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Quantum teleportation and entanglement swapping of matter qubits
with coherent multiphoton states
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Protocols for probabilistic entanglement-assisted quantum teleportation and for entanglement swapping of
material qubits are presented. They are based on a protocol for postselective Bell- state projection which is
capable of projecting two material qubits onto a Bell state with the help of ancillary coherent multiphoton states
and postselection by balanced homodyne photodetection. Provided this photonic postselection is successful, we
explore the theoretical possibilities of realizing unit-fidelity quantum teleportation and entanglement swapping
with 25% success probability. This photon-assisted Bell projection is generated by coupling almost resonantly
the two material qubits to single modes of the radiation field in two separate cavities in a Ramsey-type interaction
sequence and by measuring the emerged field states in a balanced homodyne detection scenario. As these quantum
protocols require basic tools of quantum state engineering of coherent multiphoton states and balanced homodyne
photodetection, they may offer interesting perspectives in particular for current quantum optical applications in
quantum information processing.
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I. INTRODUCTION

The development of physical procedures for the establish-
ment of entanglement between distant material quantum sys-
tems, such as qubits, capable of storing quantum information
reliably is an important prerequisite for quantum communica-
tion [1]. Such material quantum systems may form the nodes
of a quantum network [2], for example, which are possibly also
connected by photonic channels enabling the direct transfer of
quantum information or the establishment of entanglement.
However, as typically direct transfer of quantum information
over photonic channels is affected by loss processes and
decoherence, it may be advantageous to exploit already
existing entanglement between nodes within such a network
for purposes of reliable exchange of quantum information.
Furthermore, controlled redistribution of entanglement within
such a quantum network may be used to establish new
routes for the exchange of quantum information. Reliable
transfer of quantum information may be achieved with the
help of entanglement-enabled quantum teleportation [3] and
redistribution of entanglement with the help of entanglement
swapping. In order to be able to realize these two important ele-
mentary quantum information processing protocols in material
qubit systems, it is necessary to implement projective Bell
measurements which can be performed reliably locally at each
node of such a quantum network. Complete Bell measurements
capable of distinguishing all four Bell states are still difficult
to realize experimentally. In view of these considerable
experimental difficulties it is of current interest to develop
implementations of perfect postselective Bell projections. In
such a projective Bell measurement two material qubits are
projected onto a particular Bell state probabilistically in such
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a way that, provided this projective measurement is successful,
this two-qubit Bell state is postselected with unit fidelity.

Recently, several proposals have been made for implement-
ing a quantum repeater [4] which redistributes entanglement
from intermediary entangled material qubit pairs to distant
qubits with the help of entanglement swapping [5–8]. Thereby
imperfections affecting the entanglement swapping can be
compensated afterwards by entanglement purification [9–11].

First physical implementations of entanglement-assisted
quantum teleportation were realized with photonic qubits [12–
14]. Subsequent experiments achieved teleportation over
distances of 100 km [15,16]. First experiments on teleportation
with material qubits were limited to distances of the order of
a few μm [17,18]. However, most recent realizations report
successful teleportation with material qubits over distances of
21 m [19] with the help of ancillary photon exchange.

Despite these recent experimental advances, these realiza-
tions of quantum information transfer are limited to distances
of the order of 100 km mainly due to the use of single- or few-
photon states acting as ancillary quantum systems. In order to
overcome this hurdle, coherent photon states offer interesting
perspectives. Techniques for their generation, manipulation,
and detection are well developed and these multiphoton states
of the radiation field can be transmitted in a controlled way
through already existing optical communication networks. The
hybrid quantum repeater model of van Loock et al. [20] is
an early example which aims at exploiting these advantages
of coherent multiphoton states for purposes of quantum
information processing.

Motivated by these advantages and by the fundamental role
played by Bell-state projections in basic quantum commu-
nication protocols in this paper, we propose a protocol for
implementing a probabilistic Bell-state projection of material
qubits with the help of coherent multiphoton states and of
photonic postselection by balanced homodyne photodetection.
This postselective measurement protocol results in a Bell state
with almost unit fidelity and success probability depending
on the overlap of the initial material state with this specific
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Bell state. In our scenario single modes of the radiation field
initially prepared in coherent states are used as ancillary
quantum systems in a Ramsey-type interaction sequence.
These photonic states have a specific phase difference and
interact almost resonantly with the two qubits for appropriately
chosen interaction times. Built on this procedure, we propose
probabilistic protocols for entanglement-assisted quantum
teleportation and for entanglement swapping.

The probabilistic photon-assisted Bell projection discussed
in this paper is based on two crucial dynamical properties.
First, it takes advantage of a characteristic property of the
two-qubit Tavis-Cummings model [21] describing the almost
resonant interaction between two qubits and a single mode
of the radiation field, namely, the existence of an invariant
two-qubit Bell state which is not coupled to the photons.
However, this characteristic property with the aid of a photonic
postselection can generate an almost perfect Bell state only
for specific initial conditions. In the case of arbitrary initial
conditions the two-qubit quantum states resulting from a
photonic postselection are noisy Bell states. It is shown that the
elimination of these noisy contributions can be achieved by the
second essential dynamical property of our protocol, namely,
the involvement of a Ramsey-type interaction scenario.

