followed, including experimental realizations. An efficient
decoupling scheme for systems of pairwise interacting qubits
was proposed in [4], which uses orthogonal arrays [5]. A
similar strategy based on Hadamard matrices was described
in [6]. Both approaches were shown to be equivalent in [7].
DD works perfectly only in the limit of infinitely fast control.
For finite control frequencies, a residual error is present.
This residual error can be further suppressed by higher-
order decoupling schemes. Second-order decoupling can be
achieved by using palindromic control sequences. However,
finding efficient third- and higher-order schemes in the general
(multiqubit) case is difficult. There is ongoing progress in
higher-order decoupling of a single qubit (see, e.g., [8–11]).
Additionally, randomized decoupling strategies have been
proposed [12–14], which can offer certain advantages in the
asymptotic time behavior of a protected system’s fidelity
compared to deterministic sequences. DD does not need any
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auxiliary qubits, and loosely speaking, it is applicable when
the state of the neighborhood influencing the system does not
change too fast. A comprehensive account on DD techniques
is included in [15].

The above-mentioned DD techniques typically assume that
the available control actions are perfect and instantaneous
(bang-bang control), which is an assumption that cannot hold
in practice. In a more realistic treatment, DD controls will
take a certain time to execute, which introduces errors since
the implementation of the controls does not generally commute
with the acting system Hamiltonian. A method to suppress such
errors to the first order, called Eulerian decoupling, is described
in [16]. Another important source of errors is imperfections
in the devices implementing the controls, leading to nonideal
controls, which is the kind of error we are going to address.

In this paper, we introduce a class of single-qubit control
sequences called self-stabilizing (SS) sequences that suppress
systematic control errors to any desired order up to 11th
order, conjecturing that arbitrarily high orders are achievable.
This is a significant improvement over the first-order pulse
error suppression achieved by single-qubit Eulerian decou-
pling [16] when systematic pulse error suppression is the
criterion of comparison. The first-order SS sequence turns
out to be identical to the one used in single-qubit Eulerian
decoupling. Systematic control errors appear in scenarios such
as NMR [17] or trapped electron or ion quantum computing,
so our technique is applicable in realistic situations.

The paper is outlined as follows. In Sec. II we review DD
basics. Then the construction of SS sequences is described in
Sec. III. In Sec. IV we propose embedding other decoupling
sequences into self-stabilizing sequences as a means to achieve
robustness against systematic control errors. In Secs. V and VI
we demonstrate the benefits of this approach in two important
cases. Finally, in Sec. VII we recapitulate the presented results
and outline future work directions. Throughout the article, we
set � = 1 and use dimensionless time.

II. DYNAMICAL DECOUPLING

Let us briefly review the foundations of dynamical decou-
pling with perfect controls, taking control imperfections into
consideration later. We will formulate dynamical decoupling
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for qubit systems controlled by Pauli operations; decoupling of
other systems with other operations as controls is analogous.

A. Decoupling scenario

We consider decoupling a target system S consisting of
n qubits coupled to each other as well as to an environment
or bath B. The Hilbert space of the environment is assumed
to be of finite dimension. The intrinsic evolution of the
joint system SB is assumed to be unitary and given by
a time-independent Hamiltonian H . The environment B is
understood as uncontrollable, while each target qubit can be
controlled individually by applying local pulses at certain
times. We approximate the pulses by instantaneous unitary
operators and restrict these to Pauli operations. We will use
σ0, σ1, σ2, σ3 to denote the Pauli operations, with σ0 denoting
the identity operator.

We suppose that the control pulses are applied in parallel,
which is well defined as pulses applied to different qubits
commute with each other. Parallel pulses will be specified
by n-tuples of Pauli operation indices called operation multi-
indices. The pulse corresponding to the multi-index α can be
written as

P (α) =
n−1∏
j=0

σ (j )
αj

. (1)

Here and in the rest of the article, the upper index (j ) denotes
the target qubit. We index the n qubits starting from zero. For
ease of exposition, we will occasionally refer to the multi-
indices themselves as operations.

We assume the interpulse interval �t to be constant, but this
restriction is not essential. The evolution of the joint system
SB is then

U (A,�tH ) =
∏
α∈A

exp (−i�tH )P (α), (2)

where A is a sequence of operation multi-indices, also called
the (multiqubit) control sequence. Here and throughout the
article, the product notation implies right-to-left ordering.

