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Abstract
State transfer across discrete quantum networks is one of the elementary tasks of quantum
information processing. Its aim is the faithful placement of information into a specific position in
the network. However, all physical systems suffer from imperfections, which can severely limit
the transfer fidelity. We present selective dynamical decoupling schemes which are capable of
stabilizing imperfect quantum state transfer protocols on the model of a bent linear qubit chain.
The efficiency of the schemes is tested and verified in numerical simulations on a number of
realistic cases. The simulations demonstrate that these selective dynamical decoupling schemes
are capable of suppressing unwanted errors in quantum state transfer protocols efficiently.

Keywords: quantum state transfer, quantum communication, dynamical decoupling, quantum
error correction, quantum information
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1. Introduction

Transferring arbitrary quantum states is a task of central
importance for quantum communication and also more gen-
erally for quantum information processing. As an arbitrary
quantum state cannot be cloned perfectly [1], it is important to
develop quantum state transfer protocols which are capable of
transferring an arbitrary quantum state within a quantum
network from one position to any other. Recently, quantum
state transfer protocols have been developed independently by
Bose [2], Nikolopoulos et al [3] and Christandl et al [4] for
linear qubit chains. These protocols propose specific Hamil-
tonians governing the dynamics of these chains which
implement a state transfer from one end of the chain to the
other in a particular interaction time without any additional
external control or ancillary quantum systems. A compre-
hensive introduction to the topic of quantum state transfer and
current developments can be found in [5, 6].

Although the simplicity of these protocols is very
appealing, they are susceptible to imperfections in the struc-
ture of the qubit chain. The effects of diagonal and off-
diagonal disorder in the governing system Hamiltonian have
been studied for spin chains in [7–9]. Furthermore, while

linear qubit chains with nearest neighbour interactions are
convenient for exploring basic theoretical aspects of quantum
state transfer, experimental implementations typically involve
more complicated and higher-dimensional scenarios. A par-
ticular arrangement, which can arise naturally in two- or
three-dimensional qubit networks, is a qubit chain with a bend
around a specific qubit. In such a case additional strong
couplings between qubits may arise close to the position of
the bend so that simple one-dimensional models with nearest-
neighbour couplings no longer describe these situations ade-
quately. Such configurations have been studied recently in
detail [10]. In particular, it has been demonstrated that the
additional interactions arising from qubits close to the posi-
tion of the bend significantly affect quantum state transfer in a
detrimental way. Therefore, for practical implementations of
quantum state transfer protocols it is important to develop
techniques which suppress these detrimental effects in an
efficient way.

A powerful technique to suppress unwanted interactions
in quantum networks is selective dynamical decoupling,
which has its origins in the context of nuclear magnetic
resonance [11–14]. Viola et al [15] later formalised these
methods with particular emphasis on quantum information
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processing. Dynamical decoupling is based on the repeated
application of appropriately chosen external control pulses to
the physical system of interest. Unwanted interactions are
suppressed by the resulting unitary transformations which
tend to average out large parts of these perturbations. This
technique has been adopted in numerous experiments in order
to suppress unwanted dynamical influences on qubit systems
[16–19]. Although originally developed mainly for purposes
of suppressing fidelity decay of open quantum systems ori-
ginating from interactions with an environment [20], in the
meantime powerful systematic methods have also been
developed for designing dynamical decoupling schemes for
protecting an ideal system dynamics against unwanted per-
turbations [21, 22]. Related concepts have been recently
proposed to decouple a quantum state transfer from the effects
of an environmental bath [23, 24].

Motivated by the above mentioned recent developments
in quantum state transfer, in this paper we present three
selective dynamical decoupling schemes which are capable of
suppressing efficiently unwanted qubit couplings of a bent
qubit chain. These decoupling schemes require repeated
applications of single-qubit Pauli pulses on the individual
qubits, which on first sight contradicts the original idea of
control-free state transfer protocols. Therefore, we expect our
decoupling method to be suitable primarily for small to
medium-sized qubit chains and particularly for state transfer
within a quantum register where single-qubit gates are already
available. In these scenarios, the schemes’ exclusive depen-
dency on Pauli pulses should make them particularly suitable
for possible experimental applications. Of course, quantum
state transfer can always be achieved by sequential swap
operations between the neighbouring qubits, but the single-
qubit level of control we assume is still much lower than the
two-qubit swap gates would require. In a sense, the schemes
presented here perform a state transfer with single qubit
operations, which is otherwise impossible without modifica-
tion of coupling strengths. The efficiency of our schemes is
demonstrated by a number of numerical simulations.