This paper is organized as follows. In Sec. II the quantum
electrodynamical interaction between two material qubits and
a single mode of the radiation field is discussed within the
framework of the Tavis-Cummings [21] model. Approximate
analytical solutions are presented for the time evolution of
the entangled matter-photon quantum state which are valid
for initially prepared coherent field states and for almost
resonant interaction between the two qubits and the photons.
Furthermore, a detailed discussion of the two-qubit quantum
state is presented which results from photonic postselection
by balanced homodyne detection. In Sec. III these results are
generalized to a Ramsey-type interaction scenario involving
two subsequent matter-field interactions in two cavities and
two photonic postselection processes by balanced homodyne
detection. It is shown that this procedure can prepare a Bell
state with unit fidelity for any given initial condition of the
two material qubits and with success probability given by
the initial probability weight of the generated Bell state. In
Sec. IV we discuss effects that arise from unequal coupling
strengths of the qubits to the radiation field and from different
transition frequencies of the qubits. Finally, in Sec. V im-
plementations of entanglement-assisted quantum teleportation
and entanglement swapping are discussed which are based on
the postselective Bell-state projection of Sec. III. A detailed
derivation of the solution of the two-qubit Tavis-Cummings
model is given in Appendix A . For the sake of completeness, in
Appendix B basic facts concerning the theoretical description
of balanced homodyne photodetection are summarized. In
Appendix C we include analytical calculations that support
Sec. IV.

II. THE TWO-QUBIT TAVIS-CUMMINGS MODEL

In this section we discuss basic dynamical features of the
two-qubit Tavis-Cummings model [21]. This model describes
the interaction between two two-level systems (material
qubits) and a single mode of the radiation field inside a cavity.

As this model involves an interaction-insensitive two-qubit
Bell state, it is possible to prepare this maximally entangled
two-qubit state by projection onto an appropriate photonic
quantum state. For initially prepared coherent states of the
radiation field, this projection can be achieved by postselection
with the help of balanced homodyne photodetection.

A. The qubit-field dynamics

We consider two two-level systems (material qubits), say
A and B, with ground states |0〉i and excited states |1〉i
(i ∈ {A,B}) separated by an energy difference �ωa from
their ground states. Both two-level systems are assumed to
have equal transition dipole moments between the almost
resonantly coupled energy eigenstates |0〉i and |1〉i of different
parity. In the dipole and rotating-wave approximation the
two-qubit Tavis-Cummings Hamiltonian describing almost
resonant interaction of these two qubits with a single mode
of the radiation field is given by

Ĥ = �ωâ†â +
∑

i=A,B

�

(
ωa

2
σ̂ z

i + geiθ σ̂+
i â + ge−iθ σ̂−

i â†
)

,

(1)

with σ̂ z
i = |1〉〈1|i − |0〉〈0|i (i ∈ {A,B}). The ladder operators

of the qubits are denoted by σ̂+
i = |1〉〈0|i and σ̂−

i = |0〉〈1|i
and the radiative coupling of the qubits to the single mode
of the radiation field is characterized by the vacuum Rabi
frequency 2g and the phase θ . The annihilation and creation
operators of the single-mode radiation field with frequency ω

are denoted by â and â†. The detuning between the radiation
field and the transition frequency of the two-level systems is
given by δ = ωa − ω.

In our subsequent discussion we are particularly interested
in solutions of the time-dependent Schrödinger equation
governed by the Hamiltonian of Eq. (1). We assume that
initially the matter-field system is prepared in a pure separable
quantum state,

|�0〉 =(c−|�−〉 + c1|1,1〉 + c+|�+〉 + c0|0,0〉)|α〉, (2)

where the pure two-qubit state is expanded in the orthonormal
Bell states,

|�±〉 = 1√
2

(|0,1〉 ± |1,0〉), (3)

and the separable states |1,1〉 and |0,0〉, with |i〉A|j 〉B = |i,j〉
(i,j ∈ {0,1}). The single mode of the radiation field is in a
coherent state,

|α〉 =
∞∑

n=0

e− |α|2
2

αn

√
n!

|n〉, α =
√

n eiφ, (4)

with phase φ, mean photon number n, and |n〉(n ∈ N0)
denoting the normalized photon-number states. Normaliza-
tion of |�0〉 requires the condition |c−|2 + |c+|2 + |c0|2 +
|c1|2 = 1.

In the following we take advantage of a special feature of
the two-qubit Tavis-Cummings model, namely, that quantum
states of the form |�−〉|n〉(n ∈ N0) with the photon-number
state |n〉 are stationary eigenstates of the Hamiltonian of Eq. (1)
with eigenvalue �ωn.
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The time evolution of an initial state of the form of Eq. (2)
can be obtained from the solution of the eigenvalue problem of
the two-qubit Tavis-Cummings Hamiltonian (1). This solution
is presented in detail in Appendix A . Here, we merely present
the final result of the time-dependent tripartite quantum state;
i.e.,

|�(t)〉 = c−|�−〉|αe−iωt 〉 + |1,1〉|χ1(t)〉 + |�+〉|χ0(t)〉
+ |0,0〉|χ−1(t)〉. (5)

The matter-field state |�(t)〉 displays the interaction between
the material systems A, B and the single mode of the radiation
field. According to Eq. (5), the coherent state |αe−iωt 〉 is strictly
correlated with the maximally entangled material Bell state
|�−〉. Therefore, if we were able to discriminate the field state
|αe−iωt 〉 from the other three field states |χj (t)〉 (j ∈ {−1,0,1})
we could prepare the maximally entangled material Bell state
|�−〉 in a probabilistic way. However, this discrimination of
the field states is not a straightforward task as they are not
orthogonal, in general, so that they cannot be distinguished
perfectly. For our subsequent development of a probabilistic
scheme for entanglement swapping and quantum teleportation
based on coherent field states and photonic postselection by
homodyning, it will be of crucial importance to be able to
distinguish these field states almost perfectly.