B. Decoupling conditions

The evolution given by a control sequence A can be
separated into the ideal and nonideal parts

U (A,�tH )

= exp[�B(A,�tH ) + �Error(A,�tH )]U (A,0),

where �B(A,�tH ) are all terms that affect solely the bath and
�Error(A,�tH ) are all the other terms. A control sequence A

decouples S from the effects of H to the ωH th order if

�Error(A,�tH ) ∈ O(�tωH +1). (3)

The higher-order errors can, in theory, be made arbitrarily
small by choosing a very small time distance �t between
two consecutive pulses. However, if the control pulses are not
ideal, �t cannot be made arbitrarily small without actually
introducing errors, as the smaller the �t is, the more pulses
are performed per unit time, leading to accumulation of pulse
errors.

III. SELF-STABILIZING SEQUENCES

Dynamical decoupling is based on open-loop control of the
system. In the presence of operation nonidealities, the control
introduces errors into the system, possibly negating the benefits
of DD. Dealing with these errors in general is difficult, but
the systematic component of such errors is a good candidate
for suppression using DD-like mechanisms, by proper choice
of the control sequence itself. Sequences that suppress their
own systematic control errors will be called self-stabilizing
sequences. This section focuses on the self-stabilization alone.
Subsequent sections investigate how SS sequences can be used
to add robustness against systematic control errors to other
decoupling schemes.

We specify our control and control error model which we
use to state formally the conditions that define self-stabilizing
sequences of a particular order. At the end of this section we
present a heuristic we used to find self-stabilizing sequences
of up to 11th order.

Many decoupling schemes are based on sequences of Pauli
operations, so we restrict ourselves to this kind of operations.
In the following, we present our model for nonideal controls,
which introduces a systematic error to the Pauli pulses. We
assume that each Pauli operation except σ0 is affected by
a systematic single-qubit unitary error [18]. The errors of
different Pauli operations are allowed to be different. The
errors are systematic; that is, they are the same for different
applications of the same operation. The ideal operation σk will
be thus replaced as follows:

σk → P1q(k,q) = exp [−iqk]σk, k ∈ {0,1,2,3}, (4)

where

q ≡ (q0,q1,q2,q3) ∈
{

3∑
l=1

xlσl : xl ∈ R

}4

(5)

is a quadruple holding the systematic errors of the individual
Pauli operations, each representing a small rotation of the
qubit’s state in the Bloch sphere. As already said, q0, the error
of the identity operation, is assumed to be zero.

Let d = (d0,d1, . . .) be a finite sequence of Pauli operation
indices, also called a single-qubit control sequence. The
corresponding nonideal evolution is

U1q(d,q) =
∏
k∈d

P1q(k,q) =
∏
k∈d

exp [−iqk]σk. (6)

This evolution is similar to the one described by Eq. (2), so
it is tempting to simply use known decoupling sequences to
suppress the systematic control error. However, this does not
work as there is an important difference: The errors in (6) are
not fixed, but they depend on the choice of the control sequence
itself, necessitating new sequence construction schemes.

The evolution (6) can be separated into the ideal and
nonideal parts,

U1q(d,q) = exp[�1q,Error(d,q)]U1q(d,0).

The condition for ωcth-order control error suppression is then
as follows: For any realization of the systematic control errors
q, the overall error satisfies

�1q,Error(d,λcq) ∈ O
(
λωc+1

c

)
, (7)
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TABLE I. Examples of self-stabilizing sequences. For nonideal
operations, such sequences are associated with reduced overall error,
provided the nonidealities are systematic in nature. Errors at different
positions acquire different signs. An ωcth-order self-stabilizing
sequence uses these sign changes to achieve error cancellation of
all errors up to ωcth order.

Order ωr Self-stabilizing sequence Length

1 (σ1,σ2,σ1,σ2,σ2,σ1,σ2,σ1) 8

2
(σ1,σ1,σ1,σ2,σ1,σ1,σ2,σ1,

σ2,σ2,σ2,σ1,σ2,σ2,σ1,σ2)
16

3

(σ2,σ2,σ1,σ2,σ1,σ2,σ1,σ1,

σ2,σ1,σ2,σ2,σ1,σ1,σ2,σ1,

σ2,σ2,σ1,σ2,σ1,σ1,σ2,σ1,

σ2,σ1,σ2,σ2,σ1,σ2,σ1,σ1)

32

where λc is a scaling factor of the control errors q. A sequence
d that satisfies this condition will be called an ωcth-order self-
stabilizing sequence. For ωc � 3, solutions can be obtained in a
straightforward manner using an exhaustive automated search
in the space of progressively longer sequences. For simplicity,
we restrict the search to sequences that use only σ1 and σ2

operations. For higher orders, an exhaustive search is not
tractable, but many solutions of order ωc + 1 can be obtained
by searching the space of sequences formed by concatenation
of two different solutions of order ωc. When one solution is
found, other solutions of the same order can be generated
by cyclical permutations, sequence reversal, and swapping of
σ1 and σ2. Iterating this procedure, we were able to obtain
solutions of order ωc = 11. Higher orders were not attempted
due to memory constraints of our hardware. We conjecture
that SS sequences of arbitrary order exist. Some solutions for
the first couple of orders are in Table I.

