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The standard picture of the Coulomb logarithm in the ideal plasma is controversial, the arguments

for the lower cut off need revision. The two cases of far subthermal and of far superthermal

electron drift motions are accessible to a rigorous analytical treatment. We show that the lower cut

off bmin is a function of symmetry and shape of the shielding cloud, it is not universal. In the

subthermal case, shielding is spherical and bmin is to be identified with the de Broglie wavelength;

at superthermal drift the shielding cloud exhibits cylindrical (axial) symmetry and bmin is the

classical parameter of perpendicular deflection. In both situations, the cut offs are determined by

the electron-ion encounters at large collision parameters. This is in net contrast to the governing

standard interpretation that attributes bmin to the Coulomb singularity at vanishing collision

parameters b and, consequently, assigns it universal validity. The origin of the contradictions in the

traditional picture is analyzed. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870501]

I. INTRODUCTION

In transport theory of the ideal plasma, the Coulomb

logarithm ln K plays a key role. Ohmic heating of a plasma,

e.g., in the Tokamak, heating by microwaves or, at higher

frequencies, collisional absorption of the high power laser

beam, are all based on the same principle of directed mo-

mentum loss of the electron fluid to the ions by Coulomb

collisions and conversion of kinetic electron fluid energy

into electron heat. In this scattering process, the single elec-

tron undergoes an elastic free-free transition accompanied by

a deflection angle #. The electron-ion encounters are charac-

terized by the three parameters of the screening or Debye

length kD, the impact or collision parameter for perpendicu-

lar deflection b?, and the reduced de Broglie wavelength kB.

A plasma is considered non degenerate ideal if the two ratios

kD/b? and kD/kB are both much larger than unity. As a conse-

quence, the overwhelming number of encounters suffers

small angle defections # only with the implications that

transport can be described in a linearized version, and the

superposition principle for simultaneous events holds; it

allows to reduce simultaneous collisions to a sequence of bi-

nary interactions. In terms of trajectories, this is equivalent

to the two assumptions (i) of the existence of classical orbits

and that (ii) in zero approximation the orbits are straight

lines. Under extension of these hypotheses (small angle

deflections or straight orbits) to all Coulomb collisions, the

calculation of the mean momentum transfer unavoidably

ends in the so-called Coulomb logarithm, either in b or #,

ln K ¼
ð

db

b
¼
ð

d sin#

sin#
: (1)

Both integrals diverge for b ! 0, corresponding to # ! p,

and for b ! 1, corresponding to # ! 0. The divergences

have to be removed by the introduction of appropriate upper

and lower “cut offs” bmax and bmin. In justifying them, rules

have been introduced on the basis of “physical” arguments

seven decades ago (or earlier) and subsequently they have

become standard and have since then appeared in scientific

papers time and again. A critical revision is in order.

A. The Coulomb paradox

The upper of the two cut offs bmin; bmax is well understood

and not controversial. When an electron of impact parameter b
collides, say with an ion, and the “spectator” electrons with

impact parameters b0 < b interact also with this ion at the

same time the bare Coulomb potential is weakened and

reduces to finite extent r ¼ bmax of the range of the Debye

length kD. Thus, the Coulomb potential has to be “cut off” at

bmax ¼ kD. The number of simultaneous events is of the order

of K. In magnetic fusion plasmas, ln K ranges typically

between 10 and 20 corresponding to K � 2� 104 � 5� 108.

Characteristic values in laser plasmas are ln K ’ 3� 7, i.e.,

K ’ 20� 103.

All difficulty concentrates on the lower cut off bmin. A

survey of the pertinent literature seems to support the exis-

tence of two groups. Statistically, 60% of researchers appa-

rently adhere to the setting bmin ¼ kB. The standard

“physical” motivation for this lower cut off is that an orbit

cannot be localized better than the de Broglie distance and

therefore impact parameters b< kB are meaningless.