Some basic properties of the pure field states which
determine the tripartite quantum state |�(t)〉 can be studied by
considering the time dependence of the overlaps between the
coherent state |αe−iωt 〉 and the other three field states |χj (t)〉
(j ∈ {−1,0,1}), as depicted in Fig. 1. These overlaps resemble
collapse and revival phenomena which also appear in a similar
form in the Jaynes-Cummings model [22]. After a collapse
time τc initial rapid oscillations of the overlaps decay to a
“plateau” characterized by an almost constant value. After a
revival time τr the rapid oscillations reappear. Thus, a perfect
discrimination of the material Bell state |�−〉 from the other
material quantum states |0,0〉 and |1,1〉 would be possible
in the plateau region if these overlaps vanished. However,
such vanishing overlaps in the plateau region can only be
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FIG. 1. (Color online) Overlap between the exact photonic states
|χj (t)〉 [see Eq. (5)] and the coherent state |αe−iωt 〉 showing
the collapse and revival phenomena. Typically, in the collapse
region the overlap is nonzero and proportional to the parameter
|η(�c,φ)|2 of Eq. (10). The upper and lower lines (red) show the
approximation given in Eq. (13). The overlap for j = −1 is not
shown and behaves qualitatively as for j = 1. The parameters are α =
7.6ei2.65, c− = 0.5446ei, c1 = 0.6389e−i1.8, c+ = 0.1950e−i0.3, c0 =
0.5071ei1.3, δ/g = 3.5, and θ = 0.

achieved for very special initial conditions of the two qubits,
as demonstrated in the following.

In order to gain insight into the intricate dynamical
evolution of |�(t)〉, let us concentrate on the case of large
mean photon numbers. For initial field states |α〉 with n � 1
it is possible to simplify the time-dependent solution |�(t)〉
of Eq. (5) significantly by expanding the eigenvalues of the
Tavis-Cummings Hamiltonian around n up to first order in n;
i.e.,

E
(n)
j ≈ �[�j + (ω + j )(n − 1)], (6)

with

�j = j
2g2n + δ2

�n

+ δg2 ω2
n + �2

n − 2g2

�4
n

(−1)j 2δj,0 ,

j = j
2g2

�n

− 4δ

(�n/g)4
(−1)j 2δj,0 , (7)

ωn = g
√

4n − 2, �n =
√

g2(4n − 2) + δ2,

and with the Kronecker delta δi,j . The index j = −1,0,1
distinguishes the three eigenvalues of each coupled block with
photon number n. Depending on whether |j | = 1 or j = 0
the frequency �j introduces two largely different time scales
because in the limit n � 1 we obtain the result �±1/�0 ∼
±1/0 ∼ 3n. According to the first-order expansion the
validity of Eq. (6) is restricted to times τ with

1

2�

∣∣∣∣d
2E

(n)
j

dn2

∣∣∣∣
n=n

τn � 2π. (8)

In this approximation the field states can be written as a
superposition of coherent states; i.e.,

|χj (t)〉 =
1∑

k=−1

ηj,ke
i{j [φ+θ−(ω+k )t]−�kt}|αe−i(ω+k )t 〉, (9)

with the parameters

ηj,0 =
(

δ

ωn

)δj,0 (−1)δj,1

√
2|j | η(�c,φ), �c = (c+,c0,c1),

η(�c,φ) = ω2
n

�2
n

(
δ

ωn

c+ + c0e
i(φ+θ) − c1e

−i(φ+θ)

√
2

)
,

(10)

ηj,±1 =
(

δ ± �n

ωn

)j
ω2

n√
2|j |2�2

n

[
c+ + ωn c0e

i(φ+θ)

√
2(δ ± �n)

+ (δ ± �n) c1e
−i(φ+θ)

√
2ωn

]
.

These approximate solutions of the field states yield further
insight into the collapse and revival phenomena apparent in
Fig. 1 as these overlaps are determined by

〈αe−iωt |αe−i(ω+j )t 〉 = e−n̄(1−e
−ij t )

≈ e−n̄(ij t+j
2t2/2). (11)

An additional approximation of the last line is valid only for
short times t with t � 2π/j . In order to meet the requirement
of condition (8) we have to restrict our description to the
shortest time scale or highest frequencies ±1. These two
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frequencies are of the same order and characterize time scales
of the collapse and the revival phenomena. The revival time
τr is characterized by a vanishing exponent in the first line of
Eq. (11). The exponential decay in the second line defines the
collapse time τc. Accordingly, these two characteristic times
are given by

τr = π

g

√
4n − 2 + δ2

g2
, τc = τr

π
√

2n
. (12)

Therefore, for interaction times τ in the plateau region of
Fig. 1, i.e., τc < τ � τr , the relevant overlaps between the
field states can be approximated by

|〈αe−iωτ |χj (τ )〉|2 = e−n 2
0 τ 2

2|j |

(
δ

ωn

)2δj,0

|η(�c,φ)|2. (13)

From Eq. (13) it is apparent that in the plateau region the
three relevant overlaps are proportional to the parameter η(�c,φ)
of Eq. (10). The overlap between |αe−iωt 〉 and |χ0(t)〉 is the
only one which is proportional to the detuning δ. Therefore,
for interaction times τc � τ � τr the state |χ0(t)〉 is always
orthogonal to the free coherent state |αe−iωt 〉 provided the
interaction between the two-level systems and the single mode
of the radiation field is resonant, i.e., δ = 0.