IV. ROBUST DECOUPLING IN THE PRESENCE
OF SYSTEMATIC CONTROL ERRORS

We propose embedding of Pauli pulse-based decoupling
sequences into self-stabilizing sequences as a means to achieve
decoupling that is robust against systematic control errors. We
consider decoupling of n qubits coupled to an environment,
which is a scenario of considerable interest in quantum
information processing. The notation is analogous to the one
introduced in Sec. II A, but modified to take the control errors
into consideration.

A. Decoupling scenario

We consider the scenario described in Sec. II A, but with
nonideal Pauli pulses of the kind given by (4). The errors on
different qubits are allowed to be different. Parallel application
of pulses is still well defined as pulses applied to different
qubits commute with each other even in the nonideal case.

The nonideal pulse corresponding to the multi-index α can
be written as

P (α,Q) =
n−1∏
j=0

P1q(αj ,Qj )(j ) =
n−1∏
j=0

{exp[−i(Qj )αj
]σαj

}(j ).

Here and in the rest of the article, (Qj )
k

specifies the control
error associated with the pulse σk on the j th qubit [see (5)].

The evolution of the joint system SB in the presence of
systematic control errors is then

U (A,Q,�tH ) =
∏
α∈A

exp (−i�tH )P (α,Q),

where A is a control sequence.

B. Robust decoupling conditions

Robust decoupling is ordinary decoupling with the ad-
ditional property that each qubit experiences self-stabilizing
control. We will state the corresponding conditions formally.

The evolution given by a control sequence A can be
separated into the ideal and nonideal parts,

U (A,Q,�tH )

= exp[�B(A,Q,�tH ) + �Error(A,Q,�tH )]U (A,0,0),

where �B(A,Q,�tH ) are all terms that affect only the bath
and �Error(A,Q,�tH ) are all the other terms. A control
sequence A decouples S from the effects of H to the ωH th
order if

�Error(A,0,�tH ) ∈ O(�tωH +1), (8)

which is essentially the same as (3). In order for a control
sequence A to be robust against control errors, the control
applied to any given qubit has to fulfill the self-stabilization
condition (7): For any realization of control errors Q,

∀ j ∈ {0, . . . ,n − 1} :

[�1q,Error((A:)j ,λcQj ) ∈ O(λωc+1
c )], (9)

where (A:)j = ((A0)j ,(A1)j , . . . ), i.e., the single-qubit control
sequence for the j th qubit.

C. Robust decoupling by embedding into self-stabilizing
sequences

We will now construct a robust decoupling sequence by
embedding a “regular” decoupling sequence into a self-
stabilizing sequence.

Let DH be a control sequence that decouples S to the order
ωH , i.e.,

�Error(DH,0,�tH ) ∈ O(�tωH +1).

The first operation in DH can be chosen arbitrarily without
disturbing the decoupling condition, as H has not yet had any
effect at the very beginning of the evolution. We will use this
freedom to perform the embedding.

The overall ideal evolution of a particular qubit is the
product of all the Pauli pulses applied to this qubit. The Pauli
operations form a group up to a phase, so by the proper choice
of the first operation in DH , the overall ideal evolution on any
qubit can be set to any desired Pauli operation. The whole pulse
train can then be regarded as a higher-level implementation
of any desired Pauli operation. In the nonideal case, the
higher-level operations are nonideal too, but they fit the same
error model as the low-level ones. The sequence DH with the
proper choice of the first operation therefore can be regarded
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as any desired nonideal parallel “pulse.” A concatenation of
such alterations of DH can be made to mimic any sequence
of parallel operations, including one where each single-qubit
sequence is a self-stabilizing one (provided the single-qubit
sequences are of the same length).

It is easy to show that if the higher-level sequence is
self-stabilizing, so is the underlying sequence. Moreover, a
concatenation of decoupling sequences is decoupling too.
Therefore, the sequence created by concatenating altered
copies of DH as described above is both decoupling and
self-stabilizing, thus achieving robust decoupling.