However, in the case b? exceeds kB, bmin should be identified

with the impact parameter b of “closest approach” b?
because in this situation such a classical orbit has a well

defined meaning. The majority of representative textbooks

and specialized papers, e.g., Ref. 1, adhere to this hypothesis

which can be summarized quantitatively as

bmin ¼ max kB; b?f g; kB ¼
�h

mevr
; b? ¼

Ze2

8pe0Er
(2)

with me electron mass, vr, Er relative velocity and energy

between encounters, e, Z elementary charge and ion chargea)Electronic mail: peter.mulser@physik.tu-darmstadt.de
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number, e0 dielectric constant. Note, kB � E�1=2
r ; b? � E�1

r .

Numerically kB, b? result as

kB½nm� ¼ 0:185

ðEr½eV�Þ1=2
; b?½nm� ¼ 0:7� Z

Er½eV� : (3)

A special argument for setting Eq. (2) is by Spitzer.2 He

arrives at the limitation b� kB by observing that for impact

parameters b� kB the Coulomb differential cross section

leads to higher diffraction values than an opaque disc of the

same radius, which is “unphysical.” It seems that for numer-

ous researchers this constitutes the basic argument. The sec-

ond, minor group, to reference a few examples, Refs. 3–7,

believes that bmin ¼ b? is the correct setting and collects var-

ious arguments for it, for example the argument of the clos-

est approach.

From the interpretation of the lower cut off of both

groups, a first consequence must be drawn: bmin, either set

equal to kB or b?, is universal in the sense that at the lower

cut off the electron-ion interaction is Coulomb (or

Rutherford) like and does not depend on other parameters, as

for example the geometry of the screening cloud. Further, it

is evident that at most only one of the settings can be correct.

Least, the argument of closest approach is invalid because

the minimum impact parameter in the center of mass system

is zero. The introduction of cut offs can only be regarded as

a recipe. If there exists a lower cut off it must be the result of

the correct treatment of scattering to begin at # ¼ p, resp.

b¼ 0, and without making any use of the straight orbit

approximation. By the latter, linearization is excluded.

One more consideration is in order; it leads to the proper

Coulomb paradox in the restricted sense. Setting bmin ¼ b?
results correctly from calculating the momentum transfer in a

collision if the integration is done for a bare Coulomb poten-

tial from b¼ 0 up to its range b ¼ bmax ¼ kD.3 This is a genu-

ine paradox if one keeps in mind that in the case of the ideal

plasma the overwhelming number of orbits is classical and

straight in zero approximation, and that the bent orbits of close

encounters follow the correct Rutherford differential scatter-

ing cross section. Here one could, and one must argue that the

bare Coulomb potential has to be replaced by the Debye

potential because at b¼ kD the two potentials differ substan-

tially from each other. The outcome of the calculation repro-

duces the result from before, i.e., ln K ¼ lnðkD=b?Þ. Hence,

we are dealing with a genuine paradox. In conclusion, the sit-

uation is controversial, the standard interpretation of bmin as a

“lower cut off” and the arguments used for specific values of

it are inconsistent and self-contradictory. Clarification on a

solid basis is needed.

B. The role of a quantum treatment

The setting bmin ¼ kD, if true, must have its roots in quan-

tum mechanics; bmin ¼ b? is based on classical mechanics of

well defined orbits. It is evident, and it is generally accepted,

that in case of divergent results the quantum treatment applies

and the classical result must be rejected. In the following

determination of the correct Coulomb logarithm, we strictly

adhere to quantum mechanics although there may apparently

exist good reasons for a classical treatment, as believed for

example by the authors of Ref. 3 and many others.

There is no general rule for a legitimate transition to the

simpler classical model. In one and the same problem, it

depends on the magnitude or variable under consideration

whether the conditions for a classical analysis are fulfilled.