Let us now consider a projective field measurement of the
coherent state |αe−iωτ 〉. The time evolution of the tripartite
system is given by Eqs. (5) and (9). For interaction times in
the plateau region of Fig. 1, i.e., τc � τ � τr , we obtain as a
result of such a projective field measurement the unnormalized
two-qubit quantum state

〈αe−iωτ |e−iĤ τ/�|�0〉 = c−|�−〉 + η(�c,φ)s|ψφ〉, (14)

with

s = e−i(�0+0n)τ−n 2
0 τ 2/2. (15)

This material quantum state is a superposition of the antisym-
metric Bell state |�−〉 and the unnormalized state,

|ψφ〉 = δ

ωn

|�+〉 − ei(�+φ)

√
2

|1,1〉 + e−i(�+φ)

√
2

|0,0〉, (16)

where we have introduced the phase � = θ − (ω + 0)τ . The
parameter η(�c,φ) is given by Eq. (10). The normalization of
the state after the projection as given by Eq. (14) yields the
success probability P of the projective field measurement, i.e.,

P = |c−|2 + |η(�c,φ)|2
(

1 + δ2

ω2
n

)
e−n 2

0 τ 2
. (17)

Thus, perfect projection onto the antisymmetric Bell state
|�−〉 can be achieved by projection onto the coherent state
|αe−iωτ 〉 only for those special initial conditions for which
η(�c,φ) vanishes, such as perfect resonant interaction (δ = 0),
equal initial weights (c0 = c1), and perfectly matched phases
(φ = −θ ). A major challenge of our subsequent discussion
will be the development of a photonic measurement scheme
by which such a perfect projection can be achieved by this type
of photonic postselection for all initial conditions of the form
of Eq. (2). In the subsequent section it is demonstrated that

with the help of a Ramsey-type interaction scenario which
involves the two material qubits interacting with the modes
of two different cavities a material Bell state |�−〉 can be
generated with almost unit fidelity and success probability
|c−|2 [see Eq. (2)].

B. Photonic postselection by balanced homodyne detection

Postselective projection of the tripartite quantum state
|�(τ )〉 of Eq. (5) onto the coherent state |αe−iωτ 〉 can be
achieved in a convenient way with the help of balanced ho-
modyne detection. As discussed in more detail in Appendix B
in a typical balanced homodyne detection measurement [23]
the single-mode field state to be measured is superposed
coherently with an intense coherent state ||αL|eiθL〉 of a local
oscillator by a 50% reflecting beam splitter and the difference
of photon numbers n− of the two modes emerging from the
beam splitter is measured. If the mode to be measured is
prepared in the quantum state ρ̂F [24], the local oscillator
state is intense, i.e., |αL| � 1, and the homodyne detection is
performed with unit quantum efficiency, the detection scheme
is equivalent to a projective von Neumann measurement. In
particular, the probability of detecting a difference photon
number n− is given by

PθL

(
n−√
2|αL|

)
= Tr{ρ̂F |qθL

〉〈qθL
|}, (18)

with the quadrature eigenstate |qθL
〉 being determined by the

eigenvalue equation

1√
2

(âe−iθL + â†eiθL )|qθL
〉 = qθL

|qθL
〉, (19)

with the eigenvalues qθL
∈ R and with a (a†) denoting the

annihilation (creation) operator of the mode to be measured.
Thus, in this limit a homodyne detection measurement is a von
Neumann measurement determined by the continuous set of
orthonormal projectors π̂ (qθL

) = |qθL
〉〈qθL

|. This implies that a
postselective photonic measurement with the phase θL = φ −
ωτ in an interval qθL

∈ (
√

2|α| − δL,
√

2|α| + δL) projects the
field state ρ̂F = TrA,B{|�(τ )〉〈�(τ )|} onto the coherent state
|αe−iωτ 〉 (α = |α|eiφ) with almost unit probability provided
the interval δL is chosen sufficiently large [compare with
Eq. (B6) and the estimates of Appendix B].

The Wigner phase-space distribution is a convenient way
to visualize the field state [compare with Eq. (5)]

ρ̂F = |c−|2|αe−iωτ 〉〈αe−iωτ | +
1∑

j=−1

|χj (τ )〉〈χj (τ )| (20)

emerging from the interaction between the two material
quantum systems and the single mode of the radiation field. It
is defined by [25]

W (β,β∗) = 1

π2

∫
Tr{ρ̂F eζ â†−ζ ∗â}eβζ ∗−β∗ζ d2ζ, (21)

with β,ζ ∈ C. According to Eq. (2) initially, i.e., at τ = 0,
ρ̂F = |α〉〈α| is a coherent state so that its Wigner phase-space
distribution is given by a Gaussian distribution. For τ > 0
the mixed field state ρ̂F always contains an admixture of
the coherent state |αe−iωτ 〉, which is strictly correlated with
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FIG. 2. (Color online) Wigner phase-space distribution of the
photonic state ρ̂F . The material state |�−〉 is solely paired with the
Gaussian peak. The rest of the states in Eq. (5) have contribution
of the three peaks and this explains the interference fringes. qθL

represents the quadrature of a balanced homodyne measurement.
The interaction time is given by τ = τr/4 with the revival time τr of
Eq. (12), ω = 8mπ/τr (m ∈ N0), and the rest parameters correspond
to those of Fig. 1.

the material Bell state |�−〉 of the two qubits. The free
time evolution of this coherent state reflects the fact that the
Bell state |�−〉 is not coupled to the single-mode radiation
field. However, due to the fact that, in general, |�(τ )〉 of
Eq. (5) is a tripartite entangled state, the Wigner distribution
of ρ̂F contains also additional maxima with interference
fringes in between. This is apparent from Fig. 2. These
interference fringes reflect the fact that the freely evolving
coherent state field state |αe−iωτ 〉 has finite overlaps with the
other field states |χj (τ )〉 (j = 0,±1), constituting the mixed
state ρ̂F . To ensure that the interval (

√
2|α| − δL,

√
2|α| + δL)

of the homodyne measurement does not include the interfer-
ence fringes the inequality δL <

|α|√
2

sin2(πτ
τr

) has to be fulfilled
for the interaction time τ . This inequality can be derived
from the coherent-state approximation by realizing that the
interference fringes have a Gaussian envelope and they are
centered at

√
2|α| cos2(πτ

τr
) in qθL

. In Fig. 2 we used a detection
time τ = τr/4 and |α| = 7.6, giving rise to the inequality
δL < 2.687 01, which still allows a very good probability
of projecting onto the desired coherent state [compare with
Eq. (B6)].

