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Pulse-controlled quantum gate sequences on a strongly coupled qubit chain
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We propose a selective dynamical decoupling scheme on a chain of permanently coupled qubits with XX-type
interactions, which is capable of dynamically suppressing any coupling in the chain by applying sequences of
local pulses to the individual qubits. We demonstrate that high-fidelity single- and two-qubit gates can be achieved
by this procedure and that sequences of gates can be implemented by this pulse control alone. We discuss the
applicability and physical limitations of our model specifically for strongly coupled superconducting flux qubits.
Since dynamically modifying the couplings between flux qubits is challenging, they are a natural candidate for
our approach.
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I. INTRODUCTION

Current implementations of qubits are typically either well
isolated from noise, but difficult to couple, or strongly coupled,
but difficult to isolate. To achieve the goal of building a working
quantum computer for the tasks of quantum simulation and,
eventually, quantum computation, we require an architecture
that is capable of strongly coupling qubits to implement
fast multiqubit gates, but that can also isolate qubits from
each other and the environment when no gate operation
is performed. The trade-off between strong coupling and
isolation should be optimized to maximize the ratio between
decoherence time and gate operation time.

In quantum optics, extensive work has been done using
trapped ions or atoms as qubits, and scalable architectures that
can trap and address a large number of qubits simultaneously
exist [1]. These qubits feature excellent coherence times, yet
the implementation of two-qubit gates in these architectures is
still a topic of ongoing research, although recently promising
proposals were made in this regard [2–4].

Likewise, we have seen significant progress in solid-
state qubit architectures [5–7], and there exist promising
candidates for scalable systems. Gate-defined spin qubits [8,9]
feature excellent coherence properties [10], but coupling two
qubits remains a challenge despite proposals for efficient
coupling [11,12]. For superconducting qubits, both indirect
coupling via a resonator [13] and direct capacitive coupling
of detuned qubits [14] have been demonstrated and are com-
paratively easy to realize. While in principle superconducting
qubits can be coupled very strongly, the small anharmonicity
of some designs limits the possible coupling strength [15].
Very recently dynamically protected superconducting qubits
have been proposed [16] and demonstrated [17], which rely
on a parametrically driven cavity [18] in the quantum regime
[19–21]. In this design the qubits are well protected, but direct
coupling of two qubits might remain a challenge.

Good coherence properties were achieved for flux
qubits [22], a particular type of superconducting qubit with
a very large anharmonicity. This anharmonicity allows them
to be strongly coupled [23], which makes them particularly
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interesting for the implementation of fast two-qubit gates.
Larger circuits containing many weakly coupled flux qubits
have already been demonstrated [24]. However, their tunability
is limited by the need for an optimal operating point, which
makes it difficult to isolate the qubits when no gate operation
should be performed.

In this article, we attempt to overcome the isolation problem
of flux qubits and other similarly strongly coupled qubit
systems by an alternative ansatz. We study a qubit chain with
always present nearest-neighbor couplings and make use of a
pulse generator to exert external control on the qubits with the
aim of suppressing unwanted qubit couplings. We demonstrate
in numerical simulations that this simple pulse control enables
us to implement a sequence of entangling gate operations on
the qubit chain to entangle all the qubits in the chain in a
GHZ state [25] with high fidelity. We thus show that a system
of strongly coupled flux qubits may be used for universal
quantum computation purposes without the need to control
the qubit couplings.

Our pulse control is based on dynamical decoupling [26],
which is a generalization of techniques developed in the
nuclear magnetic resonance (NMR) community [27–30]. It
makes use of external control pulses being applied in rapid
succession to the system in question. With a carefully designed
control sequence it is possible to eliminate (parts of) a Hamil-
tonian interaction up to a certain order. Dynamical decoupling
has been successfully implemented in numerous experiments
to protect qubit states from the effects of decoherence [31–35].
For our purposes, we are interested in selectively decoupling
only certain interactions between qubits while keeping others
alive, a possibility proposed already by Viola et al. [36]. A
particularly simple to handle subset of decoupling schemes
applicable to networks of qubits employs only Pauli pulses
to individual qubits. Several different construction methods
for such Pauli operator schemes exist [37–41]. In dynamical
decoupling, it is typically assumed as a first approximation
that the applied control pulses are instantaneous and unitary. In
our numerical calculations, we go beyond this approximation
by simulating realistic pulse lengths. To deal with such
bounded controls, advanced decoupling techniques in the
form of Eulerian decoupling [42] and dynamically corrected
gates [43,44] have been developed, which we will make
use of.
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The paper is organized as follows: In Sec. II we present
the physical model of our qubit chain and the type of control
we have over the system. Section III explains how a two-qubit
iSWAP gate can be implemented with the help of dynamical
decoupling. Decoupling basics are explained and a decoupling
sequence for this particular task is developed. Numerical
results for the achievable fidelity are presented. In Sec. IV
we then look at how to implement single-qubit gates with high
fidelity, where numerical simulations were conducted to verify
the achievable fidelities. Finally, in Sec. V we introduce the
CNS gate and use this gate to entangle all the qubits in our
chain in a GHZ state. We calculate numerical results for the
achievable GHZ state fidelity for different numbers N of qubits
and also look at how much of an impact disorder has on the
fidelity.