Examples are the equation of state of an ideal gas and its

mixing entropy; the first is classical, the second quantity fol-

lows the quantum Sackur-Tetrode formula and not its classi-

cal counterpart; or the electron partition function in the Saha

equation which at arbitrarily high temperature and infinite

dilution does not assume the classical value. A particularly

simple example is the pressure exerted by a beam of inde-

pendent particles of momentum p¼ const. In both cases it is

ð2Þnjpj, n particle density. A further example is the connec-

tion between pressure p and energy density � of an ideal gas

of f¼ 3 degrees of freedom in thermal equilibrium, p/�¼ f/(f
þ 2) for non-relativistic cold Fermi and classical gases, and

p/�¼ f/(fþ 1) for them and for photons in the super-

relativistic regime. By the way, a photon number state jni
never turns over into “classical light” regardless of how large

the photon number is in the mode.8

In this paper, we present the binary scattering problem

for point charges by strictly adhering to the quantum view in

two relevant cases, one for vanishing subthermal electron

drift u� vth, vth electron thermal velocity, the other one for

far superthermal flow u 	 vth. Starting from the two effec-

tive Hamiltonians we shall get the correct “lower cut offs”

by subjecting them to the standard quantum procedure and to

arrive at a coherent interpretation of their meaning that is

free of contradictions. On the way to the solution, it will

appear essential to distinguish between the validity of classi-

cal mechanics for the single orbit as the limiting quantum

case and the correctness of this passage when properties of

orbits are to be determined that are the result of folding on

the totality of the orbits. It allows for a complete revision of

the subject. The result will surprise: There is no cut off; bmin

is the result of the charge distributions at large impact pa-

rameters and will depend on the symmetry/geometry of the

screening cloud.

II. SHIELDING SYMMETRY DETERMINES LOWER CUT
OFF

A. Spherical shielding

A universally accepted fact by the entire plasma com-

munity is that in a plasma with isotropic monoenergetic elec-

tron distribution function f ðwÞ ¼ vdðjwj � vÞ=V, V volume,

the effective potential of an ion in random phase approxima-

tion (RPA) is of the Debye/Yukawa potential type Us with

screening length ks,

Us ¼
q

4pe0r
expð�r=ksÞ; ks ¼ ð

e0l
nee21=v2

Þ1=2
(4)

reduced mass l ’ me, electron density ne. For f(v)

Maxwellian, h1=lv2i ¼ 1=kBTe, screening results into the

thermal Debye potential UD with range of the Debye length

kD,
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UD ¼
q

4pe0r
expð�r=kDÞ; kD ¼

e0kBTe

nee2

� �1=2

(5)

kB Boltzmann constant, Te electron temperature. Classical

and quantum mechanical derivation, e.g., along Ref. 9, lead

to identical results for (4) and (5). In the derivation of Us,

solely the law for the electrostatic force f¼ qE on the point

charge q by the field E and Poisson’s equation are needed, as

for the derivation of the bare Coulomb potential UC. To keep

the analysis as lucid and simple as possible without loss of

generality, it is indicated to limit to the isotropic monoener-

getic electron distribution and to concentrate on the case

study of the average momentum transfer Dp from the elec-

tron of velocity v to the ion,

Dp ¼ 2plv

ð1
0

rsðbÞ
r0

ð1� cos#Þ db; r0 ¼
ð

rsðbÞ2pb db:

(6)

The effective Hamiltonian is

Hðp; rÞ ¼ p2

2l
þ UsðrÞ; r ¼ jrj: (7)

For a Debye-like potential standard scattering theory then

yields the differential cross section rs in first Born approxi-

mation for free-free transitions,10

rsð#Þ ¼
b2
?