Finally, we would like to comment that in a recent study
by Rodrigues et al. [26] a similar protocol was introduced for
the postselective preparation of a maximally entangled state
by balanced homodyne photodetection when both material
qubits are prepared in the ground state. In their scheme the
resulting entangled state has the inconvenience of having
a time-dependent relative phase. In contrast, the method
presented here can produce a perfect Bell state for certain
initial conditions. In the following sections we show how to
enlarge the class of initial conditions such that our method
can be extended to implement quantum teleportation and
entanglement swapping protocols.

FIG. 3. Ramsey-type interaction scenario for probabilistic post-
selection of a two-qubit Bell state |�−〉. In a first step two qubits
interact for a time τ with a single photonic mode inside a cavity
initially prepared in the coherent state |α〉. Immediately afterwards the
resulting photonic state is projected onto the freely evolved coherent
state |αe−iωτ 〉. During the second step the two material qubits evolve
freely for a time τf . In the third step the two qubits interact with
a second cavity initially prepared in a coherent state |eiϕα〉. At
time 2τ + τf the photonic quantum state inside the second cavity
is projected onto the freely evolved coherent state |αei[ϕ−ω(2τ+τf )]〉.
Both photonic projections can be achieved by homodyne detections
which are depicted as detector inside boxes. The two-qubit state
resulting from this postselection process is the maximally entangled
Bell state |�−〉. Ideally, it is prepared with unit fidelity for arbitrary
initial conditions of the two material qubits and with the success
probability |c−|2.

III. A RAMSEY-TYPE PHOTONIC
POSTSELECTION SCHEME

In this section a generalization of the photonic postselection
scheme of the previous section is discussed which involves
a Ramsey-type matter-field interaction scenario with two
cavities. Ideally, it allows the probabilistic postselection of
a two-qubit Bell state with unit fidelity for arbitrary initial
conditions of the material qubits. This photonic postselection
is achieved by projection onto a coherent state which may be
achieved with the help of balanced homodyne photodetection.
The success probability of this postselective Bell-state projec-
tion is determined by the initial condition of the material qubits.

Let us consider an interaction scenario as schematically
depicted in Fig. 3. In a first step, two qubits interact with a
single mode of the radiation field inside a cavity for a time τ so
that their interaction can be described by the Tavis-Cummings
Hamiltonian of Eq. (1). At time τ the resulting tripartite qubit-
field state is given in Eq. (5) if initially the radiation field is
prepared in the coherent state |α〉. In the approximation of
large mean photon numbers, i.e., n � 1, and for interaction
times τ in the plateau region of Fig. 1, i.e., τc � τ � τr ,
projection of the resulting tripartite qubit-field state onto the
freely evolved coherent state |αe−iωτ 〉 yields the two-qubit
state of Eq. (14), which reduces to the maximally entangled
Bell state provided the parameter η(�c,φ) vanishes. However,
in general, a vanishing value of η(�c,φ) can only be achieved
for particular initially prepared two-qubit states.

In order to achieve a vanishing value of η(�c,φ) for arbitrary
initial conditions of the two-qubit system a second identical
interaction is enforced with a second cavity for a time τ (with
τc � τ � τr ) after a free time evolution of the two-qubit
system for a time τf . The single mode of the second cavity
interacting almost resonantly with the two-qubit system is
initially prepared in the coherent state |αeiϕ〉, which differs by
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a phase ϕ from the initially prepared coherent field state |α〉 of
the first cavity. The intermediate free evolution of the two-qubit
system during the second step of this process is governed
by the free two-qubit Hamiltonian Ĥa = �ωa/2(σ̂ z

A + σ̂ z
B).

This Hamiltonian only affects the phases accumulated by
the two-qubit states |0,0〉 and |1,1〉 appearing in Eq. (14).
Thus, after the first photonic postselection at time τ + τf the
tripartite state involving the two material quantum systems and
the mode of the second cavity is given by

|�1〉 =
[

c−√
P

|�−〉 + η(�c,φ)s√
P

∣∣ψφ−ωaτf

〉]|αeiϕ̃〉, (22)

with the success probability P of Eq. (17) and the state
|ψφ−ωaτf

〉 defined in Eq. (16). The phase

ϕ̃ = ϕ − ω(τ + τf ) (23)

takes into account the free evolution of the coherent state
in the second cavity which is assumed to be identical to
the first cavity. Immediately after the three-step Ramsey-type
interaction sequence, i.e., at time 2τ + τf , the resulting two-
qubit-field state is projected onto the freely evolved coherent
state of the second cavity |αei(ϕ̃−ωτ )〉. This projection can be
evaluated in an analogous way as in the first projected state of
Eq. (14), yielding the postselected two-qubit quantum state

〈αei(ϕ̃−ωτ )|e−i Ĥ ′
�

τ |�1〉

= c−√
P

|�−〉 + η( �d,φ + ϕ̃)
η(�c,φ)s2

√
P

|ψφ+ϕ̃〉. (24)

The entries of �d = (δ/ωn,d0,−d∗
0 ) represent the initial condi-

tions of the state in Eq. (22) and according to the definition
in Eq. (16) we get the value d0 = e−i[θ−(ω+0)τ+φ−ωaτf ]/

√
2.

They have to be inserted into Eq. (10) in order to obtain
explicitly

η( �d,φ + ϕ̃) = ω2
n

�2
n

{
δ2

ω2
n

+ cos [ϕ̃ + (ω + 0)τ + ωaτf ]

}
.