The structure of the paper is as follows: in section 2 basic
aspects of recently introduced quantum state transfer proto-
cols are recapitulated which involve linear and bent qubit
chains. Section 3 provides a brief summary of basic ideas of
dynamical decoupling. In section 4 three selective dynamical
decoupling schemes are presented which are capable of
suppressing effects of the unwanted qubit couplings in
quantum state transfer along a bent qubit chain. The first
scheme is capable of protecting only the interaction part of the
ideal Hamiltonian with the possibility that the qubit eigen-
energies are rescaled in the process, whereas the more ela-
borate second scheme protects the ideal Hamiltonian
completely. The simpler and more intuitive first decoupling
scheme allows us to demonstrate the basic ideas involved in a
simple way. The second complete selective decoupling
scheme presented has been found by application of the pre-
viously developed systematic construction procedure [21] and
its functioning can be understood in a straightforward way on
the basis of the simpler and more intuitive first scheme. The
final scheme is tailored to be particularly easy to implement

experimentally and offers a certain robustness against diag-
onal disorder in the qubit chain. Section 5 demonstrates the
effectiveness of our proposed selective dynamical decoupling
schemes with numerical simulations.

2. State transfer on qubit chains

We associate a qubit with a quantum system with two
orthogonal states 〉|0 and 〉|1 on a Hilbert space 2, on which
any linear operator can be expressed as a linear combination
of the unitary and Hermitian Pauli operators and the identity
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A qubit network consists of N distinguishable qubits

spanning a Hilbert space 
⊗( ) N2 . Correspondingly, a qubit

network is called a linear chain if the qubits can be numbered
from 1 to N such that any qubit i only interacts with its direct
neighbours ±i 1. The qubits 1 and N are the ends of the chain
and interact with only one neighbouring qubit.

In the following, we restrict ourselves to the study of an
XX type nearest-neighbour interaction on the qubit chain,
which in the ideal case is given by a Hamiltonian (assuming

= 1)
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Here, σi
k denotes σ k applied to the ith qubit and the

eigenenergies Bi and coupling strengths Ji are determined by
the specific implementation of the qubit chain. It has been
shown that for particular choices of the coupling strengths Ji
this Hamiltonian can transfer a single excitation from one end
of the chain to the other one and thus can be used for purposes
of perfect state transfer along the qubit chain. A particular
choice for the coupling strengths Ji has been proposed inde-
pendently in [3] and [4], namely

λ= −J i N i
2

( ) . (3)i

If the qubit chain is prepared in the initial state

Ψ = + ⊗ ⊗ ⊗
+ =

a b

a b

(0) ( 0 1 ) 0 ... 0 ,

1, (4)2 2

this particular choice of coupling strengths leads to the final
state

Ψ = ⊗ ⊗ ⊗ + φ( )T a b( ) 0 ... 0 0 e 1 , (5)i

after a time π λ=T . The phase φ depends on the length of
the chain N and on the eigenenergies Bi and should ideally be
zero in order to accomplish perfect state transfer. Alter-
natively, the phase needs to be corrected by applying an
appropriate phase gate at the end of the quantum state
transfer. In the case where all Bi = 0, the phase is given by
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= −φ −ie ( )Ni 1 (see [7]). If the Bi are non-zero, but uniform,
=B Bi , they contribute an additional relative phase shift so

that the final phase is given by

= −φ −ie ( ) e . (6)N BTi 1 2i

This follows because in the case of uniform eigenener-
gies, the eigenenergy terms commute with the couplings in
the Hamiltonian:

∑ ∑σ σ σ σ σ+ =
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A choice of λ= −B N( 1) 4 ensures that there is no phase
shift. If the eigenenergies are different from each other, the
state transfer is disturbed. The effects of this diagonal disorder
were studied in [7] and [8].

Let us now consider an additional interaction between
qubits α − 1 and α + 1 as described by the Hamiltonian

γ σ σ σ σ= + +α α α α− + − +  ( ), (8)x x y y
id 1 1 1 1

with γ ∈ and α ∈ −N[2, 1]. This situation arises naturally
if we consider a physical implementation of a qubit chain in
which the coupling strengths between qubits are based on
their physical distance. If there is a bend in the chain at qubit
α, it is conceivable that the coupling strength between the two
neighbouring qubits at the bend becomes large enough so that
it is no longer negligible (compare with figure 1).

This type of perturbation and its effects have been stu-
died in detail in [10]. It has been shown that such an inter-
action has severe detrimental effects on quantum state transfer
in this network. Numerical results demonstrating the resulting
loss of fidelity of quantum state transfer in such a bent chain
are presented in figure 2 of section 5. In our subsequent
discussion it will be demonstrated how these detrimental
effects can be suppressed efficiently by selective dynamical
decoupling.

3. Basic concepts of dynamical decoupling

Dynamical decoupling is a method to suppress unwanted
interactions between parts of a system. It is based on repeated
applications of active control pulses which tend to average out
approximately large parts of unwanted interactions in the
(assumed to be traceless) Hamiltonian . In an idealized first
approximation these control pulses can typically be described
by instantaneously applied unitary transformations (bang–
bang control [25]) which periodically interrupt the free
evolution.