4½sin2ð#=2Þ þ ðkB=2ksÞ2�2
; tan

#

2
¼ b?

b
: (8)

The term q¼ kB/2ks in rs is the contribution from the shield-

ing factor expð�r=ksÞ to the Fourier transform of the Debye

potential. For ks¼1, rs shrinks to the well-known

Rutherford or bare Coulomb potential rC. For large

k() small b � 1=k, only the {r/ks� 1} region contributes

and hence rs¼ rC. For small k, the outer region r ’ks counts

where cos# ¼ 1� #2=2 � 1� ðkB=2ksÞ2. Equation (8)

inserted in (6) and integrated from b¼ 0 () #¼ p to

b¼1() #¼ 0 the Coulomb logarithm LC results

LC ¼
1

2
½lnð 1

q2
þ 1Þ � 1

1þ q2
� ’ 1

2
ðln 1

q2
þ 2q2 � 1Þ

¼ ln
ks

kB
þ 0:2þ k2

B

4k2
s

: (9)

Note, b is an integration variable only, related to the scatter-

ing angle # by (8), and not affected by whether there exist

classical orbits or not. To obtain the usual average momen-

tum transfer in thermal equilibrium, folding over the

Maxwellian has to be done (as for instance in Ref. 11). Then,

if the logarithmic expression does not depend much on the

velocity, ks and kB are taken out of the integral and approxi-

mated by the thermal Debye and the thermal de Broglie

lengths. However, this last step must be checked from case

to case (for instance in laser plasmas with supergaussian ve-

locity distributions13 or in planetary plasmas with a j distri-

bution14). It has no influence on our analysis with the

monoenergetic distribution.

By (9), we have shown that in the ideal non degenerate

plasma with kD 	kB the correct lower cutoff is the de

Broglie length and not the parameter for perpendicular

deflection, in contradiction to Refs. 3 and 4, and others. The

cut offs bmin and bmax are the result of integration of the

impact parameter from 0 to 1; no additional physical

hypotheses are needed. The integral is regular in the whole

domain, the neighborhood of r¼ 0 is in no way special.

Finally, there is no basis for such a rule as

bmin ¼ maxfkB; b?g. It is a mere guess, no proof has ever

been given. The situation with b? 	 kB is more complicated

and not analyzed here. The analysis given here leads to a

completely different interpretation of why the de Broglie

length comes into play in the Coulomb logarithm. Inspection

of (8) shows that for small k’s, i.e., large b’s the outer region

r ’ ks counts where cos# ¼ 1� #2=2 � 1� ðkB=2ksÞ2.

Hence, contrary to the dominating interpretation of ln K,

screening due to the outer regions is responsible for the

“lower cut off” and not the singularity of the Coulomb

potential at r¼ 0.

Thanks to a hint by Atzeni,15 we have realized very

recently that there exists one treatment of the Coulomb loga-

rithm in which the author comes to the conclusion identical

to ours that bmin ¼ kB originates from shielding at large

impact parameters b [but for the rest he still adheres to the

traditional picture, e.g., setting (2) for bmin]. It is found in

the representative textbook Tokamaks by John Wesson16

and up to now it is the only statement among all papers

known to us. Apparently its impact has been almost zero so

far.

1. Validity of the first Born approximation

Let us start with two qualitative arguments. For the first

Born approximation to be correct the local, partially scat-

tered state function w(r) should be close to the incident wave

/ðrÞ everywhere. In other words, scattering must be weak

for all angles #. We can assume that with the Debye poten-

tial this is true for the following reason. The Debye potential

Us is smooth and weaker than the bare Coulomb potential in

the whole region. The Coulomb-Rutherford cross section rC

is correct to all orders and it agrees with its first Born

approximation (see for instance Ref. 10). Thus, the condition

for its use in rs is mathematically fulfilled if this argument

extends onto real and imaginary part contributing to the

modulus of the scattering amplitude separately. Owing to the

smooth transition between the two scattering potentials

Coulomb () Debye this is very likely to be the case. The

perfect analogy to classical optics for diffraction from spatial

filters may help to convince.

Another qualitative argument is obtained from consider-

ing the attenuation of a plane wave of momentum p incident

onto a homogeneously distributed ensemble of ions of den-

sity n. The attenuation follows Beer’s exponential law

I ¼ I0 exp½�hnrix� with hnri ¼ 4pb2
?n ln K from (6), (8),

and (9). The attenuation by a monoionic layer of thickness

Dx¼ n–1=3 and the representative numerical example

n¼ 1021 cm�3, Er¼ 100 eV tells that the first Born approxi-

mation is very well fulfilled,
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I ¼ I0 exp½�hnriDx�; hnriDx ¼ 4pb2
?n2=3ln K

¼ 3Z2 � 10�5; ln K ¼ 4:9: (10)

The qualitative arguments show tendencies in the parameter

region.