II. THE COUPLED QUBIT SYSTEM MODEL

We consider a system of N qubits in a chain with nearest-
neighbor couplings described by the Hamiltonian,

H0 = 1

2

N∑
i=1

εiσ
(i)
3 − g

N−1∑
i=1

σ
(i)
1 σ

(i+1)
1 , (1)

where the σ (i)
a are the Pauli operators applied to the ith qubit,

and εi are the qubits’ eigenenergies. The coupling between
the qubits is assumed to be uniform and characterized by
the coupling strength g. This model is strongly inspired by a
system of coupled flux qubits [23], however, alternative qubit
designs exist which are also described by this Hamiltonian.
Additionally, in our model there is a pulse generator with
frequency ω which can exert external control on the qubits,
and in the case of flux qubits is implemented as a microwave
emitter. It is described by the control Hamiltonian,

Hc0(t) =
N∑

i=1

fi(t)σ
(i)
1 cos(ωt + ϕi(t)), (2)

and is governed by the pulse amplitudes fi(t) and phases ϕi(t),
which can be controlled for each qubit individually.

It is convenient to switch to a rotating frame by transforming
to the interaction picture given by the unitary operator Uω(t) =
exp(iω

∑
i σ

(i)
3 t/2). In the rotating frame and with the rotating

wave approximation, the system and control Hamiltonians
equal

H = 1

2

N∑
i=1

�iσ
(i)
3 − g

2

N−1∑
i=1

(
σ

(i)
1 σ

(i+1)
1 + σ

(i)
2 σ

(i+1)
2

)
,

(3)

Hc(t) = 1

2

N∑
i=1

fi(t)
(

cos(ϕi(t))σ
(i)
1 + sin(ϕi(t))σ

(i)
2

)
.

The �i = εi − ω indicate the detuning between the individual
qubits’ eigenenergies and the frequency of the driving field and
should ideally be zero for our purposes. If the eigenenergies
are different, then we have disorder, which can disrupt the gate
operations we intend to implement in the following. However,
as we will see, our approach is robust to disorder due to our
use of decoupling, as long as the �i do not become too large.

III. IMPLEMENTING THE TWO-QUBIT iSWAP GATE BY
SELECTIVE DECOUPLING

The coupling between the qubits according to (3) is of XX

type. Schuch and Siewert [45] studied natural gate operations
resulting from such an interaction. They showed that, after an
interaction time T = π/(2g), this type of coupling between
two qubits produces a unitary iSWAP gate:

UiSWAP := exp

[
iT

g

2

(
σ

(i)
1 σ

(i+1)
1 + σ

(i)
2 σ

(i+1)
2

)]
. (4)

This gate, like the better known SWAP gate, exchanges the
state of two qubits, but introduces an additional phase on
the swapped qubit states. However, in our model we have
additional couplings to the qubits (i − 1) and (i + 2) as
well as the disorder terms �iσ

(i)
3 and �i+1σ

(i+1)
3 . In order

to successfully use the natural couplings to implement the
iSWAP gate, we need to isolate the two qubits involved in the
gate operation. Traditionally, we would thus require switching
off any interactions which are not currently needed, but
this process is complicated and often limits the achievable
interaction strength g. Instead, we will employ dynamical
decoupling to suppress the effects of individual couplings as
needed.

A. Dynamical decoupling basics

In dynamical decoupling, the natural evolution of the N -
qubit chain under the acting Hamiltonian H is modified in a
controlled fashion by the external control Hamiltonian Hc(t).
In our case, the pulse generator will be activated periodically at
times tj for a short time tp to implement a sequence of pulses,

pj = Uc(tj ,tj + tp) = T exp

(
−i

∫ tj +tp

tj

dtHc(t)

)
, (5)

where T denotes the Dyson time-ordering operator and pj is
a unitary operator representing the j th pulse of the sequence.
However, the implementation of the pulse is disturbed by the
acting Hamiltonian H , so that we get an imperfect pulse of the
form,

p̃j = T exp

(
−i

∫ tj +tp

tj

dt(Hc(t) + H )

)
= pjp

†
j p̃j

= pjT exp

(
−i

∫ tj +tp

tj

dtU †
c (tj ,t)HUc(tj ,t)

)

≡ pje
−i�j . (6)

If we assume that after each decoupling pulse there is a time τ

of free evolution under the Hamiltonian H , then by introducing
the unitary operators gj = pjpj−1 · · ·p0, the resulting time
evolution U (t) after M pulses can be written as

U (Mτ ) = p̃Me−iHτ p̃M−1 · · · p̃1e
−iHτ

= gM (g†
M−1e

−i�M e−iHτ gM−1) · · · (g†
0e

−i�1e−iHτ g0)