Let the sequence of the unitary operations be denoted by
…p p, , m0 and let us assume that the times of free evolution

between consecutive control pulses are all equal and are
denoted by Δt. Thus, after a time Δ=T m t the time evolution
of the system is described by the unitary transformation

= …Δ Δ Δ−
−

− −  U T p p p p( ) e e e . (9)m
t

m
t ti

1
i

1
i

0

Introducing the operators

= … ⇔ =− −g p p p p g g· · · , (10)k k k k k k1 0 1
†

this time evolution can be rewritten in the form

= …Δ Δ
−

−
−

− ( ) ( )U T g g g g g( ) e e (11)m m
t

m
t

1
† i

1 0
† i

0

= …Δ Δ− −− − ( ) ( )g e e (12)m
g g t g g ti im m1

†
1 0

†
0

≡ − g e . (13)m
Ti

In (12) we used the fact that the transformations gk are
unitary and can therefore be moved into the exponent. In (13)
we identify this time evolution with the one caused by an
average Hamiltonian  after the same total time T. For the
following analysis it is convenient to have the remaining
operator gm equal to the identity, which is, in theory,
achievable by choosing the final pulse = −p gm m 1

† . In cases
where this final pulse may be difficult to implement in prac-
tice, we can conduct the analysis in the toggled frame induced
by the operator gm, where the time evolution is described by
the operator =U T g U T˜ ( ) ( )m

† .
Using a Magnus expansion [26], the average Hamilto-

nian  can be expanded into a series of terms of increasing
order of Δt, i.e.

= + + …   . (14)(0) (1)

The lowest order of the Magnus expansion is given by

∑=
=

−

 
m

g g
1

, (15)
i

m

i i
(0)

0

1
†

and the higher orders depend on Δt according to
Δ= ( )O m t( )k k( ) .

A set of operators =
−g{ }i i

m
0
1 is traditionally called a

decoupling scheme if, to lowest order of Δt, it eliminates the
Hamiltonian , i.e., = 0(0) . However, in our case we only
want to eliminate parts of  in order to approximately turn
the average Hamiltonian  into the ideal Hamiltonian id.
This is expressed by the decoupling condition

∑= =
=

−

  
m

g g
D

1 1
. (16)

i

m

i i
(0)

0

1
†

id

We allow for a scaling factor D. If ≠D 1, its effect can be
compensated by rescaling the overall interaction time by the
factor D. Any set of operators =

−g{ }i i
m

0
1 which fulfils the

decoupling condition (16) is called a selective dynamical
decoupling scheme.

We emphasize that decoupling is only an approximate
method, and that (16) guarantees only a decoupling in first
order of Δt. Several strategies exist to decrease the influence

Figure 1. Qubit network with an additional interaction at the bend.
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of the higher orders. The simplest strategy is called periodic
dynamical decoupling (PDD) and works by repeating the
operators of the decoupling scheme. This creates a new
decoupling scheme with ′ =m m2 operators of the form

′ =g g . (17)j j m(mod )

Assuming that the total interaction time Δ′ = ′ ′T m t remains
the same, ′ =T T , then the distance between two pulses is
reduced by half, Δ Δ′ =t t1

2
. For the time evolution of this new

scheme, we find

∏

∏ ∏

Δ

′ =

=

= ′ ≡ =

′ Δ

Δ Δ

=

′−
− ′ ′

=

−
− ′

=

−
− ′

− −



 

 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( )

( ) ( )

U T

U m t

( ) e

e e

( ) e e . (18)

i

m
g g t

i

m
g g t

i

m
g g t

T T

0

1
i

0

1
i

0

1
i

2 i 2
2

i

i i

i i i i

†

† †

Here, the products are meant to be ordered right to left to
match (12). The resulting average Hamiltonian  is formally
identical to that of the original scheme, but depends on the
reduced Δ ′t . This means that the lowest order (0) remains the
same, but the higher orders are smaller due to their scaling
with Δ ′t( )k.

A more sophisticated strategy is called symmetric
dynamical decoupling (SDD). For this strategy, we construct
a scheme with ′ =m m2 operators from the original scheme
by appending its own reverse. The operators of this scheme
are then given by

′ =
<
⩾− −

⎧⎨⎩g
g i m

g i m

for ,

for .
(19)i

i

m i2 1

This symmetrized decoupling scheme eliminates all the
odd orders ∈ k, {1, 3, 5 ,...}k( ) in the Magnus expansion
(14) [28]. Typically, this improves the schemeʼs performance
significantly. It can then be used with the PDD strategy to
reduce the influence of the higher orders even further.