A rigorous criterion is obtained from wave packet con-

siderations with natural transverse dispersion,

/ðr; tÞ ¼ ðpL2
t Þ
�3=4

exp� ðr� vtÞ2

2L2
t

; L2
t ¼ L2 þ �h2t2

l2L2
:

Following the mathematical analysis by Ref. 12 for the

Debye potential /s, we determine the ratio of the two moduli,

/1 ¼ k�3
D

ð
/s½r�dr

����
���� ¼ 4p

j
kD
;

/2 ¼ k�3
D

ð
j/sðrÞj2dr

� �1=2

¼ ð8pÞ�1=2/1; j ¼ Ze2

4pe0

:

Let a ¼ jwð0Þ � /ð0Þj=j/ð0Þj be the relative error. Then,

with L ¼ ðkBkDÞ1=2
, it is bound by

a � p1=4ffiffiffi
2
p kB

kD

� �1=4

þ 1

" #
/2

/1

b?
kB
¼ 0:2 0:9

kB

kD

� �1=4

þ 1

" #
b?
kB

;

a! 0:2
b?
kB
: (11)

For our case from above, i.e., n¼ 1021 cm�3, Er¼ 100 eV,

results

L

kB
¼ 11:3;

kB

kD

� �1=4

¼ 0:3;
b?
kB
¼ 0:38; a ¼ 0:1:

Thus, for this situation close to ideality the use of the first Born

approximation is legitimate. For the Tokamak plasma, a is of

the order of 10�2. Instead of following the demanding wave

packet analysis of Ref. 12, one could think of proceeding to

the second and higher Born approximations. It is not feasible

because the second Born approximation already diverges.

B. Cylindrical screening

The second case accessible to an analytical treatment

and of high relevance in applications is that of far superther-

mal drift velocity juj 	 vth. The electron distribution func-

tion is assumed as f(w)¼ d(w – v). In such an electron fluid

flow, the interaction with an ion can be seen as the ion mov-

ing with velocity�v through the cold electron fluid at rest.

The disturbance caused by the interaction appears as a polar-

ization wake, or in other words, as Cherenkov emission of

plasmons. Let us characterize the polarization as P ¼ �need,

with dðbÞ the displacement of the electrons from their equi-

librium position. By applying exactly identical physics, par-

ticle conservation and Poisson’s equation,

rne þ nerd ¼ r � e0

e
Eþ ned

� �
¼ ZedðrÞ;

plus force law f ¼ qE ¼ l€d as in the former case of spheri-

cal far subsonic screening one arrives, quantum mechani-

cally as well as classically, at Bohr’s celebrated oscillator

model for d � P,17

€d þ x2
pd ¼ fC=l; fC ¼ �

Ze2r

4pe0r3
; (12)

with the plasma frequency xp ¼ ðnee2=e0lÞ1=2
. The ion of

charge q¼Ze is supposed to sit at r¼ 0. The oscillator term

x2
pd provides for dynamic shielding. An electron starting at

x¼ –1 is attracted by the ion as it comes closer thereby

reducing its collision parameter b to b0 < b. As a conse-

quence, the electron density increases from ne to n0e ¼ neb=b0

and creates the restoring force in (12). At x¼þ1, the elec-

tron is free again and is left in an excited oscillation state.