= gMe−ig
†
M−1�MgM−1e−ig

†
M−1HgM−1τ

× · · · e−ig
†
0�1g0e−ig

†
0Hg0τ . (7)
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It is customary to enforce the cyclic condition gM = g0 = 1
by an appropriate choice of the decoupling pulses pj . We can
now define an average Hamiltonian H which leads to the same
time evolution after the time Mτ , i.e.,

U (Mτ ) ≡ e−iHMτ . (8)

By performing a Magnus expansion [46], the average Hamil-
tonian H is expanded in powers of the pulse distance τ , i.e.,

H = H
[0] + H

[1] + H
[2] + · · · , (9)

where the lowest order is found to be

H
[0] = 1

M

M−1∑
j=0

g
†
j

(
H + 1

τ
�

[0]
j+1

)
gj . (10)

Here, �
[0]
j is the lowest order of the Magnus expansion of the

error operator �j , which is given by

�
[0]
j =

∫ tj +tpj

tj

dtU †
c (tj ,t)HUc(tj ,t). (11)

Our goal is to selectively remove couplings between

specific qubit pairs in the lowest order H
[0]

of the average
Hamiltonian and to keep all others, while simultaneously
suppressing the effects of the disorder terms �iσ

(i)
3 and the

pulse errors �
[0]
j . We call a set of M operators {gj }M−1

j=0 a
decoupling scheme if it fulfils this purpose. Note that the higher
orders of H are typically nonzero and remain as errors.

B. Decoupling an individual qubit

As a first step, we will discuss decoupling of a single
qubit on the chain with the goal of freezing the evolution
of that qubit’s state. For a single qubit, there exists a particular
decoupling scheme,

{g0 = 1, g1 = σ1, g2 = σ3, g3 = σ2}, (12)

which has the property that for any traceless Hermitian
operator P acting on the subspace of the qubit,

3∑
i=0

g
†
i Pgi = 0. (13)

It can be implemented solely with the help of σ1 and σ2

pulses to the qubit (meaning π pulses around the X or Y

axis, respectively), by the sequence,

g0 = 1
p1=σ1−→ σ1

σ2−→ σ3
σ1−→ σ2

σ2−→ 1. (14)

If we insert this decoupling scheme into (10), it will eliminate
all parts of the Hamiltonian H acting on the qubit in the
lowest order, effectively decoupling the qubit from the rest
of the chain. Unfortunately, the pulse errors �j depend on
the particular pulses pj and are thus not eliminated by this
decoupling scheme.

There is a trick to construct a decoupling sequence from
the scheme in Eq. (12) which not only eliminates H , but also
the pulse errors �j in (10). This method is called Eulerian
path decoupling [42] and proceeds as follows. A graph is
constructed from the scheme (12) where the scheme operators

I X

Y Z

1: X

2: Y

3: X

6: X

8: X

4: Y

5:
 Y

7:
 Y

FIG. 1. (Color online) A Eulerian path decoupling sequence for a
single qubit. I,X,Y,Z correspond to the Pauli operators 1, σ1, σ2, and
σ3. The vertices represent the decoupling operators gj ; the directed
edges denote the transitions between the gj due to the decoupling
pulses pj .

gj are taken as the vertices of that graph and a directed edge is
placed between two operators ga , gb if σ1ga = gb or σ2ga =
gb, up to a phase factor. A Eulerian path through this graph is
a path which visits every edge of the graph exactly once. A
particular Eulerian path is depicted in Fig. 1, which results in
the following decoupling sequence:

g0 = 1
p1=σ1−→ σ1

σ2−→ σ3
σ1−→ σ2

σ2−→
1

σ2−→ σ2
σ1−→ σ3

σ2−→ σ1
σ1−→ 1. (15)

It corresponds to two consecutive applications of the original
scheme (12), but with different orders of the scheme operators
gj . If inserted into (10), we get

H
[0] = 1

8

∑
gj ∈

{1,σ1,σ2,σ3}

g
†
j

(
2H + 1

τ

(
�

[0]
1 + �

[0]
2

))
gj = 0.

(16)

The remaining orders of the average Hamiltonian H are of
order O(||H ||2τ ) + O(||�j ||2).

C. Selective decoupling on the qubit chain

The decoupling sequence discussed in Sec. III B can isolate
a single qubit from the chain. We need to extend this sequence
to the whole chain in such a way that we can selectively
decouple only certain qubit couplings while keeping others
alive. In [41] we found that if we extend the original decoupling
scheme (12) to two qubits in the following way,

g0 = 1 ⊗ 1, g1 = σ1 ⊗ σ1,
(17)

g2 = σ2 ⊗ σ2, g3 = σ3 ⊗ σ3,

then in (10) it will keep the Heisenberg-type coupling terms
between these two qubits intact while still eliminating the
disorder terms �iσ

(i)
3 . On the other hand, if instead we
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choose
g0 = 1 ⊗ 1, g1 = σ1 ⊗ σ2,

(18)
g2 = σ2 ⊗ σ1, g3 = σ3 ⊗ σ3,

then the Heisenberg-type couplings in (10) are eliminated
between these two qubits. The first scheme can be realized
by applying the pulse sequence XYXY on both qubits
simultaneously, while the latter one applies XYXY to one
qubit and YXYX to the other.