4. Selective dynamical decoupling schemes for state
transfer

In order to develop a decoupling scheme to suppress the
effects of the unwanted coupling, let us introduce operators

σ σ σ σ= +h , (20)i j i
x

j
x

i
y

j
y

,

which allow us to rewrite the Hamiltonians as
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γ
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= + α α
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B J h
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,

. (21)
i

i i
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id 1, 1

Choosing an operator σ=g i
z or σ=g j

z, a straight-for-
ward calculation yields

= −g h g h , (22)i j i j
†

, ,

so that g acts as a time-reversal operator for the Hamiltonian

component hi j, . If we consider two decoupling scheme
operators =g0 and σ= = α −g g z

1 1 and insert them into
(15), we find

γ γ= + + −α α α α− + − +  ( )g g h h
1

2
(23)(0)

id
†

id 1, 1 1, 1

= + ( )g g
1

2
. (24)id

†
id

Thus, to lowest order the unwanted coupling appearing in
the Hamiltonian (8) is eliminated, independent of the actual
strength γ of the error. The possibility of schemes removing
certain unwanted terms from a Hamiltonian even when they
are not exactly known was already established in [21, 29].
Unfortunately, the remaining term in (0) is not equal to id

because ≠ g g†
id id. But we can build on this observation

and expand the sequence of operators to get closer to our
ultimate goal of simulating id.

4.1. Partial selective dynamical decoupling

Let us first of all investigate a selective decoupling scheme
which achieves this goal partly. For this purpose we split the
operator g into two operators. One of them acts on the qubit
α − 1 and the other one on qubit α + 1. Thus, they reverse
the sign of α α− +h 1, 1 in a way that the result of (15) is pro-
portional to id. Specifically we choose decoupling operators
of the form





σ σ σ σ
σ σ σ σ

=
=
=
=

α α

α α

− −

+ + −

g

g

g

g

,

,

... ,

... , (25)

z z z z

z z
N
z

N
z

0

1

2 1 3 3 1

3 1 3 2

where g2 acts on qubit α − 1 and every second qubit before it.
Similarly, g3 acts on qubit α + 1 and every second qubit after
it. The unitary transformation g2 induces a time reversal
affecting all operators +hi i, 1 for α<i and α α− +h 1, 1. Analo-
gously, g3 acts as a time reversal operation on all operators

+hi i, 1 with α⩾i and on α α− +h 1, 1. Since two operators reverse
the sign of α α− +h 1, 1, we also need to include  twice in our
decoupling scheme to bring its total sum to zero. Calculating
(0) for this decoupling scheme yields

∑ ∑σ σ σ σ σ= − ++ + ( )B J
1

2
. (26)

i

i i
z

i

i i
x

i
x

i
y

i
y(0)

1 1

Compared to id, we have all the two-qubit interactions
scaled by a factor 1

2
, meaning D = 2 in (16), which can be

accounted for by increasing the interaction time for the
transfer by a factor of 2. However, the eigenenergies of the
qubits σBi i

z are not scaled, so our decoupling scheme is not
able to achieve id to lowest order perfectly. If all the Bi are
the same, as required for successful state transfer, then the
effect of this discrepancy in the scaling is just a relative phase
e BT2i which is picked up by the transferred state and could be
corrected after the transfer occurred. As such, the discrepancy
may be perfectly acceptable in practice, depending on the
specifics of the studied system. However, for cases in which
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the resulting phase shift cannot be compensated by an
appropriate unitary transformation at the end of the quantum
state transfer protocol, a complete selective dynamical
decoupling scheme is needed which scales both parts of id

by the same factor of 1

2
in the lowest order of the Magnus

expansion. In the subsequent section such a selective
decoupling scheme is developed.

4.2. Complete selective dynamical decoupling

For a systematic derivation of a complete dynamical decou-
pling scheme which yields the same scaling for all the parts of
id, one can use the general method developed recently by
some of the authors in [21]. This method is based on similar
ideas as involved in the derivation of the partial selective
decoupling scheme and generalizes them by a formal proce-
dure that allows to find selective dynamical decoupling
schemes by solving an appropriate linear and inhomogeneous
system of equations. Instead of recapitulating this general
procedure presented in detail in [21], in the following we
present the resulting complete selective dynamical decoupling
scheme, discuss its main features, and demonstrate that it
works as intended. In analogy to the previously discussed
partial selective dynamical decoupling scheme, the complete
scheme involves four unitary operators of the form



σ σ σ σ
σ σ σ σ
σ σ σ σ σ σ σ σ σ

=
=
=
=

α α

α α

α α α α α

− −

+ + −

− − + + −

g

g

g

g

,

... ,

... ,

... ... . (27)

x x x x

y y
N
y

N
y

z z z z x z z
N
z

N
z

0

1 1 2 2 1

2 1 2 1

3 2 4 3 1 2 4 2

In the unitary operation g1 a σ x operator acts on all qubits
up to α − 1 and in g2 a σ y operator is applied to all qubits
starting from α + 1. Since σ σ σ σ σ σ σ= = −x z x y z y z both the
σ x and the σ y operators act as time reversal operators for the
eigenenergy terms of the qubits. Analogously, in the sum of
(15) the operators g1 and g2 introduce minus signs in the
eigenenergy terms of all affected qubits. The operator g3
involves a single σ x operator acting on qubit α at the bend.
Therefore, for each qubit i there is a decoupling operator
yielding a minus sign in the term σBi i

z of the sum of (15) and
in addition there are three operators for each qubit yielding a
positive sign. Thus, all of the terms σBi i

z are weakened by a
scaling factor D = 2 as needed.