D. Mixed-term considerations

The set of single-qubit conditions (9) can also be written as

�Error(A,λcQ,0) ∈ O
(
λωc+1

c

)
. (10)

The pair of conditions (8) and (10) is equivalent to the condition

�Error(A,λcQ,�tH ) ∈ O(�tωH +1) + O
(
λωc+1

c

) + O(�tλc).
(11)

The mixed term O(�tλc) is difficult to eliminate. Its impact on
the overall performance of the decoupling scheme depends on

several factors. The mixed term can be suppressed by reducing
�t . On the other hand, reducing �t also increases the number
of pulses per unit time, which actually amplifies the effect
of this term. It turns out that for periodic decoupling, the
effects roughly cancel each other, so further �t reduction does
not help performance. However, as shown in Secs. V and VI,
decoupling schemes involving concatenation or randomization
have the capacity to further reduce the impact of the mixed
term, provided the self-stabilization order ωc is high enough.

E. Example

We demonstrate the embedding process using specific inner
and outer sequences. Let us consider a system of N qubits
governed by a Hamiltonian with pairwise interactions; that is,
any qubit can potentially be coupled to any other qubit, but
there are no terms in the Hamiltonian involving more than two
qubits. There exist decoupling sequences which can decouple
these pairwise interactions; they were introduced in [4] along
with a construction method based on orthogonal arrays [5].
For N = 5, one possible sequence to decouple these pairwise
interactions consists of 16 control operations and looks like
this:

DH =

⎛
⎜⎜⎜⎝

•
•
• D′

H•
•

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

• 0 1 0 1 1 2 1 2 1 2 1 1 1 0 1
• 1 0 1 2 0 2 2 1 0 2 2 0 2 1 2
• 1 1 1 2 1 0 2 2 1 0 2 1 2 1 2
• 2 1 2 0 1 2 0 1 1 2 0 1 0 2 0
• 2 1 2 2 1 1 2 0 1 1 2 1 2 2 2

⎞
⎟⎟⎟⎠.

Here, DH is the sequence of multi-indices indicating the
control pulses to apply. Each column of the matrix therefore
corresponds to a single multi-index α and indicates a tensor
product of Pauli operators as given by Eq. (1). We have freedom
of choice when it comes to the first pulse, which is why the first
column of DH is intentionally left blank, as represented by the
symbol •. D′

H is DH without this first arbitrary operation. The
product of all the Pauli tensor-product operators represented
by the columns in D′

H is (up to a global phase) the operator
given by the multi-index

PD′
H

=

⎛
⎜⎜⎜⎝

3
2
1
3
0

⎞
⎟⎟⎟⎠. (12)

We would like to make this decoupling sequence robust
against errors in the controls. For this purpose, we must
embed the sequence into a self-stabilizing outer sequence.

One possibility for the outer sequence is

Dr =

⎛
⎜⎜⎜⎝

2 2 1 2 1 1 2 1
2 3 2 3 3 2 3 2
1 3 1 3 3 1 3 1
1 2 1 2 2 1 2 1
1 2 1 2 2 1 2 1

⎞
⎟⎟⎟⎠. (13)

Each row in the matrix Dr represents a variant of the self-
stabilizing sequence of order ωr = 1 given in Table I. Although
we could use the same sequence in each row, using these
variants will yield an additional beneficial property in the final
sequence.

Multiplying each of the operators represented by the
columns of Dr by the operator PD′

H
yields the new sequence

F =

⎛
⎜⎜⎜⎝

1 1 2 1 2 2 1 2
0 1 0 1 1 0 1 0
0 2 0 2 2 0 2 0
2 1 2 1 1 2 1 2
1 2 1 2 2 1 2 1

⎞
⎟⎟⎟⎠. (14)

The final combined sequence uses the columns in F as the first
operation in the original sequence DH , which is accordingly
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repeated eight times. The final sequence is thus given as

DH,r =

⎛
⎜⎜⎜⎝

1 1 1 2
0 1 1 0
0 D′

H 2 D′
H · · · 2 D′

H 0 D′
H

2 1 1 2
1 2 2 1

⎞
⎟⎟⎟⎠.

(15)

This sequence is the result of embedding the original de-
coupling sequence in a self-stabilizing sequence. Like the
original sequence, it decouples pairwise interactions between
the qubits, but it is now robust against errors in the decoupling
controls. Due to the particular choice of Dr , this sequence
has the additional property of containing only two kinds
of operations, σ1 and σ2. This property may be useful in
experimental settings where only two Pauli operations are
implemented.

