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Abstract. We investigate spontaneous photon emission processes of two-level atoms in

parabolic and ellipsoidal cavities thereby taking into account the full multimode scenario.

In particular, we calculate the excitation probabilities of the atoms and the energy den-

sity of the resulting few-photon electromagnetic radiation field by using semiclassical

methods for the description of the multimode scenario. Based on this approach photon

path representations are developed for relevant transition probability amplitudes which

are valid in the optical frequency regime where the dipole and the rotating-wave approx-

imations apply. Comparisons with numerical results demonstrate the quality of these

semiclassical results even in cases in which the wave length of a spontaneously emitted

photon becomes comparable or even larger than characteristic length scales of the cav-

ity. This is the dynamical regime in which diffraction effects become important so that

geometric optical considerations are typically not applicable.

1 Introduction

The investigation of resonant light-matter interaction has received considerable attention during the

last decades and remarkable experimental progresses in this field has opened the door to whole new

experimental opportunities [1–3]. These developments are not only interesting from a fundamental

point of view but also from practical points of view for possible applications in the area of quantum

information processing, for example. In this latter context methods for achieving an optimal trans-

fer of quantum information between single photons (flying qubits) and elementary material systems

(stationary qubits) over large distances by using the resonant strong coupling, as required for the real-

ization of a quantum repeater, are of particular interest. Therefore, recently considerable efforts [4–6]

have been devoted to investigate the interaction of matter qubits with few modes of the radiation field

within the framework of Jaynes-Cummings-Paul models [7]. Recent developments stimulated exten-

sions of this work to extreme multimode scenarios or to scenarios involving structured continua of

electromagnetic field modes which are characteristic for half open cavities of a parabolic shape [8, 9],

for example.

In the following we review some of these recent research activities focusing on the resonant matter-

field interaction of two-level atoms located around the focal point of a parabolic shaped cavity and

generalize them to prolate ellipsoidal cavities which include parabolic cavities as limiting cases. A

particularly interesting elementary quantum electrodynamical situation arises in a prolate ellipsoidal

cavity if two two-level atoms are trapped in the two foci of this cavity and exchange a single photon

which is emitted spontaneously by one of these two-level atoms.
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2 The quantum electrodynamical model

In our model we investigate the dynamics of n ∈ {1, 2} identical two-level atoms with transition

frequencies ωeg and dipole matrix elements �da = 〈e|a d̂a |g〉a. These two-level atoms are assumed

to be situated in the focal points of a prolate elliptical cavity �xa and to interact with the quantized

radiation field inside this cavity. Furthermore, we assume that the sizes of the relevant electronic

states two-level atoms are small compared to the wavelengths λeg = 2πc/ωeg of the atomic transition

so that the dipole approximation is applicable (c is the speed of light in vacuum.). Moreover, as

we are considering atomic transitions in the optical frequency regime the relevant coupling (Rabi-)

frequencies are small in comparison with ωeg so that the rotating-wave approximation is applicable.

Thus, the quantum electrodynamical interaction between n = 2 two-level atoms and the quantized

electromagnetic field inside the cavity can be described by the Hamiltonian Ĥ = Ĥatoms + Ĥfield + Ĥi

with Ĥfield = �
∑

i ωia
†
i ai, Ĥatoms = �ωeg

n∑
a=1

|e〉a 〈e|a , Ĥi = − n∑
a=1

Ê+⊥(�xa) · d̂−a + H.c. and with the

dipole operator d̂−a = �d∗a |g〉a 〈e|a of the two-level atom a . Thereby, the energies of the atomic ground

states |g〉a have been set equal to zero. In the Schrödinger picture the positive frequency part of the

(transversal) electromagnetic field operator is given by

Ê+
⊥(�r) := i

∑
i

√
�ωi

2ε0
�gi(�r)â

†
i

and �gi(�r) denote the normalized transversal electric mode functions which fulfill the boundary condi-

tions for an ideally conducting cavity.

3 Mode functions of the cavity and their semiclassical approximation

For arbitrary boundary conditions the calculation of the mode functions �gi(�r) is generally difficult.

However, in cases in which the wave lengths of relevant field modes are small in comparison with all

other length scales of the problems this task may be facilitated by semiclassical methods. In order to

put the problem into perspective let us consider cases in which the dipole matrix elements �da of the

atomic transitions are oriented along the symmetry axis, i.e. the z-axis, of a parabolic or ellipsoidal

cavity. Thus, we can write �da = D�ez. This symmetry can be exploited as it is possible to show that in

these cases the only field modes which couple to the two-level atoms in the dipole approximation are

of the form [10]

�gi(ϕ, ξ, η) = ∇ × H, H = �eϕFi(ξ)Gi(η).