It is straightforward to extend these schemes to the whole
qubit chain. On each qubit, we apply alternating XY pulses.
Neighboring qubit pairs whose interaction should be kept alive
will employ XY pulses in the same order, whereas between
qubit pairs whose interaction should be decoupled, we use
alternating pulse sequences. For example, if we wanted to
protect the interaction between the first and last qubit pairs on
a five-qubit chain, but eliminate the couplings with the middle
qubit, we would use the following pulse sequence:

p1 = σ
(1)
1 σ

(2)
1 σ

(3)
2 σ

(4)
1 σ

(5)
1 ,

p2 = σ
(1)
2 σ

(2)
2 σ

(3)
1 σ

(4)
2 σ

(5)
2 , (19)

p3 = p1, p4 = p2.

While the previously explained extension allows us to selec-
tively decouple certain qubit couplings from the Hamiltonian
H in (10), it does not eliminate the pulse errors �

[0]
j . A simple

modification to (19) sees us adding additional pulses,

p5 = p4, p6 = p3, p7 = p2, p8 = p1, (20)

with the effect that on each individual qubit we now have
a Eulerian path decoupling sequence as in (15), without
changing the effects of the sequence on H in the lowest
order (10). This is the final decoupling sequence which we
will use to implement our quantum gates, and we will see
in numerical simulations that it produces sufficiently high
fidelities. However, we should point out that, due to the
extension of the sequence to the whole chain, the pulse errors
are not fully eliminated in the lowest order even with the
Eulerian path modification. The reason is that the original
schemes (17) and (18) only eliminate certain Hermitian
operators on the two-qubit subspace, but not all of them.
A more sophisticated approach is outlined in [43] which
eliminates errors completely (in the lowest order), however, it
requires 64 pulses instead of eight and thus has a significantly
longer implementation time.

D. The iSWAP gate and physical limitations

We have all the necessary prerequisites to implement iSWAP

gates on our qubit chain. The procedure is simple: Over the
implementation time T = π/(2g), we apply the sequence of
eight pulses developed in Sec. III C. Due to the selective
decoupling, we can implement several iSWAP gates in parallel,
provided that any two gates do not share a gate qubit. Both
σ1 and σ2 pulses can be implemented with our pulse generator
as π pulses around the X or Y axis. For σ1 pulses, the phase
ϕi(t) is chosen to be 0; for σ2 pulses it is chosen as π/2. The
amplitude fi(t) can be any smooth function with the condition,∫ tp

0
dt fi(t) = π. (21)

The pulse implementation time tp should be made as small
as possible to reduce the pulse errors. However, there are
some fundamental obstacles which prevent us from making tp
infinitely short. For one, a physical pulse generator will have
limitations on how quickly it can steer the pulse amplitude
and on the maximal achievable pulse amplitude, which in
turn limits the minimal pulse duration. Additionally, the
rotating frame Hamiltonian in Eq. (3) was derived in the
rotating wave approximation. In order to ensure validity of this
approximation, we require 1 � 2ωtp. Another fundamental
problem is the fact that many physical implementations of
qubits are only approximately two-level systems. If we probe
the physical system hard enough, which in our case means if
we choose tp → 0, eventually we will excite higher states or
invoke additional interactions and thus invalidate our two-level
approximation.

With that in mind, let us look at what kind of pulse duration
we would have to achieve to actually implement the iSWAP gate
with high fidelity. Given the implementation time T = π/(2g)
of the iSWAP gate and the necessity to implement a series of
eight pulses during that time, the upper limit for the pulse time
is given as tp � π/(16g). In our simulation, we used pulse
times,

tp ∈ [π/(16g),π/(32g),π/(48g),π/(64g),π/(96g)].

We simulated a qubit chain of varying length with �i = 0
and implemented the iSWAP gate in the middle of the chain.
We used Gaussian pulse shapes for the decoupling pulses, and
Fig. 2 depicts the pulse sequence used. We simulated the time-
dependent Schrödinger equation for the full pulse sequence
and calculated the emerging state of the qubit chain, where we
then traced out all of the qubits except for the two gate qubits.
The resulting state ρ was then compared to the expected state
|�〉 = UiSWAP|�in〉 by means of the state fidelity [47],

F (T ) = |〈�|ρ|�〉|. (22)

As initial states |�in〉 we used all four basis states |00〉, |01〉,
|10〉, and |11〉 and took the average over the achieved fidelities.
The remaining qubits were always prepared in the state |0〉.