V. DECOUPLING A SINGLE QUBIT FROM ITS
ENVIRONMENT BY NONIDEAL CONTROLS

We will now focus on decoupling a single qubit coupled
to a bath modeled as several uncontrollable interacting qubits.
It is shown that embedding the concatenated dynamical de-
coupling (CDD) sequence [8] into a self-stabilizing sequence
of sufficiently high order dramatically reduces errors due
to systematic control nonidealities when compared to CDD
alone.

CDD applied to a single qubit is based on sequences
generated by repeatedly embedding the sequence σ1,σ2,σ1,σ2

into itself. Each level of embedding attempts to reduce the
residual error of the previous one. With ideal pulses, this
approach works very well. With nonideal pulses, the errors
of the last level always remain uncorrected, limiting the
achievable fidelity. By using a self-stabilizing sequence for
the last level of embedding, this limitation is overcome. These
considerations are supported by simulations.

The simulation results are shown in Fig. 1. We simulated a
single qubit coupled to a bath modeled as five qubits. This
six-qubit system was subject to time-independent pairwise
couplings with coupling coefficients chosen from a zero-
centered normal distribution with σ = 1. Performance was
measured by approximating the average fidelity Favg by
averaging over ten randomly chosen initial qubit states and
ten randomly chosen initial bath states. The plot shows the
infidelity 1 − Favg vs sequence duration for a fixed �t . With
ideal pulses, CDD performs very well. For fixed �t , there is
an optimal CDD concatenation level, beyond which the error
1 − Favg no longer decreases or even increases again. For a
related analysis see [19].

With nonideal pulses, performance is limited by pulse
errors. Embedding CDD into a first-order self-stabilizing
sequence (SS1) significantly reduces the residual error. Re-
markably, embedding CDD into a seventh-order SS is able
to almost completely eliminate the effects of systematic pulse
errors, approaching the performance of CDD with ideal pulses.

FIG. 1. (Color online) Performance of self-stabilizing CDD with
a five-qubit bath, pairwise qubit coupling strength ∼1, �t = 0.0002,
and ‖λcq‖ ∼ 0.1. The performance is measured as 1 − Favg, the
average infidelity. The parameter n denotes the concatenation level
of CDD, with larger n resulting in longer sequences, which in turn
take more time.

VI. SUPPRESSING QUBIT INTERACTIONS BY
NONIDEAL CONTROLS

This section focuses on decoupling of arbitrary pairwise
interactions in a closed multiqubit system. It is shown that
orthogonal array (OA) based decoupling [4] embedded into
a self-stabilizing sequence (using the method introduced in
Sec. IV) reduces errors due to systematic control nonide-
alities when compared to the OA-based sequence alone.
The improvement is less dramatic than in the single-qubit
case, but further error reduction is shown to be possible
using randomized decoupling, provided a high enough self-
stabilization order is used.

Consider a closed system of n interacting qubits. Suppose
that its state undergoes an undesirable evolution generated
by some traceless [20] Hamiltonian H that acts only on the
system, contains only single- and two-qubit couplings, and is
time independent. In other words, H can be written as

H =
∑

0�j<n

Hj +
∑

0�j<k<n

Hjk, (16)

where

Hj ∈
{

3∑
l=1

xlσ
(j )
l : xl ∈ R

}
, (17)

Hjk ∈
{

3∑
l,m=1

Xlmσ
(j )
l σ (k)

m : Xlm ∈ R

}
. (18)

First-order decoupling (ωH = 1) of this kind of interaction
is described in [4]. We will refer to it as orthogonal array
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decoupling (OAD). Second-order decoupling (ωH = 2) can
be achieved by gluing the first-order scheme to its time re-
versal, which is known as symmetrical dynamical decoupling
(SDD) [21]. Higher-order decoupling in this scenario is, in
principle, also possible, but it involves much longer sequences.

We will evaluate sequences obtained by embedding the
first-order decoupling sequence into self-stabilizing sequences
of orders ωc = 1,2,3 in terms of performance and compare the
results with the performance of first-order decoupling alone.
The same can be done using the second-order decoupling
sequence as the starting point, but it turns out that performance
is typically not significantly improved by increasing the
decoupling order ωH . The reason is that the best performance is
achieved by �t so small that the terms O(λωc+1

c ) and O(�tλc)
in the error expansion (11) are much larger than the term
O(�tωH +1) for ωH � 1 anyway. As we show in Sec. VI B, in
order to improve performance, one has to apply randomization,
reduce �t , and increase the self-stabilization order ωc instead.