We still need to confirm that the unwanted coupling
between qubits α − 1 and α + 1 is removed and the remaining
two-qubit couplings are scaled by a factor of D = 2. Let us
first ignore the qubit α at the bend and let us focus on the rest
of the qubit chain. In view of the relation

σ σ σ σ σ σ σ σ= =+ + + + + + +h h h , (28)i
x

i
x

i i i
x

i
x

i
y

i
y

i i i
y

i
y

i i1 , 1 1 1 , 1 1 , 1

the operators g1 and g2 yield positive signs in the couplings
+hi i, 1 for ∪α α∈ − + −i N[1, 2] [ 1, 1]. The operator

g3, however, yields a negative sign in these couplings.
Therefore, we obtain a scaling of these couplings with D = 2
as expected. The relevant couplings at the bend are α α−h 1, ,

α α+h , 1 and α α− +h 1, 1 the latter of which we want to remove to
lowest order of the Magnus expansion. The operators gj

transform these couplings in the following way

σ σ σ σ
σ σ σ σ
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,

,

,

,

,
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,
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x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

1 1, 1 1 1

2 1, 1 1 1

3 1, 3 1 1

1 , 1 1 1 1

2 , 1 2 1 1

3 , 1 3 1 1

1 1, 1 1 1 1 1 1

2 1, 1 2 1 1 1 1

3 1, 1 3 1 1 1 1

Using these results and looking at the sum of (15) we
notice that the coupling α α− +h 1, 1 is indeed eliminated as the
applications of operators g0 and g3 cancel each other. Simi-
larly, this is valid for the operators g1 and g2. In the case of
the other two couplings, i.e. α α−h 1, and α α+h , 1, the couplings
remain in the result of the sum with a factor of 1 2 each as
required. Therefore, the new scheme fulfils the necessary
selective dynamical decoupling condition (16) with a scaling
factor of D = 2.

4.3. A practical decoupling scheme

The two decoupling schemes presented so far share a com-
mon drawback. They both require σ z pulses, which are
typically hard to implement experimentally. It would there-
fore be beneficial to have a decoupling scheme that employs
only σ x and σ y pulses, both of which are usually much easier
to implement. We were able to find such a scheme, which
consists of the following four operators:





σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

=
=
=
=

α α α α

α α α α

+ + +

− − +

g

g

g

g

,

... ... ,

,

... ... . (30)

x x x y x y
N
x

y x y x y x x
N
x

0

1 1 2 1 2 3

2

3 1 2 3 2 1 1

The operator g1 applies σ x to all qubits up to the bend
position α, then alternates between σ y and σ x for the
remaining qubits. The operator g3 is basically a mirror of g1
and applies σx to all qubits starting from the bend position α to
the end of the chain, but alternates between σ y and σ x before
the bend. Both operators act on all qubits at the same time. In
practical realizations, only the pulse phase would need to be
altered for the individual qubits to differentiate between σ x

and σ y pulses, whereas the source of the pulses may be shared
by all qubits, allowing for potentially easier implementation.

With the result from (28) and the additional relations

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ

= = −
= = −

+ + + + + + +h h h ,

(31)
i
x

i
y

i i i
y

i
x

i
y

i
x

i i i
x

i
y

i i

i
x

i
z

i
x

i
y

i
z

i
y

i
z

1 , 1 1 1 , 1 1 , 1

we can easily verify that the lowest order of the average
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Hamiltonian takes the form

∑ σ σ σ σ= − ++ + ( )J
1

2
. (32)

i

i i
x

i
x

i
y

i
y(0)

1 1

Just like with the previous two schemes, the interactions
between the qubits are preserved with a scaling of D = 2,
while the additional coupling at the bend is eliminated in the
lowest order. However, this scheme also eliminates the
eigenenergy terms σBi i

z to lowest order. This means that the
relative phase shift from the transfer depends entirely on the
length of the chain N and is given by = −φ −ie ( )Ni 1.

Since (0) does not depend on specific values of the Bi,
the eigenenergies are eliminated even if they are not uniform.
This offers a practical advantage over the other two schemes:
since non-uniform eigenenergies disturb the transfer, this
scheme is robust against this kind of disorder and allows the
state transfer to complete successfully even in the presence of
diagonal disorder. The occuring phase shift is predictable and
therefore easily corrected after the transfer. For this reason
and for the lack of σ z decoupling operators, we believe this
scheme to be the best suited for a practical implementation.