The average fidelities depending on the pulse duration tp
are given in Table I. The results were virtually independent of
the number of total qubits N in the chain. We can see that even

FIG. 2. (Color online) The pulse sequence used to implement the
iSWAP gate. This figure shows the pulse sequence used for both of the
gate qubits, where solid blue signifies a pulse in the X direction and
dashed red signifies a pulse in the Y direction. Neighboring qubits use
the same pulse sequence, but with X and Y swapped if their coupling
is to be eliminated.
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TABLE I. Numerical simulation results for the achievable fidelity
of the iSWAP gate, depending on the pulse duration tp .

tp = π/(16g) π/(32g) π/(48g) π/(64g) π/(96g)

0.9922 0.9979 0.9990 0.9994 0.9997

for the longest possible pulse duration tp = π/(16g), the gate
fidelity is above 0.99. However, the probability to measure ρ in
a state orthogonal to |�〉 is given by pe = 1 − F (T )2, which
for this value of tp is at pe = 1.55%. Given that this error is
systematic and will multiply with repeated gate applications,
a smaller error is desirable. For tp = π/(32g), the error is
just pe = 0.42%, which is a significant improvement. The
dependency of pe on the pulse time tp is plotted in double
logarithmic scales in Fig. 3. As the plot is approximately a
straight line, we can estimate the dependency as

pe ∼ (gtp)α, (23)

where we find that α ≈ 1.8. The error probability therefore
scales nearly quadratically with the pulse width, meaning that
any reduction in tp has significant benefits for pe.

What pulse durations are realistically achievable? Let us
consider as a concrete example two superconducting flux
qubits. Flux qubits with always-on couplings of the order of
g ∼ 500 MHz were realized in [23], which would allow for
a fast implementation of the iSWAP gate. Additionally, flux
qubits feature a rather large anharmonicity, meaning that the
higher energy levels after the two qubit states are separated by a
significant gap. With a typical splitting of about 5 GHz between
the first two levels, we could in theory have a pulse amplitude
of several GHz before we risk exciting the higher states. Let
us assume that we could safely employ a maximum pulse
amplitude fmax = 10 GHz. Then the achievable minimal pulse
duration for that amplitude depends on the specific pulse shape.
For a Gaussian pulse like we used in our simulations we find
that for tp = π/(16g), the required maximal pulse amplitude is
fmax ∼ 45g. However, with the assumed values of g and fmax

for the flux qubits, we only achieve a ratio of fmax/g ∼ 20. As
a consequence, we would have to reduce the coupling constant
by a factor of about 2. Alternatively, one could also look at

FIG. 3. (Color online) The probability of error pe for the iSWAP

gate depending on the pulse width tp in double logarithmic scales.
The dependency is read out to be approximately pe ∼ (gtp)1.8.

different pulse shapes. For example, a sine-shaped pulse would
only require fmax/g ∼ 25, which is much closer. However, we
also found in our simulations that the sine pulse performs
slightly worse in terms of achievable gate fidelity. As such,
there is a compromise to be made between minimizing the
gate duration T ∝ 1/g and maximizing the gate fidelity.

Let us assume that we choose to engineer a coupling
strength of g = 100 MHz, which gives us some additional
reserves and allows us to aim for a pulse duration of
tp = π/(32g) ≈ 1 ns without exciting higher states. With the
driving field frequency ω tuned to the approximate qubit
level splitting of 5 GHz, this pulse time is then one order
of magnitude larger than 1/(2ω), so that the rotating wave
approximation is still valid. The implementation time of the
iSWAP gate is T ≈ 16 ns, during which eight pulses need to
be applied, resulting in a pulse frequency of 500 MHz. The
requirements for our pulse generator are ambitious, but not
impossible. Even more encouragingly, in recent experiments
flux qubits have been demonstrated with decoherence times of
the order of 10 μs [22,48]. This means that the gate operation
time is almost three orders of magnitude faster than the
decoherence time, making this procedure viable for flux qubits.
Other implementations of the basic model from Sec. II may
impose very different limitations.

Using a current biased Josephson junction, a fast controlled-
Z gate has recently been implemented in time T ≈ 30 ns and
with an estimated fidelity (disregarding the effects of deco-
herence) of 99.73% [49,50]. We can see that our decoupling
approach may achieve gate times and fidelities comparable
to this more traditional gate implementation. Therefore, given
its relative simplicity of only requiring local qubit pulses for
all operations, we believe the decoupling approach may be a
viable alternative in systems where qubit couplings cannot be
so easily switched off.

In the interest of maximizing the fidelity, we should
point out that there exist more sophisticated pulse shapes
than Gaussian or sine-shaped pulses. Some of these pulse
shapes were specifically engineered to reduce their own
error (see, e.g., [51] for a review of NMR pulse shapes
or [52–55] for more recent designs), or are less likely to
excite higher states in the system [56–58]. Both of these
properties might help to improve the gate fidelity further.
However, specifically with the self-correcting pulse shapes,
the price to pay is typically a significantly higher ratio fmax/g

to implement a particular pulse in the same time span. Thus
the qubit interaction strength g would have to be reduced even
further, meaning that decoherence becomes a potentially larger
concern. Which pulse shape is the most adequate depends on
the specific needs of a particular experiment. In our numerical
simulations, Gaussian shaped pulses proved to provide a
suitable compromise between achievable fidelity and required
maximal pulse amplitude.