(25)

The Hamiltonian Ĥ ′ in Eq. (24) has the same form as Eq. (1)
and we use the primed notation to distinguish the mode of the
second cavity from the mode of the first cavity. The parameter
η( �d,φ + ϕ̃) can vanish if the initial phase of the second
coherent state ϕ is chosen in such a way that the conditions

ϕ = arccos

(
− δ2

ω2
n

)
− 0τ − δτf (26)

and δ � ωn = g
√

4n − 2 are fulfilled. In the case of perfect
resonance (δ = 0) ϕ takes the value of π/2. If the condition
of Eq. (26) is fulfilled the projection onto the coherent state
|αei(ϕ̃−ωτ )〉 postselects the Bell state |�−〉 and this occurs
with a probability of P ′ = |c−|2/P [compare with Eq. (24)].
Because both projections are independent, the overall success
probability of this scheme is given by

PT = PP ′ = |c−|2. (27)

Both projections onto the relevant coherent states of the
single-mode radiation fields can be achieved by balanced
homodyne detection of the relevant photons by appropriate
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FIG. 4. Overlap between the exact photonic states |χ ′
j (t)〉 of

the second cavity and the coherent state |αei(ϕ̃−ωt)〉 characterizing
the third step of the Ramsey-type postselection scheme. The initial
material state is taken from Eq. (14) for an interaction time of
τ = τr/4. The parameters α, c−, c1, c+, c0, and δ/g are set to the
same value as in Fig. 1. All three overlaps vanish in the plateau
region.

choices of the phases of the local oscillators. For the homodyne
measurement at time τ one has to choose θL = φ − ωτ and
for the corresponding homodyne detection at time 2τ + τf

the phase of the local oscillator has to be adjusted to the
value θ ′

L = φ + ϕ − ω(2τ + τf ). Remarkably, this probabilis-
tic postselective preparation of the two-qubit Bell state |�−〉
can be achieved for arbitrary initially prepared quantum states
of the two material quantum systems. Ideally, this preparation
can be realized with unit fidelity and with a success probability
|c−|2, which depends on the initially prepared two-qubit state.

In Fig. 4 the overlaps between the photonic field states
|χj (t)〉 and the freely evolved coherent state |αei(ϕ̃−ωτ )〉 are
shown for the initial condition of Eq. (22). The overlaps clearly
vanish for times τ in the plateau region, i.e., τc � τ � τr . The

FIG. 5. (Color online) Wigner phase-space distribution of the
photonic quantum state in the second cavity after the third step
of the Ramsey-type postselection scenario. The Gaussian peak is
correlated with the material state |�−〉. The rest of the photonic
states in Eq. (5) have no contribution of the Gaussian peak. This
explains the vanishing interference fringes with the other two peaks.
qθ ′

L
represents the quadrature of a balanced homodyne measurement.

The interaction time is given by τ = τr/4 with the revival time τr of
Eq. (12), ω = 8mπ/τr (m ∈ N0). The other parameters correspond
to those of Fig. 4.
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corresponding Wigner function of the field state is depicted in
Fig. 5. Here, consistent with these vanishing overlaps, the
interference fringes between the freely evolving field state and
the residual field states are not present. This demonstrates
that the coherent state |αei(ϕ̃−ωτ )〉 is solely paired with the
Bell state |�−〉, which can be prepared with unit fidelity by
photonic postselection.

It is worth mentioning that this probabilistic preparation of
the two-qubit Bell state |�−〉 by two time-delayed homodyne
measurements also works in more general situations which
involve different detunings and different dipole coupling
phases in both cavities, for example. In such cases one would
have to add to Eq. (26) the difference between both of the
dipole coupling phases, i.e., θ − θ ′, and the detuning between
cavities times the interaction time, (ω′ − ω)τ , and perform the
replacements δ2/ω2

n → δδ′/ωnωn′ and δτf → δ′τf .

IV. DIFFERENT QUBITS

In this section we explore the case of different coupling
strengths of the qubits to the field as well as different transition
frequencies. This is of interest for any experimental realization
of the proposed scheme. To this end we choose to define the
coupling strength of qubit A (B) to the radiation field as gA =
g + εg (gB = g − εg). The transition frequency of qubit A (B)
is detuned from the frequency of the cavity mode as described
by the equation δA = δ + εδ (δB = δ − εδ).

In this situation the state |�−〉|n〉 is no longer an eigenstate
of the Hamiltonian and, therefore, the time-dependent state
vector of the complete system is given by

|�(t)〉 = |�−〉|χ2(t)〉 + |1,1〉|χ1(t)〉 + |�+〉|χ0(t)〉
+ |0,0〉|χ−1(t)〉. (28)

In contrast to Eq. (5), the photonic state |χ2(t)〉 is, in general,
no longer a coherent state.

In Fig. 6 we present an exact numerical calculation of the
overlaps of the photonic field states of the second cavity with
the coherent state |αei(ϕ̃−ωτ )〉. This is the analog of Fig. 4
but with an asymmetry in the coupling strengths of εg/g =

0 0.2 0.4 0.6 0.8 1 1.2
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0.2

0.4

0.6

t/τr

α
ei

(˜
−

ω
t)
|χ

j
(t

)
2
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ϕ

FIG. 6. Overlap between the exact photonic states |χ ′
j (t)〉 of

the second cavity and the coherent state |αei(ϕ̃−ωt)〉 characterizing
the third step of the Ramsey-type postselection scheme. The initial
material state is taken from Eq. (14) for an interaction time of
τ = τr/4. The parameters α, c−, c1, c+, c0, and δ/g are set to the
same value as in Fig. 1. In addition we consider an asymmetry in the
coupling strengths of εg/g = 0.007 but keep equal detunings, i.e.,
εδ = 0.

0 0.05 0.1 0.15
0
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FIG. 7. Success probability PT (solid line) and fidelity F (dashed
line) of achieving the state |�−〉 as a function of the asymmetry in
the coupling strengths εg and using the scheme of Fig. 3. We take
εδ = 0. The rest of the parameters and the initial conditions are the
same of Fig. 1.