5. Numerical simulations

To investigate the effectiveness of the proposed selective
dynamical decoupling schemes we present numerical simu-
lations of the dynamics of linear qubit chains governed by the
Hamiltonian of (8) with the coupling strengths of (3). For the
additional coupling strength γ we chose

γ λ α α λ α α= − − + −{ }N N0.4 max
2

( 1)( 1) ,
2

( )( ) , (33)

and α to be at or close to the middle of the chain. This choice
is sufficient to cover most of the interesting situations [10].

Since the Hamiltonian and the decoupling procedure
preserve the total number of excitations to quantify the quality
of the state transfer it is sufficient to consider a single exci-
tation transfer [27]. In this scenario the first qubit of the
network is prepared in its excited state and the rest is in the

ground state, i.e.

ψ = …1 0 0 . (34)i

Perfect quantum state transfer occurs if there exists a time
T after which the system evolves to the state

ψ ψ= = …T( ) 0 0 1 . (35)f

If we considered a general linear combination to be
present at the first qubit, we would only get a relative phase
for all three schemes at the end, which can be found in the
respective subsections of section 4 calculated explicitly. Let
us note here that we performed numerical simulations of the
phase change for all considered schemes and the given for-
mulas give the right phase change up to a very good order.

We measure the transfer quality by means of the state
fidelity F, which in our case is given by

ψ ψ= ∈F t t F t( ) ( ) , ( ) [0, 1]. (36)f

Perfect state transfer has occurred after time T if
=F T( ) 1.

Let us first of all look at the time evolution resulting from
the Hamiltonian (8) without any selective dynamical decou-
pling applied. For a chain of 10-qubits, numerical results are
depicted in figure 2. As expected, the fidelity never reaches
the optimal value of unity. After the time π λ=T the fidelity
of the bent 10-qubit chain assumes its maximum at ≈0.83.
This is the time where we expect perfect quantum state
transfer to happen under ideal conditions.

5.1. Complete selective dynamical decoupling scheme

Let us now investigate how well the complete solution pre-
sented in section 4.2 protects quantum state transfer in a bent
linear qubit chain. For this purpose, we will simulate the time
evolution resulting from applying the scheme for a specific
number of repetitions during the transfer time T.

Figure 3 presents numerical results obtained for a bent
10-qubit chain under the protecting influence of the complete

Figure 3. Fidelity F as a function of time (in units of λ1 ) for a 10-
qubit bent chain with Hamiltonian (8) protected by the complete
selective dynamical decoupling scheme: 12 repetitions of the
complete scheme with a total number of 48 pulses per π λ (magenta
lower line); 60 repetitions of the complete scheme with a total
number of 240 pulses per π λ (blue line). The red dashed line shows
the time evolution of an ideal unperturbed 10-qubit chain.

Figure 2. Fidelity F as a function of time (in units of λ1 ) for a 10-
qubit chain with Hamiltonian (8): ideal unperturbed qubit chain with
γ = 0 (red dashed line); perturbed bent qubit chain with γ of (33) and
α = 5 (blue line).
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dynamical decoupling scheme. Two cases are depicted with
different frequencies of the applied control operations. In the
first case (magenta lower line) the selective decoupling
scheme is repeated 12 times with a total number of 48 pulses
per π λ period required for perfect state transfer in the ideal
unperturbed case. In the second case the selective dynamical
decoupling scheme is repeated 60 times with a total number
of 240 pulses per π λ period. We notice that now the fidelity
peak occurs after a time π λ2 which originates from the
decoupling schemeʼs time scaling factor of D = 2. It is also
apparent that in both cases the fidelity maximum is higher
than in the unprotected case; for 12 repetitions it reaches a
value of ≈F 0.947 and for 60 repetitions it reaches

≈F 0.998. The beneficial influence of higher repetitions is
particularly apparent at the subsequent fidelity peaks. In the
case of 60 repetitions the achievable fidelities at these maxima
are still close to unity. However, for practical purposes the
first fidelity maximum at time π λ=t 2 is the most relevant
one. In actual experiments the achievable number of control
pulses is likely to be limited, so it is important to find a
reasonable balance between the required number of control
pulses and the achieved transfer fidelity.

To improve the performance of the scheme, we can
employ the SDD decoupling strategy. Even though the
symmetrized scheme consists of twice as many operations, it
should require fewer repetitions than the original sequence to
achieve a given degree of error suppression. Numerical results
are presented in figure 4 for the symmetrized selective
dynamical decoupling scheme. Thereby six repetitions of the
symmetric scheme have been performed involving a total
number of 48 control pulses per π λ period. This is the same
number of control pulses as used for obtaining the black curve
of figure 3. The fidelity maximum is now closer to unity at a
value of ≈F 0.997 which is comparable to simulations
involving the original selective dynamical decoupling scheme
with the significantly larger number of 240 control pulses.
This demonstrates that the symmetrized version of the com-
plete selective dynamical decoupling scheme performs sig-
nificantly better.