IV. IMPLEMENTING HIGH-FIDELITY
SINGLE-QUBIT GATES

In addition to the two-qubit iSWAP gate, we will also need to
be able to perform single-qubit gates on the individual qubits.
For the implementation of the single-qubit gates, we will again
make use of the pulse generator. This means that the available
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gate operations are given by the unitary propagator of Hc(t)
in (3). In particular, we can implement rotation operations
around the X and Y axes,

Rx(φ) = e−iσ1φ/2, Ry(φ) = e−iσ2φ/2, (24)

which can be realized by choosing the phase ϕi appropriately
and engineering the pulse amplitude function such that∫ tp

0 dt f (t) = φ. However, as with the decoupling pulses in
Sec. III A, the gate operation is disturbed by the system
Hamiltonian H , which limits the achievable gate fidelity. For
a single-qubit gate, we typically want to achieve fidelities
well above 0.99, which is a requirement to add quantum error
correction later.

A. Dynamically corrected gates with Eulerian path decoupling

Fortunately, there is a way to embed a gate operation Q into
a Eulerian path decoupling sequence such that it decouples
the error of the gate. This technique is called dynamically
corrected gates (DCG) and was introduced in [44]. The idea
is deceptively simple. Remember in the original Eulerian
path construction in Fig. 1, each decoupling pulse formed
an outgoing edge from every vertex, ensuring that its error
would be decoupled to lowest order. We can add the identity
operation 1 as another “generator” to this picture, which can be
represented as loops which go out from each vertex and point
back to that same node. Let us now consider that our identity
operations are not perfect, but in fact given by I = 1e−i�I ,
carrying an error �I like the other decoupling pulses. Then
this design ensures that the error is decoupled to first order.
Finally, let us replace the final identity operation with the actual
gate Q that we want to implement, and let us assume that Q

has the same error as the faulty identity operations, �Q = �I .
The updated graph for the resulting decoupling sequence is
depicted in Fig. 4. The net operation of this sequence without
any errors would be the gate Q, as intended. Furthermore, the
errors of all occurring operations are corrected to first order by
the Eulerian path design.

This design hinges on the question whether we can find
a faulty identity operation which has the same error as the
gate Q. It was shown in [43] that this is possible at least to
first order of the error. Consider an arbitrary gate Q with its

I X

Y Z

1: X

3: Y

5: X

9: X

11: X

7: Y

8:
 Y

10
: Y

2: I

4: I6: I

12: Q

FIG. 4. (Color online) A Eulerian path for a dynamically cor-
rected gate operation Q.

time propagator given by UQ(t) during the implementation
time tQ. We can introduce a scaled gate Q1/2 with time
propagator UQ1/2 (t) = UQ(t/2), which obviously needs an
implementation time of 2tQ to implement the original gate Q.
It can be shown that this scaled gate implementation carries the
same error to lowest order as the faulty identity gate I = Q†Q
with the time propagator,

UI (t) =
{
UQ(t), 0 � t < tQ,

UQ(2tq − t), tQ � t � 2tQ.
(25)

In our control scheme, for any of the possible rotation
gates Ra(ϕ), the gates I and Q1/2 can be implemented in
a straightforward manner by modifying the phase amplitude
functions fi(t). For the faulty identity gate I we need

f ′
i (t) =

{
fi(t), 0 � t < tQ,

−fi(2tQ − t), tQ � t � 2tQ,
(26)

meaning that we add the negative reverse of the original pulse
shape. For the gate Q1/2 we need to scale both the time and
the amplitude by 1/2, meaning

f ′
i (t) = 1

2fi(t/2). (27)

If our minimal gate time is given by tp, then each of the faulty
I operations and the final gate Q will take 2tp to implement.
As a consequence, the total duration to implement a single-
qubit gate is 16tp. For the case of flux qubits as discussed in
Sec. III D, the operation times for a single gate and the iSWAP

gate are comparable.

B. Implementation and numerical simulations

Figure 5 shows the concrete pulse sequence we are employ-
ing in our numerical simulations to implement a dynamically
corrected Rx(π/2) gate with the decoupling sequence from
Fig. 4. The blue parts indicate pulses along the X axis; red
parts indicate pulses along the Y axis. All qubits in the chain
are subjected to the same sequence, except that neighboring
qubits will have the X and Y pulses interchanged such that
the couplings between the qubits are decoupled. Qubits on
which no gate is implemented will leave the pulse amplitude
set to 0 during the I and Q phases in the sequence. Note
that several single-qubit gates can, in principle, be applied in
parallel to different qubits, however not on neighboring qubits.

FIG. 5. (Color online) The pulse sequence applied to a single
qubit to implement a dynamically corrected Rx(π/2) gate with
Gaussian pulse shapes. Solid blue indicates that the pulse generator
is acting along the X axis; dashed red indicates a pulse along the Y

axis.
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TABLE II. Numerical simulation results for the achievable
fidelity of the Rx(π/2) gate, depending on the pulse duration tp .

tp = π/(16g) π/(24g) π/(32g) π/(40g) π/(48g)

0.99929 0.99986 0.99996 0.99998 0.99999

The reason is that on neighboring qubits, the error associated
with the gate Q = Q1 ⊗ Q2 contains terms which cannot be
decoupled by our decoupling scheme, and as a consequence
the fidelity reduces significantly. Therefore, single-qubit gates
on neighboring qubits should be performed sequentially.