To evaluate the performance of self-stabilized decoupling
in comparison to plain decoupling, we use the entanglement
fidelity, which serves as a good approximation of average
fidelity. The ideal evolution is the identity operator, and the
nonideal one is a unitary operator acting only on the system.
In this case the entanglement fidelity can be expressed as

Fe(U ) =
∥∥∥∥ tr(U )

d

∥∥∥∥
2

. (19)

A. Periodic decoupling

The evolution after N repetitions can be expressed using
the single-cycle average Hamiltonian as

U = exp(−iNTcHavg), (20)

where Tc is the cycle time. The global phase has no effect on
measurement results, so we assume tr(Havg) = 0. Substituting
for U in (19) and expanding the exponential, we get

Fe(N ) = 1 − (NTc‖Havg‖I )2 + O(N3),

where

‖A‖I =
√

tr(AA†)√
d

= 1√
d

‖A‖HS

is a dimension-invariant Hilbert-Schmidt norm. We see that the
fidelity (at cycle boundaries) drops approximately quadrat-
ically with N and therefore also with time T = NTc. The
rapidity of the decay is given by ‖Havg‖I

, which can be
interpreted as the effective interaction strength, serving as a
natural measure of performance for periodic decoupling [22].
It can be approximated by

‖Havg‖I 
 GE =
√

1 − Fe(1)

Tc

,

which is a good approximation for small values of 1 − Fe(1).
Comparing (20) with (11), we get

− iNTcHavg = O(�tωH +1) + O
(
λωc+1

c

) + O(�tλc),

‖Havg‖I = O(�tωH ) + 1

�t
O

(
λωc+1

c

) + O(λc), (21)

FIG. 2. (Color online) Comparison of periodic versions of or-
thogonal array decoupling (OAD), SS1-OAD, SS2-OAD, and SS3-
OAD in terms of the effective interaction strength approximated as
GE =

√
1−Fe

Tc
, which quantifies the rapidity of the quadratic fidelity

decay associated with periodic decoupling. The quantity GE was
evaluated for n = 9 qubits, after one completed cycle of duration Tc,
and is plotted as a function of the pulse rate 1/�t . The plots were
calculated for a single random realization of the system Hamiltonian
H and the nonideal controls. For each decoupling scheme, 25 control
sequences were generated, and their performance was averaged. Other
realizations of H and control nonidealities of similar magnitude led
to very similar plots, so they are not shown. The control nonidealities
were realized as noise added to control rotation vectors with standard
deviation �vi = 0.01. The quantity GE is a good performance
measure only for not too large values of 1 − Fe, so only points
with 1 − F < 0.2 are shown. The advantage of self-stabilization is
obvious, but higher SS orders do not further improve performance in
this case, they only widen the range of applicable values of �t . The
figure is consistent with (21).

where we used the fact that Tc = �tLC , with LC being the
number of pulses in a cycle.

Figure 2 shows the dependence of GE on pulse rate 1/�t

for OAD with and without self-stabilization. With increasing
pulse rate, GE first decreases, indicating increasing decoupling
efficiency, then reaches an optimum (possibly a flat one),
and finally increases again, indicating accumulating pulse
errors. Not all regimes are visible for all schemes. The
optimal (i.e., minimal) value of GE corresponds to the best
achievable performance. It is clearly seen that the first-order
self-stabilized (SS1) OAD significantly improves performance
compared to the non-self-stabilizing OAD. Second-order
SS does not further improve performance in the periodic
decoupling case, as performance is now limited by the term
O(λc) in (21). However, this limitation can be overcome by
applying randomization.
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FIG. 3. (Color online) Comparison of randomized versions of
OAD, SS1-OAD, SS2-OAD, and SS3-OAD, in terms of thefidelity
decay rate approximated as 1−F

Tc
after a single cycle, which quantifies

the rapidity of the linear fidelity decay associated with ideally
randomized decoupling. The performance is averaged over 25
sequence realizations. All parameters are the same as in Fig. 2. We
do not have a proof that our randomization procedure achieves linear
decay, but simulations (see Fig. 4) are consistent with linear fidelity
decay for sequences up to 200 cycles long, justifying the use of 1−F

Tc

after a single cycle as a practical performance predictor.