0.007. In addition we have included the overlap with the state
|χ2(t)〉, which is not a constant. One notes the emergence
of additional Rabi oscillations. In Appendix C we show that
this Rabi frequency increases as a function of εg and εδ . The
oscillations are also damped and undergo the typical collapse
and revival phenomena.

To evaluate how unequal coupling strengths influence our
scheme presented in Sec. III we evaluate the overall success
probability PT and the fidelity F of achieving the Bell state
|�−〉. In Fig. 7 we present an exact numerical calculation
for both of these quantities as a function of the difference εg

between couplings strengths of the qubits to the cavity mode. In
this example we took equal detunings, i.e., εδ = 0. The fidelity
displays an oscillatory behavior and it attains values close to
unity in a periodic way. The success probability also oscillates
and decays as a function of εg . Both effects are consequences
of the collapse and revival phenomena of the Rabi oscillations
induced by unequal couplings.

The frequency of the Rabi oscillations increases as a
function of εg and the maxima of the fidelity occurs at values of
εg where the Rabi oscillations complete a cycle at interaction
time τ = τr/4 [compare with Eq. (12)]. We can estimate that
this happens for integer multiples of εg/g → 4g2/ω2

n ≈ 1/n

[compare with Eq. (7)]. Similar behavior of the fidelity occurs
for an asymmetry in the detunings so that the cycles are
completed at integer multiples of εδ/g → 4g/δ. We can
conclude that unequal coupling strengths between the qubits
to the radiation field and unequal detunings have to fulfill
the requirements εg/g � 1/2n and εδ/g � 2g/δ because it
is at these values where the first minimum of the fidelity is
attained. This means that the scheme is sensitive to variations
of the coupling strengths but more robust with respect to small
variations of the detunings. In Appendix C we show details of
the derivations of these conditions.

A possible experimental realization of the Bell projection
scheme involving current technology could involve flying
atoms and single-mode cavities. Different coupling strengths
to the cavity mode can arise from the different paths on
which the atoms cross the electromagnetic field mode in-
side the cavity. Therefore, if we consider two mirrors of
a cavity facing each other along the z axis, for exam-
ple, a typical position-dependent coupling strength can be
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modeled by

g(x,y,z) = g0 sin

(
2πz

λ

)
e
− x2+y2

w2 , (29)

with λ and w denoting the wavelength of the cavity and the
mode waist. Thereby, the spatial positions of the flying atoms
are chosen so that their x and y coordinates are the same and
they pass through the cavity at different values of z. In order
to achieve strong coupling, both atoms should be located at
the antinodes of the radiation field. However, even in this
case unequal couplings to the field mode may result from
inaccuracies in the positions of the atomic paths. As we know
that our scheme works for (gA − gB)/(gA + gB) < 1/2n̄, let
us address the question for which inaccuracies in the positions
of the atomic paths this condition can still be fulfilled.

For this purpose let us consider the recent experiment of
Ref. [27] with flying Rydberg atoms. In this experiment the
mirrors are positioned at a distance of 2.7 cm, the cavity is
resonant at 51.1 GHz, the maximum coupling is given by
g0/2π = 51 kHz, and the waist is w = 6 mm. The experienced
change in the coupling strength due to the waist is well under
control because the experimental study integrates the collected
data over the flying time through the cavity. We can now
estimate the allowed deviations εz,A, εz,B in the positions of
the atoms by∣∣∣∣∣ sin

[ 2π(zA+εz,A)
λ

] − sin
[ 2π(zB−εz,B )

λ

]
sin

[ 2π(zA+εz,A)
λ

] + sin
[ 2π(zB−εz,B )

λ

]
∣∣∣∣∣ < 1/2n̄. (30)

Assuming that the ideal positions zA and zB are such that
sin(2πzA/λ) = sin(2πzB/λ) = 1 and that the deviations εz,A,
εz,B are below 1 mm, we obtain

|εz,A − εz,B | < λ/π arctan

(
1

2n̄

)
. (31)

Thus, if the deviations are similar for both paths, i.e., εz,A =
εz,B , the above condition is always fulfilled. Otherwise, for n̄ ∼
102 the difference of these deviations must obey the relation
|εz,A − εz,B | < 10 μm. Therefore, if the average number of
photons n is not too large, current experiments are precise
enough to realize the condition of Eq. (31).

V. QUANTUM INFORMATION PROCESSING

In this section it is demonstrated how the Ramsey-type
interaction scheme of Sec. III can be used for implementing
probabilistic quantum teleportation and entanglement swap-
ping. Thereby, the crucial feature is exploited that ideally
this Ramsey-type interaction scheme allows to postselect a
Bell state of two material qubits with unit fidelity for a large
class of initial conditions of the two material qubits. As this
postselection procedure can be implemented with the help
of balanced homodyne photodetection, it offers interesting
perspectives for current applications in quantum information
processing.

A. Entanglement-assisted teleportation

The goal of entanglement-assisted quantum teleportation
is to transfer the unknown state of a quantum system, say A,
to another quantum system, say C. So, let us consider three

FIG. 8. A probabilistic quantum teleportation protocol based on
the Ramsey-type photonic postselection scheme of the Bell state
|�−〉, as discussed in Sec. III and depicted by Fig. 3.

material qubits A, B, and C, as depicted in Fig. 8, with qubit
B acting as an ancilla system. Initially, qubit A is prepared in
the unknown quantum state

|ψ〉A = a|0〉A + b|1〉A, |a|2 + |b2| = 1. (32)

Thus, in order to implement a photon-assisted quantum
teleportation protocol, let us consider the initially prepared
four-partite quantum state∣∣� tel

0

〉 =|ψ〉A ⊗ |�−〉BC ⊗ |α〉, (33)

which involves the three material qubits A, B, C and the
initially prepared single-mode coherent quantum state |α〉 of
the radiation field. This initially prepared four-partite quantum
state can be represented in the equivalent form