The oscillation energy occurs on the expense of kinetic

energy of the ion. Bohr used the model to calculate ion beam

stopping in ionized matter. In general, it applies to strong

drift motions under negligible transverse temperature, e.g.,

fast electron transport in laser plasmas.18

Adherent to our principle, we subject the equation of

motion (12) to a quantum treatment by looking for the corre-

sponding Hamiltonian. It reads, with the Coulomb interaction

in dipole approximation ðeq=4pe0Þdrð1=rÞ ¼ fCðvt; bÞ d,

Hðp; dop; tÞ ¼
p2

2l
þ l

2
x2

p d2
op � fC dop ¼ H0 þ HC: (13)

Index “op” stands for operator. The solution is given in terms

of coherent or Glauber states (see, e.g., Ref. 19 or 8). The

ground state jwii ¼ j0i at t¼ –1 is driven by HC into the

coherent Glauber eigenstate jwf i ¼ jd̂i at t¼þ1. For

obvious reasons, it is labeled here by the classical amplitude

d̂: the expectation value hwf jd̂opjwf i of the asymptotic shift at

t¼þ1 coincides with its classical value d̂ from Eq. (12).

The solution of d ¼ ðd?; dkÞ is given in terms of the modified

Bessel functions K1 and K0,20 with the amplitudes21

d̂?ðbÞ¼2b?K1ðbÞ; d̂kðbÞ¼ 2b?K0ðbÞ; b¼ b=k; k¼ v=xp:

For b small, K1 and K0 diverge both as a consequence of the

linearization in polarization P. For vanishing impact parame-

ters b, xp reduces smoothly to zero owing to missing screen-

ing and interaction goes over into bare Coulomb scattering,

as in the former subthermal case with Us. Therefore, regula-

rization is done by integrating the oscillator solution from

b0 ¼ sb? � k to infinity, factor s> 5, and treating the mo-

mentum transfer D(b0) of the close encounters in 0� b� b0

by scattering from the unscreened Coulomb potential or,

with the same result, from (8). Then the total energy _W irra-

diated into plasmons per unit time is

_W ¼ 1

2
lx2

pvk
2

ð1
b0

2pb d̂
2

? þ d̂
2

k

� �
dbþ v2Dðb0Þ

¼ 4plv3b2
? b0K0ðb0ÞK1ðb0Þ þ

1

2
ln

b2
0 þ b2

?
b2
?

" #
: (14)
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Thereby, use has been made of dðbK0K1Þ=db¼�bðK2
0þK2

1Þ.
The integrals

Ð
bK2

0db;
Ð
bK2

1db and their sum are shown as

functions of b in Fig. 1. Although the associated Coulomb

logarithm, determined below, is as low as lnK¼3 it is an

excellent approximation to the saturation of solution Eq. (14),

which is due to the oscillatory term in the Hamiltonian (13).

The ratio of the longitudinal to the transverse asymptotic os-

cillation energy is

Ek
E?
¼ 1

2 ln K
: (15)

1. Regularization

Again a qualitative consideration first may support clarity.

The generalization of the Hamiltonian Eq. (13) with continuous

transition of xp ! 0 is possible with the aid of the Jacobian

J ¼ @ðdÞ=@ðrÞ. The equation, however, one ends up with is

untractable. Help comes from selecting the cut b¼ b0 in such a

way that (i) the single orbits within b> b0 become classical,

i.e., the state vectors jwðbÞi are expressible in the form of an

action integral, (ii) these orbits are sufficiently straight owing

to P ¼ �ened linearized, ne¼ const, (iii) the oscillator term in

H0 is much smaller than the driver term HC in b� b0, and (iiii)

b0 is placed in a region where its individual choice is insensi-

tive within a wide range. Condition (ii) is fulfilled for

1� cos# ’ #2=2� 1, that is, s ¼ b0=b? � 5) cos#
� 0:92. This is also the condition for the fulfillment of (i), see

Sec. III or Ref. 10, p. 103. With the electron-ion interaction

time s¼ 2b/v,22 one deduces (iii) that the oscillator term in the

Hamiltonian becomes insignificant for the easy condition

b2
0=k

2 � 1=4. In the ideal plasma requirements (i)-(iii) are

simultaneously fulfilled for the setting b0 ¼
ffiffiffiffiffiffiffiffi
b?k
p

proposed

by Ref. 12 for the width L for wave packets. For example,

ln K ¼ 5 yields s¼ 12; from ln K ¼ 10 follows s¼ 150.