B. Randomized decoupling

In the periodic decoupling case, the average Hamiltonian
Havg is the same for all cycles, causing errors to accumulate
coherently, leading to quadratic fidelity decay. There are many
sequences that realize a particular decoupling scenario, and
each is typically associated with a different Havg. A well-
known technique to combat the quadratic fidelity decay is to
choose at random from these sequences for each decoupling
cycle. In the case of perfect randomization, the correlations
among Havg of different cycles are destroyed, transforming the
quadratic decay into a linear one on average [12,13]. We now
present a randomization procedure for self-stabilized OAD and
evaluate its performance.

Choosing randomly from the full set of SS OAD sequences
may not be tractable. Instead, we first randomize the OAD
sequence by shuffling the OA array used to generate it. Then
we take a “master” SS sequence of the desired order and
cyclically permute it a random number of positions. It is easy to
show that this operation preserves the SS property. We prepare
as many such randomized SS sequences as there are qubits.
Finally, we embed the randomized OAD sequence into the
randomized SS sequences. For each cycle, the randomization
process is repeated. We do not know whether this process
actually achieves perfectly linear fidelity decay on average,
but simulations show that it is linear for practical purposes for
up to several hundred cycles.

Assuming linear fidelity decay, one can evaluate the slope
of this decay for different values of the decoupling frequency
1/�t by extrapolating from the fidelity after one cycle. This
dependence is shown in Fig. 3 for the self-stabilizing as
well as ordinary decoupling. The plot shows that the higher
the self-stabilization order is, the better the best achievable

FIG. 4. (Color online) Time evolutions of the error probability 1 − F for no decoupling, randomized OAD for �t = 0.01, and randomized
SS1-OAD for �t = 0.0001. The values of �t were chosen to maximize the performance of each scheme as predicted in Fig. 3. All parameters
are the same as in Fig. 2. The evolution of error for SS1-OAD is in good agreement with the evolution predicted by extrapolation of fidelity
after the first cycle, suggesting that the randomization procedure used for SS1-OAD is effective in keeping the fidelity decay linear for at least
200 cycles. The ability of self-stabilization to improve decoupling performance in the presence of systematic pulse errors is remarkable.
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performance is. Figure 4 compares actual simulated fidelity
decay for OAD and SS1-OAD. Both schemes were evaluated
for their respectively optimal values of 1/�t as determined
by Fig. 3. We observe very good agreement with the linear
decay predicted for an ideally randomized case. It is seen that
randomization is very beneficial. Moreover, the performance
benefits of self-stabilization are even more pronounced. In
contrast to the periodic case, increasing the self-stabilization
order further improves the results.

VII. CONCLUSIONS AND OUTLOOK

We have introduced a class of self-stabilizing pulse se-
quences capable of efficiently suppressing systematic control
errors in qubit systems. A heuristic construction was presented
that yields self-stabilizing sequences that suppress control
errors up to 11th order. A method to embed already known
decoupling sequences into self-stabilizing sequences was
presented, and it was shown that such embedding offers pow-
erful means to achieve robustness against unwanted external
perturbations and systematic control errors. A randomized
variant of the decoupling scheme was proposed and benefits
of randomization were demonstrated by means of simulation.

We conclude that embedding decoupling sequences into
self-stabilizing sequences is a very promising way to achieve
robustness against systematic control errors. The method uses

only single-qubit operations, opening interesting possibilities
for qubit-based quantum information processing.

Based on the obtained and presented results, we see
several directions we can pursue in the near future. It would
be useful to investigate the performance of self-stabilizing
sequences in the context of bounded strength controls and in
the presence of more realistic control errors that include a
stochastic component. It is worth looking in more detail into
the structure and symmetries of self-stabilizing sequences of
various orders, as this knowledge may help in constructing
such sequences. Finally, it is a challenging question to prove
whether self-stabilizing sequences of any order exist. In the
case of an affirmative answer, their properties, in particular
strict bounds on length and performance, should be studied in
sufficient detail.
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RVO 68407700), the Czech Science Foundation (Project No.
GACR 13-33906S), and the Czech Technical University in
Prague (Project No. SGS13/217/OHK4/3T/14). H.F. and G.A.
acknowledge financial support by Hessisches Ministerium für
Wissenschaft und Kunst (CASEDIII) and by the Bundesmin-
isterium für Bildung und Forschung (project Q.com).