Thereby, ϕ, ξ and η are the symmetry adapted parabolic coordinates in the case of a parabolic cavity

and the prolate ellipsoidal coordinates in the case of an ellipsoidal cavity. For a parabolic cavity the

functions Fi(ξ) and Gi(η) turn out to be Coulomb functions and for an ellipsoidal cavity they turn out

to be prolate spheroidal wave functions. In both cases we can use semiclassical methods to express

the quantization conditions resulting from the boundary conditions of an ideally conducting wall, for

example, semiclassically in a simple way by taking advantage of the separability of the Helmholtz

equation in these coordinates. This way one obtains a single quantization function for one of the

coordinates, say η, in the case of a parabolic cavity and two quantization conditions in the case of

an ellipsoidal cavity. Furthermore, these semiclassical methods are also well suited for normalizing

these mode functions appropriately.
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4 Photon path representation of probability amplitudes

We can now use these results to calculate the time evolution of the system. Our Hamiltonian has the

property that the number of excitations in the system (so
n∑

a=1
|e〉a 〈e|a +∑

i
a†i ai) is a conserved quantity.

If we assume that initially only one two-level atom is in an excited state and that the field is in the

vacuum state we know that for all later times the number of excitations in the system equals unity.

This leads to the following ansatz for the wave function

|ψ(t)〉 = b1(t) |e, g〉A |0〉P + b2(t) |g, e〉A |0〉P

+
∑

i

fi(t) |g, g〉A |1〉P
i

in the case of two two-level atoms in the cavity. (The superscripts A and P refer to atoms and photons,
respectively.) It is a straight forward task to generalize the following calculation to an arbitrary number
of atoms. The Schrödinger equation leads to a coupled system of linear differential equations. In order
to solve this system we apply the Laplace transform in order to obtain a system of linear algebraic
equations. Due to basic properties of our Hamiltonian it is straight forward to eliminate the Laplace

transforms of the photonic excitations f̃i(s) (s denotes the parameter of the Laplace transform) in order

to obtain a linear system of equation for b̃1(s) and b̃2(s). This system of equations is given by(
b1(0)

b2(0)

)
=

[
(s + iωeg)� +

(
A1,1 A1,2

A2,1 A2,2

)] ⎛⎜⎜⎜⎜⎝ b̃1(s)
b̃2(s)

⎞⎟⎟⎟⎟⎠
with

Aa,b := |D|2
∑

j

ω j

2ε0�

(
�g j(�xa)

)
z

(
�g j(�xb)

)∗
z

s + iω j
a, b ∈ {1, 2} .

The functions Aa,b encode all the properties of the cavity. It is a non trivial task to evaluate these
functions because they are defined by an infinite sum over all modes j which couple to the atomic
dipoles. However, we can evaluate these functions with the help of the semiclassical methods devel-
oped previously. With these functions at hand we can solve the linear system of equations and apply
the inverse Laplace transform in order to obtain expressions for the time evolution of the probability
amplitudes of observing atoms 1 and 2 in the excited states, i.e. b1(t) and b2(t). However, evaluating
the inverse Laplace transform is still a non trivial task. For this purpose it is convenient to solve the
linear system of equations by applying the Neumann series in order to obtain an infinite sum of simple

expressions for b̃1(s) and b̃2(s) and then apply the inverse Laplace transform to each of these terms.
The Neumann series is given by

⎛⎜⎜⎜⎜⎝ b̃1(s)
b̃2(s)

⎞⎟⎟⎟⎟⎠ = ∞∑
n=0

[
−

(
T 1,1
1

T 1,2
1

T 2,1
1

T 2,2
1

)]n

(s + Γ
2
+ iωeg)n+1

·
(

b1(0)

b2(0)

)
.

Thereby, we have defined T a,b
1

:= Aa,b − δa,bΓfree/2 and Γfree denotes the spontaneous decay rate of

each two-level system originating from spontaneous emission of a photon in free space, i.e. in the

absence of any boundary conditions for the radiation field. Of course, at first sight it may appear as

a major complication to apply the Neumann series in order to invert a 2 by 2 matrix. However, this

expansion leads to a semiclassical photon path representation of the relevant probability amplitudes

[11, 12] so that we are able to interpret each term of this expansion as a contribution of a photon path.

Thereby, each photon path involves a sequence of spontaneous emission and absorption processes. In
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this expansion the functions Aa,b encode the possible paths a photon can take to reach atom b starting

from atom a. In case of a parabolic cavity we can perform the same calculations but instead of a two

by two matrix of the functions Aa,b we only have to consider the single term A1,1.

5 Modification of the spontaneous decay rate by boundary conditions

We can use our results of the preceding chapter to calculate the influence of the Purcell effect [13]

on the spontaneous decay rate. In the pole or Weisskopf-Wigner [14] approximation the spontaneous

decay rate of atom a is given by Γ = 2Re [Aa,a]
∣∣∣∣
s=−iωeg

. Thus, for a parabolic cavity we obtain the

result [12]

Γ

Γfree
= 1 + 2

∞∑
M=1

3 cos [2M(u − π/2)]

×2MS(u) coth [2MS(u)] − 1

sinh2 [2MS(u)]

∣∣∣∣
u=2π f

λeg

with S(u) :=
u∫
0

sin2(y)/y and with f denoting the focal length of the parabola. Each summand in the

expression for Γ/Γfree is connected with a possible photon path inside the cavity, i.e. with bouncing

back and forth of a photon (counted by M) between the atom and the vertex of the parabola. These

contributions to the decay rate are connected with diffraction effects which are suppressed for large

values of f 	 λeg. Similar but more complicated results are obtained for an ellipsoidal cavity. The

main difference between both cases is that for an ellipsoidal cavity we obtain a double sum which can

be traced back to the existence of two quantization conditions. Of course, the results for a parabolic

cavity can be obtained from the more general results for an ellipsoidal cavity in the limit in which

the distance between the two focal points tends to infinity. In figure 1 the semiclassical analytical

results are compared with exact numerical results. This numerical comparison demonstrates the qual-

ity of the semiclassical results even in cases in which the wave length of the spontaneously emitted

photon becomes comparable to the characteristic length scales inside the cavity. Thus, the previously

discussed semiclassical approximation also enables us to investigate diffraction effects which become

relevant for f � λeg.