Finally, it is a fortuitous circumstance that for b! 0, the driver

HC prevails so strongly on the oscillator term in H0 that

xp¼ const or xp! 0 makes asymptotically no difference.

From b small follows bK0K1 ¼ �lnb=2� ½1þ ðb2=2Þ
ln b=2� � c, Euler constant c¼ 0.57722.20 Applied to b¼ b0,

the generalized Coulomb logarithm LC from the square

bracket in (14) evolves into

LC ¼ bK0ðb0ÞK1ðb0Þ þ Dðb0Þ

¼ ln
k

b?
þ ln 2� c� ln sþ 1

2
ln s2 1þ 1

s2

� �� 	

� 1

2
ln

b2
0 þ b2

?
b2
?
� b2

0

2
ln2 b2

0

2
¼ ln Kþ 0:116þ D: (16)

The two terms �ln b0 � �lns and ln s2=2 cancel each other

guaranteeing insensitivity with respect to the special choice

of b0. In fact, the difference D is

D ¼ 1

2
ln 1þ 1

s2

� �
þ s2

2K2
ðln2K� ln2sÞ: (17)

At ln K ¼ 5 and s¼ 12, the correction amounts to

D ¼ 6:1� 10�2. At ln K ¼ 10 and s¼ 150 results

D ¼ 1:7� 10�3. For s¼ 20 and 200 at ln K ¼ 10, the devia-

tion is D ¼ 3:7� 10�5 and 3.0� 10�3.

In summary, we have shown that in the plasma with cy-

lindrical (axial) symmetry of shielding the correct, i.e., quan-

tum Coulomb logarithm is given in leading order by

ln K ¼ lnðk=b?Þ from (16) with the lower cut off this time

determined by the classical impact parameter of perpendicu-

lar deflection bmin ¼ b?. The lower cut off is not universal, it

depends on the geometry of the screening cloud.

III. DISCUSSION AND CONCLUSION

For the subthermal case, the authors3–6 come to the con-

clusion that bmin ¼ b? instead of kB: The overwhelming ma-

jority of orbits are straight and classical; the bent orbits close

to the ion are scattered by the classical Rutherford cross sec-

tion rC, which is identical to its quantum mechanical expres-

sion. Hence, rC applies to the entire region and the classical

outcome might appear stringent. On the other hand, the quan-

tum treatment in first Born approximation has been shown

very well fulfilled for the ideal non degenerate plasma. We

are faced indeed with a case where classical and quantum

analysis yield different results. The solution of this peculiar

situation is as follows. In the analysis involving one or a finite

number of orbits a classical approach may be sufficiently pre-

cise. However, when folding over all orbits the single tiny

deviation from the classical limit, always present due to the

uncertainty relation, may accumulate to a sensitive error, as it

evidently does: Whether a classical analysis applies depends

on the character of the quantity to be determined. To the sin-

gle orbit a WBK criterion (after Wenzel, Kramers, Brillouin)

may apply; when used globally, it needs a proof.

There is Spitzer’s diffraction argument,2 page 128.

Although physically appealing at first glance, it is false and

self contradictory. In the neighborhood of the Coulomb sin-

gularity, the author compares Rutherford scattering with op-

tical diffraction from a diaphragm of diameter 2kB. In doing

so, he seems not to be aware of comparing electron scatter-

ing from the 1/r potential and from a potential V (r)¼�1

FIG. 1. Oscillator model: Transverse and longitudinal oscillation energies

Ek �
Ð

bK2
0db, E? �

Ð
bK2

1db and their sum as functions of b ¼ b=k,

k¼ v/xp. The Coulomb logarithm ln K ¼ lnðk=b?Þ is a good approximation

to E?ðb ¼ 1Þ even at the value as low as ln K ¼ 3; the small deviation

derives from regularization lnð1þ b?=b0Þ. For b0 see text. Both, K0 and K1

diverge for b ! 0 and so does
Ð

bK2
1db;