5.2. Partial selective dynamical decoupling scheme

Let us now investigate the performance of the practical
selective dynamical decoupling scheme introduced in
section 4.1. It is also suitable for protecting quantum state
transfer on a bent qubit chain with the caveat that the qubits’
eigenenergies are not properly rescaled. In general this leads
to a relative phase change during a quantum state transfer
which has to be taken into account. Whether or not this is a
problem in practical applications depends on experimental
circumstances. In the following it will be demonstrated that in
some respects this simpler partial selective dynamical
decoupling scheme performs even better than the symme-
trized complete scheme. This feature is attractive for practical
application provided the resulting phase change can be cor-
rected at the end of a quantum state transfer by other means.
Note that the phase change is only relevant if transferring a
superposition state α β〉 + 〉|0 |1 . The transfer fidelity for the
state 〉|1 , which we use in our simulations, is unaffected.

Figure 5 shows the influence of this partial selective
dynamical decoupling scheme on the dynamics of a bent 10-
qubit chain. In this example five repetitions of this scheme are
used which involve a total number of 20 control pulses per
π λ period. This is less than half the number of control pulses
used in the symmetric case depicted in figure 4. Yet the
performance is quite comparable. The fidelity maximum
reaches a value of ≈F 0.992.

5.3. Practical decoupling scheme

In this subsection we investigate the performance of the
practical decoupling scheme from subsection 4.3, which does
not make use of the σ z pulses at all. A representative case of
the time evolution numerically simulated is plotted in
figure 6. From our simulations it seems that the number of
pulses needed for quantitatively similar effects as the previous
two schemes lies somewhere in between the two other
schemes, somewhat closer to the number of pulses needed
with the complete scheme.

Figure 4. Fidelity F as a function of time (in units of λ1 ) for a 10-
qubit bent chain with Hamiltonian (8) protected by the symmetrized
complete selective dynamical decoupling scheme with six repetitions
of the symmetrized complete scheme involving a total number of 48
pulses per π λ (blue line); the red dashed line shows the time
evolution of an ideal unperturbed 10-qubit chain.

Figure 5. Fidelity F as a function of time (in units of λ1 ) for a 10-
qubit bent chain with Hamiltonian (8) protected by the partial
selective dynamical decoupling scheme with five repetitions of the
partial scheme involving a total number of 20 pulses per π λ (blue
line); the red dashed line shows the time evolution of an ideal
unperturbed 10-qubit chain.
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5.4. Selective dynamical decoupling in long qubit chains

In practical realizations of selective dynamical decoupling
schemes the number of control pulses that can be imple-
mented may be limited. In the following we investigate how
the minimal number of control pulses necessary for achieving
a satisfactory transfer fidelity scales with the number of qubits
in bent qubit chains. For this purpose we concentrate on an
achievable transfer fidelity of F = 0.95 at the first maximum
of the quantum state transfer protocol in qubit chains invol-
ving up to eleven qubits and determine the minimal number
of pulses required to reach this transfer fidelity.

Numerical results are depicted in figure 7 for all the
partial selective dynamical decoupling scheme, practical
decoupling scheme and the symmetrized complete scheme.
Apart from small qubit chains the number of control pulses
required in the symmetrized complete scheme and the prac-
tical scheme grow approximately linearly with the number N
of qubits of the chain. For <N 6 somewhat more control
pulses are required which may originate from the disturbance
being too close to the ends of the chain and thus having a
particularly strong impact. The partial selective dynamical
decoupling scheme also exhibits this phenomenon. But for
longer qubit chains it requires an approximately constant
number of 12 control pulses per π λ period. We expect,

however, that for even larger qubit chains the number of
required control pulses will also eventually grow linearly with
N, albeit possibly with a smaller slope than the symmetrized
complete selective decoupling scheme.

In [10] it has been demonstrated that the effect of the
perturbing additional coupling at the bend of a linear qubit
chain diminishes with increasing numbers N of qubits of the
chain. In view of the linearly increasing number of pulses
necessary to counteract the influence of the disturbance we
expect that for very long qubit chains the effort required to
successfully implement decoupling may no longer be worth
the expected benefits. Therefore, the presented selective
dynamical decoupling schemes are expected to be particularly
valuable for protecting quantum state transfer in quantum
networks of intermediate sizes which are of interest for cur-
rent realizations of quantum registers.