As with the iSWAP gate, we simulated the pulse sequence
from Fig. 5 on the middle qubit of a chain with N qubits
by simulating the time-dependent Schrödinger equation, then
tracing out all qubits but the gate qubit. The remaining traced
state ρ was compared to the expected state. As input states, we
simulated both |0〉 and |1〉 and took the average of the resulting
fidelities. The results for the implementation of the Rx(π/2)
gate can be found in Table II. Results for different single-qubit
gates are very similar. We can see that even for tp = π/(16g)
the fidelity is quite good, with an error probability of pe =
0.14%. The dependency of pe on the pulse width tp is plotted
in Fig. 6 in double logarithmic scales and is worked out to be
pe ∼ (gtp)4, which is even better than for the iSWAP gate.

V. ENTANGLING THE CHAIN QUBITS WITH THE
HELP OF A CNS GATE SEQUENCE

In the following, we investigate how to implement an
entangling two-qubit gate in our model. An entangling gate is a
necessity for universal quantum computing, and the previously
implemented iSWAP gate on its own is not sufficient. However,
the iSWAP gate can be combined with a sequence of single-qubit
gates to perform the so-called CNS gate [45], which is a
combination of a standard CNOT followed by a SWAP operation.
The gate sequence depicted in Fig. 7 implements a CNS gate
with the upper qubit being the control qubit. If the control is
in the state 1, then the state of the second qubit is flipped.

FIG. 6. (Color online) The probability of error pe for the single-
qubit Rx(π/2) gate depending on the pulse width tp in double
logarithmic scales. The dependency is read out to be approximately
pe ∼ (gtp)4.

Rx(π
2 ) Ry(π

2 ) Rx(−π
2 )

iSWAP
X Ry(−π

2 )

Rx(π
2 ) Ry(−π

2 )

FIG. 7. The quantum circuit to implement a CNS gate with the
help of the iSWAP gate and a number of single-qubit rotations.

Afterwards, the states of both qubits are swapped. This gate is
able to generate entanglement between two qubits.

In [45], Hadamard gates and rotations around the Z axis
were used. We rearranged the gate sequence to use rotations
around the X and Y axes instead, as these are the operations
accessible in our model with the help of the pulse generator.

We already have all the pieces of the puzzle to implement
the CNS gate. Given that the single-qubit gates must be
performed sequentially due to being on neighboring qubits, the
CNS gate will take time π/(2g) + 112tp to implement. For our
flux qubit example with a coupling strength of g = 100 MHz
and tp = π/(32g), this yields a time of approximately 126 ns,
which is still a factor of 80 below the decoherence time.

As a final experiment in this chapter, we will perform a
sequence of CNS gates to entangle all the qubits in the chain.

A. An entangling sequence of CNS gates

If we perform a CNS gate on two qubits, of which the first
(control) is prepared in the superposition (|0〉 + |1〉)/√2 and
the second in the state |0〉, then the resulting state is (|00〉 +
|11〉)/√2, which is an entangled Bell state. If we now take a
third qubit, initially also in the state |0〉, and perform a CNS
gate an qubits 2 and 3, then we get a three-qubit entangled
state (|000〉 + |111〉)/√2. With each additional execution of a
CNS gate, we can bring an additional qubit into the entangled
state. This type of multiqubit entangled state is called a GHZ
state [25]:

|GHZ〉 = |0〉⊗N + |1〉⊗N

√
2

. (28)

Let us assume that all qubits on the chain are initially
prepared in the state |0〉. Then we bring a qubit in the middle of
the chain into the superposition (|0〉 + |1〉)/√2. This is done
by applying a Hadamard gate to it, which in our model we
can express as an X gate followed by a rotation Ry(−π/2).
From there on we apply CNS gates to entangle this qubit with
all the other qubits in the chain, where we can in fact apply
CNS gates in parallel. A gate sequence for a six-qubit chain is
depicted in Fig. 8.

We conducted numerical simulations for this gate sequence
by calculating the resulting state |�〉 by simulating the time-
dependent Schrödinger equation, where we assume that all
qubits are initially in the state |0〉. We calculated the fidelity
FGHZ of the GHZ state depending on the pulse duration tp for
Gaussian pulse shapes,

FGHZ = |〈GHZ|�〉|. (29)

We simulated qubit chains of up to nine qubits. The results
are shown in Table III. Given pulses which are sufficiently
quick compared to the coupling strength g, a high fidelity of
0.99 for the entangled state can theoretically be achieved even
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×
× • ×

X Ry(−π
2 ) • × • ×

× • ×
× • ×

×

FIG. 8. A quantum circuit to entangle all qubits in a quantum
register in a GHZ state. In this figure, the CNS gates are represented
by a directed CNOT gate followed by a SWAP gate.

for N = 9 qubits. However, at least in the flux qubit case,
this would require one to reduce the coupling strength g to
the point that the full gate sequence will approach the flux
qubit decoherence time. For the more realistic pulse duration
tp = π/(32g) the achieved fidelities are not as spectacular, but
still promising.