6 Time evolution of atomic excitation probabilities

We can now investigate the time evolution of atomic excitations. In this chapter we are going to

present results for a prolate ellipsoidal cavity. For this purpose we need some additional quantities

for describing the cavity, namely the distance d between the focal points and the shortest distance

f between one of the vertices and its closest focal point. In the following we concentrate on the

regime of short wavelengths, i.e. d, f 	 λeg, in order to obtain a simple picture of the dynamics.

If we start with an initial excitation of atom 1 we observe a bouncing back and forth of the atomic

excitation between the two atoms inside the cavity by exchange of a spontaneously emitted photon.

The time τ the excitation needs to travel from one atom to another is given by τ = (d + 2 f )/c. The
corresponding behavior of the atomic excitation probabilities is depicted in figures 2 a and b. We

observe that the probability of a successful transfer of the excitation to the second atom depends

significantly on the shape of the cavity. If f 	 d, i.e. the cavity is almost spherically symmetric, the

excitation probabilities associated with repeated returns of a photon to an atom are significantly larger
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Figure 1. Scaled spontaneous decay rate Γ/Γfree as a function of the scaled focal length 2π f /λeg of the parabola:

Numerically exact results (dots), semiclassical results (solid). We also indicate the free-space value as a horizontal

line.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Atom 2
Atom 1

a)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Atom 2
Atom 1

b)

Figure 2. Atomic excitation probabilities for Γfree · τ = 16 and f /d = 1/2 (a) and f /d = 9/2 (b). The excitation

probability of atom 1 (2) is represented by the blue (red) curve.
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than for cases with d 	 f . This can be observed by comparing the excitation probabilities depicted in

figures 2 a) and 2 b). This phenomenon may be traced back to the fact that both atomic dipole matrix

elements are oriented along the z-axis. In the case of d 	 f the radiation field of the photon emitted

spontaneously by the first atom has to propagate almost along the z-axis in order to approach atom

2. Therefore, its electrical field is almost perpendicular to the z-axis and its coupling to the dipole

of atom 2 is small. As a consequence the excitation probability is also small. In the opposite limit

of an almost spherically symmetric cavity such a confinement of the photonic wave packet along the

symmetry axis due to the shape of the cavity does not occur and the excitation probabilities are larger.

Figure 3. Time evolution of the (normally ordered) energy density (in units of 3π�ωegΓfree/(80d2c)) of a sponta-
neously emitted photon in a prolate ellipsoidal cavity: The parameters are Γfreeτ = 16 and f /d = 9/2; t = 0.2τ

(a),t = 0.8τ (b), t = 1.4τ (c), and t = 2.4τ (d). The red dots indicate the focal points.

7 Time evolution of the energy density of the electromagnetic radiation
field

We can also calculate the energy density of the electromagnetic radiation field in the case f , d 	 λeg

by using multidimensional semiclassical methods [15]. Let us investigate the dynamics of a photonic

wave packet which carries the excitation from one atom to the other inside a prolate ellipsoidal cavity.

Similar to the bouncing back and forth in the time evolution of the atomic excitation probabilities

we can observe a bouncing back and forth of the photonic wave packet in the cavity. The dynamics

of repeated absorption and spontaneous emission events also leads to a change of the shape of the

photonic wave packet. This process is illustrated in figures 3 a-d for the electromagnetic energy

density of a single photon. The corresponding atomic excitation probabilities are depicted in figure 2
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b. Figure 3 a illustrates the energy density produced by the spontaneous emission of a single photon.

The cavity guides the one-photon wave packet to the second focus as illustrated in figure 3 b. Figure

3 c shows the wave packet directly after the interaction with the second atom. Figure 3 d illustrates

the wave packet after its interaction with the first atom.

8 Conclusion

We have investigated the dynamics of spontaneous photon emission of two-level systems in parabolic

and prolate ellipsoidal cavities assuming that the atoms are situated in the focal points of these cavities.

Our theoretical approach is based on treating the multimode aspects of this problem with the help of

one-dimensional semiclassical methods by exploiting the separability of the relevant Helmholtz equa-

tion. This way we are able to improve straight forward multidimensional semiclassical approaches

considerably. With the help of semiclassical photon path representations of relevant probability am-

plitudes we have explored the intricate dynamical interplay between spontaneous photon emission

and absorption processes on the one hand and reflections of the photon wave packet at the boundary

of the cavity on the other hand.
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