Ð
bK2

0db is finite. For b large

! bK0K1 � exp� 2b.
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for r� kB and V¼ 0 outside. By defining the refractive index

as n2ðxÞ ¼ ½1� VðxÞ=E�, the Schr€odinger equation of energy

E becomes

r2wþ k2
0n2w ¼ 0; k2

0 ¼
2lE

�h2
: (18)

Apart from polarization, it is identical with the wave equa-

tion of optics governing diffraction,

r2Eþ k2
0n2ðxÞE ¼ 0; jk0j ¼

x
c
: (19)

Furthermore, the smooth Debye potential does not generate

diffraction fringes; comparison with the diaphragm after all

violates Babinet’s principle. Finally, Schr€odinger’s equation

is identical to the scalar Kirchhoff diffraction equation.

Spitzer’s setting of bmin ¼ kB is a prominent example of

excellent physical intuition but mistaken proof.

The different outcome for bmin from the Debye potential

and the harmonic oscillator equation is not so surprising at

closer inspection. The Coulomb potential and the harmonic

potential are the only ones for which an additional conserva-

tion quantity, the so-called Lenz-Runge vector exists. In

classical dynamics, it leads to closed orbits (known as

Bertrand’s theorem27), quantum dynamics of them is charac-

terized by higher symmetry, additional degeneracy, and ab-

sence of �h in the differential scattering cross sections. In the

Debye potential /s no closed orbits exist, angular momen-

tum degeneracy disappears, and kB � �h appears in the differ-

ential scattering cross section, Eq. (8).

The analysis given here may help to extend the investi-

gations further into a region of not so ideal plasmas and to

develop analytical expressions to be used in numerical pro-

grams of collision codes. As here, our aim has been to revise

the concept of “cut offs” and to arrive at a contradiction-free

interpretation of the Coulomb logarithm we want to point

out to the reader that in principle our scope is perfectly

reached if the most idealized cases are assumed: infinitesimal

drift in the Debye potential and infinitesimal electron tem-

perature in the oscillator model. For these cases of maximum

ideality, the small corrections to the Coulomb logarithm dis-

appear asymptotically.

We have treated binary electron-ion collisions. In the

ideal plasma, the standard situation is the simultaneous inter-

action of a huge number of collision partners. It is the role of

kinetic theory to offer a systematic approach to reduce the si-

multaneous events to a succession of binary small angle

encounters by introducing appropriate effective potentials pro-

viding for screening. Our work sets in here. Procedures like

the BBGKY hierarchy (after Born, Bogoljubov, Green,

Kirkwood, Yvon)23 and the generalized Kadanoff-Baym

technique24–26 are well known efficient reduction methods to

the point where we start. The very many analytical approaches

to screening along these reduction schemes (classical dielec-

tric procedure, Green’s function technique, Lindhard’s model,

Hartree-Fock approximation, etc.) have the limitation to line-

arity and straight orbit approximation in common. It is this

fact that leads to the divergence of ln K at vanishing impact

parameters, followed by the necessity of introducing

somehow a “lower cut off” bmin. Expansion into higher dia-

grams does not circumvent the divergence. Any singularity is

avoided by allowing also bent orbits, as done in this paper.

In conclusion, we have found that in the plasma not far

from ideality the “lower cut off” bmin is not a universal prop-

erty and not based on the uncertainty principle applied at b
¼ kB. It has its origin in the scattering at large impact param-

eters; its value depends on the profile of the screening poten-

tial and on its geometry. Each screening potential exhibits its

individual bmin, spherical potential bmin ¼ kB, axisymmetric

screening bmin ¼ b?. Reinterpretation of bmin leads to a

coherent picture of the Coulomb logarithm in the ideal

plasma. Our results may offer help in formulating more pre-

cise cut offs in numerical codes of collisional absorption.
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