It is clear that with increasing N , the fidelities will steadily
drop. This is a consequence of the increased number of
imperfect gate operations. Additionally, the longer the gate
sequence, the closer we get to the decoherence time, at which
point everything breaks down. In order to achieve scalability,
the addition of quantum error correction is therefore necessary.
However, a linear chain of qubits is not a suitable architecture
for this task. We believe that it would therefore be necessary to
extend our model to a two-dimensional grid of coupled qubits.
This would require a modification of our decoupling pulse
sequences to account for the fact that any single qubit is now
coupled to four neighbors instead of just two. Such a scenario
has been accomplished recently for Ising-type qubit couplings
by De and Pryadko in [59,60].

A natural choice for error correction protocols on a grid
are surface codes. The error probability threshold for the
surface code has been estimated to be pth ≈ 0.75% [61].
For tp � π/(32g), both our iSWAP and the single-qubit gate
implementations are below that threshold. However, the
extension to the 2D grid as well as environmental influences
may well increase the error probability. Further analysis on the
necessary conditions to beat the threshold will be necessary
once the extension to the 2D grid has been accomplished.

TABLE III. Numerical simulation results for the achievable
fidelity of the GHZ state, depending on the number N of qubits
and the pulse duration tp .

N tp = π/(16g) π/(32g) π/(48g) π/(64g) π/(96g)

3 0.964 0.989 0.995 0.997 0.999
4 0.933 0.982 0.992 0.995 0.998
5 0.882 0.974 0.988 0.993 0.997
6 0.835 0.967 0.986 0.992 0.996
7 0.821 0.962 0.983 0.990 0.996
8 0.784 0.956 0.981 0.989 0.995
9 0.710 0.947 0.977 0.987 0.994

FIG. 9. (Color online) Averaged fidelity for a GHZ state achiev-
able on a four-qubit chain for different values of the pulse duration
tp (Gaussian pulse shapes were used), when the qubit eigenenergies
differ from each other. The �i are randomly sampled from a Gaussian
distribution with standard deviation σ . The plotted results were
averaged over 100 runs.

B. Influence of disorder

The results in Table III were achieved under the assumption
that the qubits’ eigenenergies are in resonance, meaning that
the �i in Eq. (3) are all zero. Nonzero �i have a detri-
mental effect on the achievable fidelity. However, our decou-
pling scheme offers limited robustness against these effects.
We ran additional simulations where we sampled the �i

randomly from a Gaussian distribution with mean value μ = 0
and standard deviation σ . Results of the achievable fidelity
depending on σ , averaged over 100 runs, are plotted in Fig. 9
for a chain of four qubits. We can see that the drop in the
averaged fidelity is noticeable for tp = π/(16g), but with
faster pulses becomes negligible, at least up to the simulated
maximal value of σ/g = 1. In a recent experiment with 20
flux qubits [24], deviations of up to 1 GHz were observed
in the eigenenergies, which may be two to 10 times larger
than the coupling g, depending on how strongly the qubits
are engineered to interact. As such, current experimental
deviations may be larger than our decoupling scheme can
handle. However, we expect that with improved manufacturing
processes the qubit eigenenergy discrepancies will become
sufficiently small in the future so that the detrimental influence
of the disorder is negligible with sufficiently fast pulses.

VI. CONCLUSIONS

We presented a coupled qubit system modelled after
superconducting flux qubits which is fully controlled by a pulse
generator. The qubits are strongly coupled to their neighbors,
and the coupling is always present. We demonstrated how the
pulse generator can be used to implement both single-qubit
rotations and the two-qubit iSWAP gate. For the implementation
of the two-qubit gate we exploit the coupling between the
qubits and use a Eulerian decoupling scheme to decouple
the gate qubits from the remaining qubits in the system. The
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decoupling scheme is flexible so that several two-qubit gates
can be implemented in parallel. The single-qubit rotations
are realized with the help of dynamically corrected gate
operations, which embed the gate operation into a Eulerian
decoupling sequence.

The efficiency of our control scheme was analyzed in
numerical simulations, where we first looked at single gate
applications and achieved high fidelities for both the iSWAP

gate and the single-qubit rotations. Then a sequence of CNS
gates was simulated to entangle all the qubits in the chain in
a GHZ state. In order to entangle N qubits in a GHZ state,
N − 1 CNS gates are required. Without error correction, the
GHZ state fidelity directly depends on the number of qubits in
the chain. We found that for sufficiently short pulses, we could
still achieve a fidelity of 0.99 and above for chains of up to
N = 9 qubits. However, the pulse length is physically limited
by the energy gap to higher excited states, which should not be
excited by the pulse generator. As a consequence, the coupling

strengths between the qubits may need to be reduced, which in
turn increases the gate implementation times and could cause
problems with decoherence.

In order to achieve true scalability, quantum error correction
will be required. We propose to extend our model to a
two-dimensional grid, on which a surface code could be
implemented. Our results on the linear chain give rise to
cautious optimism that the error probability threshold of the
surface code may be achievable.
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