[1] E. L. Hahn, Phys. Rev. 80, 580 (1950).
[2] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).
[3] P. Zanardi, Phys. Lett. A 258, 77 (1999).
[4] M. Stollsteimer and G. Mahler, Phys. Rev. A 64, 052301 (2001).
[5] A. Hedayat, Orthogonal Arrays: Theory and Applications

(Springer, New York, 1999).
[6] D. W. Leung, J. Mod. Opt. 49, 1199 (2002).
[7] M. Rotteler and P. Wocjan, IEEE Trans. Inf. Theory 52, 4171

(2006).
[8] K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 95, 180501

(2005).
[9] G. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).

[10] J. R. West, B. H. Fong, and D. A. Lidar, Phys. Rev. Lett. 104,
130501 (2010).

[11] W.-J. Kuo and D. A. Lidar, Phys. Rev. A 84, 042329 (2011).
[12] O. Kern and G. Alber, Phys. Rev. Lett. 95, 250501 (2005).

[13] L. Viola and E. Knill, Phys. Rev. Lett. 94, 060502 (2005).
[14] O. Kern, G. Alber, and D. L. Shepelyansky, Eur. Phys. J. D 32,

153 (2005).
[15] Quantum Error Correction, edited by D. A. Lidar and T. A. Brun

(Cambridge University Press, Cambridge, 2013).
[16] L. Viola and E. Knill, Phys. Rev. Lett. 90, 037901 (2003).
[17] M. H. Levitt and R. Freeman, J. Magn. Reson. 43, 65 (1981).
[18] In the context of spin qubits, this may be caused, for example,

by inaccuracies of the setup geometry.
[19] K. Khodjasteh, J. Sastrawan, D. Hayes, T. J. Green, M. J.

Biercuk, and L. Viola, Nat. Commun. 4, 2045 (2013).
[20] We consider a traceless Hamiltonian, for the overall phase does

not affect the outcomes of measurements on the register.
[21] O. Kern, Ph.D. thesis, TU Darmstadt, 2009.
[22] Another interpretation is that of an effective error angle

rate.

022325-8

http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1103/PhysRevA.64.052301
http://dx.doi.org/10.1103/PhysRevA.64.052301
http://dx.doi.org/10.1103/PhysRevA.64.052301
http://dx.doi.org/10.1103/PhysRevA.64.052301
http://dx.doi.org/10.1080/09500340110109674
http://dx.doi.org/10.1080/09500340110109674
http://dx.doi.org/10.1080/09500340110109674
http://dx.doi.org/10.1080/09500340110109674
http://dx.doi.org/10.1109/TIT.2006.880059
http://dx.doi.org/10.1109/TIT.2006.880059
http://dx.doi.org/10.1109/TIT.2006.880059
http://dx.doi.org/10.1109/TIT.2006.880059
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.104.130501
http://dx.doi.org/10.1103/PhysRevLett.104.130501
http://dx.doi.org/10.1103/PhysRevLett.104.130501
http://dx.doi.org/10.1103/PhysRevLett.104.130501
http://dx.doi.org/10.1103/PhysRevA.84.042329
http://dx.doi.org/10.1103/PhysRevA.84.042329
http://dx.doi.org/10.1103/PhysRevA.84.042329
http://dx.doi.org/10.1103/PhysRevA.84.042329
http://dx.doi.org/10.1103/PhysRevLett.95.250501
http://dx.doi.org/10.1103/PhysRevLett.95.250501
http://dx.doi.org/10.1103/PhysRevLett.95.250501
http://dx.doi.org/10.1103/PhysRevLett.95.250501
http://dx.doi.org/10.1103/PhysRevLett.94.060502
http://dx.doi.org/10.1103/PhysRevLett.94.060502
http://dx.doi.org/10.1103/PhysRevLett.94.060502
http://dx.doi.org/10.1103/PhysRevLett.94.060502
http://dx.doi.org/10.1140/epjd/e2004-00196-9
http://dx.doi.org/10.1140/epjd/e2004-00196-9
http://dx.doi.org/10.1140/epjd/e2004-00196-9
http://dx.doi.org/10.1140/epjd/e2004-00196-9
http://dx.doi.org/10.1103/PhysRevLett.90.037901
http://dx.doi.org/10.1103/PhysRevLett.90.037901
http://dx.doi.org/10.1103/PhysRevLett.90.037901
http://dx.doi.org/10.1103/PhysRevLett.90.037901
http://dx.doi.org/10.1038/ncomms3045
http://dx.doi.org/10.1038/ncomms3045
http://dx.doi.org/10.1038/ncomms3045
http://dx.doi.org/10.1038/ncomms3045