5.5. Imperfect pulses

Since we consider the additional coupling in the network to
be a result of some imperfection or defect, it is important to
investigate how the suggested schemes work under imperfect
conditions themselves. So far, we have assumed that both the
pulses and the timing between pulses are perfect. In this
section, we will study the effects of two different sources of
errors. The first are imperfections in the timing of the pulses,
which we model by replacing the constant Δt with random
values from a Gaussian distribution with mean value μ Δ= t
and standard deviation σ Δ= q t. The second are systematic
errors in the applied Pauli pulses where we replace the perfect

pulses σ i with an imperfect pulse σ θσ−ei i i
. Here, θ can be seen

as a rotational offset when viewing the effects of the Pauli
operators on the Bloch sphere. A value of θ = 0 corresponds
to the ideal pulse.

The results for imperfect timings can be seen for the
practical scheme in figure 8. We have also run simulations for
the other schemes, and the results are similar in the sense that
the fidelity peaks begin to drop significantly once ⩾q 0.2 and
do not change very much for ∈q [0, 0.2). In other words: if
95.4% of pulses happen between Δ Δ±t t0.4 with Gaussian
distribution around Δt, the decoupling schemes generally
perform close to the case of perfect timing.

For the systematic errors, the results of the practical
scheme are shown in figure 9. Judging from our simulations,
all three schemes were more sensitive to this kind of sys-
tematic error than to the randomized timings. In order to keep
the first fidelity peak above 0.9, θ should be kept below Δt0.1 .

Our simulation results show that there is a reasonable
margin for error in the implementation of the decoupling
schemes. The systematic error proved to be slightly more
problematic, which is to be expected, since a statistical error
can average itself out to a certain extent over time.

6. Conclusions

Three selective dynamical decoupling schemes have been
presented which are capable of suppressing unwanted

Figure 6. Fidelity F as a function of time (in units of λ1 ) for a 10-
qubit bent chain with Hamiltonian (8) protected by the practical
dynamical decoupling scheme with eight repetitions of the practical
scheme involving a total number of 32 pulses per π λ (blue line); the
red dashed line shows the time evolution of an ideal unperturbed 10-
qubit chain.

Figure 7. Minimum number of control pulses per π λ period to
achieve a transfer fidelity ⩾F 0.95 and its dependence on the
number N of qubits in a bent chain with γ given by (33) and with α
positioned in the middle of the chain: symmetrized complete
selective dynamical decoupling scheme (red squares); partial
selective dynamical decoupling scheme (blue circles); practical
decoupling scheme (black triangles).
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interactions occurring at a bend of a linear qubit chain. Such a
scenario occurs naturally if a chain is formed along a two- or
three-dimensional grid of qubits, for example. The selective
dynamical decoupling schemes presented weaken the overall
Hamiltonian strength by a factor of 1 2 which has to be
compensated by increasing the interaction time in order to
achieve quantum state transfer. The additional interaction at
the bend is strongly suppressed allowing the chain to work
ideally as if the bend was not there. The quality of the sup-
pression depends on the frequency of the applied control
pulses, with higher frequency implying better error
suppression.

Numerical simulations have been presented for state
transfer involving qubit chains of varying lengths. They
demonstrate the effectiveness of the selective dynamical
decoupling schemes presented. We have also investigated the
required minimal number of decoupling pulses to achieve a
good transfer fidelity. In the case of the simpler decoupling
scheme twelve pulses per π λ period have already been suf-
ficient for achieving a satisfactory error suppression in qubit
chains of up to eleven qubits. However, with increasing
length of the qubit chains we expect a linear increase of the
required number of pulses. This dependence makes our

selective dynamical decoupling schemes particularly suitable
for applications involving short to intermediate-sized qubit
chains, which are relevant in current implementations of
quantum registers. On longer chains, the cost of the decou-
pling method, including the implementation of individual
controls on each qubit, may well exceed the benefits.

It should be pointed out that even though we have con-
centrated on a specific quantum state transfer protocol with
specific coupling strengths, the developed selective dynamical
decoupling schemes do not depend on the particular coupling
strengths as described by (3). There are other choices of
coupling strengths implementing quantum state transfer
which can be protected by the presented selective dynamical
decoupling schemes as well. In fact, the schemes presented
should also work for Hamiltonians of the form (2) which have
been designed for tasks different from quantum state transfer.
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σ Δ= t0.3 , significant drop in all fidelity peaks behind the first peak;
magenta dotted line: σ Δ= t0.5 , biggest drop in the first fidelity peak.

Figure 9. Fidelity F as a function of time (in units of λ1 ) for a 10-
qubit bent chain with Hamiltonian (8) protected by the practical
scheme with eight repetitions of the scheme involving a total number
of 32 pulses per π λ seconds with imperfect pulses—a systematic
error is present with all the pulses. Different θʼs were selected for the
four simulations. Notice the drop in the first fidelity peak and the
consequent peaks as well: red dashed line: θ = 0, perfect pulses;
black solid line: θ Δ= t0.05 , very similar result to perfect pulses;
blue solid line: θ Δ= t0.1 , significant drop in all fidelity peaks;
magenta dotted line: θ Δ= t0.2 , fidelity roughly 0.4 even at the
first peak.
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