∣∣� tel
0

〉 = −1

2
|�−〉AB |ψ〉C |α〉

+
(

b

2
|�+〉AB + a√

2
|00〉AB

)
|1〉C |α〉

−
(

b√
2
|11〉AB + a

2
|�+〉AB

)
|0〉C |α〉. (34)

Furthermore, let us assume that atoms A and B interact with
the single mode of the radiation field inside a cavity so that this
interaction can be described by the Hamilton operator of the
Tavis-Cummings model of Eq. (1). As the Bell state |ψ−〉AB is
an invariant state of the Tavis-Cummings model the photonic
state evolves freely as a harmonically oscillating coherent
state. From our discussion in Sec. III it is known that after
an interaction time τ with τc � τ � τr successful projection
onto the photonic state |αe−iωτ 〉 results in the unnormalized
tripartite material quantum state [see Eq. (14)]

|ψ tel〉 = 〈αe−iωt |� tel(τ )〉
= − 1

2 |�−〉AB |ψ〉C + s|ψφ〉AB

× [η( �d1,φ)|1〉C + η( �d0,φ)|0〉C]. (35)

Thereby, the state |ψφ〉AB is given by Eqs. (14), (15), and (16)
and the amplitudes in Eq. (35) are defined by the initial
conditions encoded in the vectors �d1 = (b/2,a/

√
2,0) and

�d0 = (−a/2,0,−b/
√

2) according to the definition of η(�c,φ)
in Eq. (10).

This projection onto the state (35) takes place with
probability

P tel = 1

4
+ |s|2[|η( �d0,φ)|2 + |η( �d1,φ)|2]

(
1 + δ2

ω2
n

)
. (36)
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FIG. 9. A probabilistic entanglement swapping protocol based
on the Ramsey-type photonic postselection scheme of the Bell state
|�−〉, as discussed in Sec. III and depicted by Fig. 3.

Now let us assume that subsequently the quantum systems
A and B interact for a time τ with a second cavity prepared
in the single-mode coherent state |αeiϕ〉. If the relative phase
ϕ fulfills the condition of Eq. (26) a second projection onto
the freely evolved coherent state |αei(ϕ̃−ωτ )〉 results in the
teleported quantum state

|�tel〉 = eiπ |�−〉AB ⊗ |ψ〉C. (37)

This second photonic projection takes place with probability
P tel′ = 1/(4P tel) so that the overall success probability of
this entanglement-assisted quantum teleportation protocol is
independent of the initial conditions of the state to be teleported
and is given by

P tel
T = 0.25. (38)

B. Entanglement swapping

A major aim of entanglement swapping is to produce
entanglement between two distant quantum systems, say C

and D, with the help of two uncorrelated pairs of entangled
quantum systems, say AD and BC. Let us consider four
material qubits A, B, C, and D, as depicted in Fig. 9.
Initially, the qubit pairs BC and AD are prepared in maximally
entangled Bell states and an ancillary photonic field mode is
prepared in a coherent state |α〉 so that the five-partite initially
prepared quantum state is given by∣∣�sw

0

〉 = |�±〉DA|�−〉BC |α〉. (39)

This initial state can be represented in the equivalent form∣∣�sw
0

〉=− 1
2 |�−〉AB |�±〉DC |α〉 − 1

2 |1,1〉AB |0,0〉DC |α〉
+ 1

2 |�+〉AB |�∓〉DC |α〉± 1
2 |0,0〉AB |1,1〉DC |α〉. (40)

A Bell projection on qubits A and B is capable of
swapping entanglement to qubits C and D. For this purpose
qubits A and B interact with the ancillary photonic field
mode inside a cavity for a time τ , with τc � τ � τr . If
this interaction can be described by the Tavis-Cummings
Hamiltonian of Eq. (1), we can take advantage from the
fact that the two-qubit Bell state |�−〉AB is an invariant
quantum state under the Hamiltonian of Eq. (1) so that the
photonic field state it is correlated with according to Eq. (40)
evolves freely as an oscillating coherent state. Thus, projection
of the five-partite quantum state |�(τ )〉 onto the coherent
state |αe−iωτ 〉 yields the unnormalized four-partite qubit state

[see Eq. (14)]

|ψ sw〉 = 〈αe−iωτ |�sw(τ )〉
= − 1

2 |�−〉AB |�±〉DC + s|ψφ〉AB[η( �d00,φ)|0,0〉DC

+ η( �d+,φ)|�∓〉DC + η( �d11,φ)|1,1〉DC], (41)

with the initial conditions of Eq. (40) represented by the vectors
�d00 = (0,0,−1/2), �d+ = (1/2,0,0), and �d11 = (0,±1/2,0).
These initial conditions have to be substituted into the
definition of η(�c,φ) in Eq. (10). The success probability of
this photonic projection is given by

P sw = 1

4
+ |s|2

(
1 + δ2

ω2
n

)
[|η( �d+,φ)|2

+ |η( �d00,φ)|2 + |η( �d11,φ)|2]. (42)

In order to achieve projection onto the Bell state |�−〉AB with
unit fidelity, qubits A and B interact with a second single
mode of the radiation field inside a second cavity for a time
τ . Thereby, the radiation field is prepared in a coherent state
|αeiϕ〉 so that condition (26) is fulfilled. According to our
discussion in Sec. III after the projection onto the second
coherent state |αei(ϕ̃−ωτ )〉 the final four-partite qubit state is
given by

|�sw〉 = eiπ |�−〉AB |�±〉DC. (43)

This second photonic projection is achieved with a success
probability of 1/(4P sw). Multiplying the probabilities of both
photonic projections yields the overall success probability of
this probabilistic entanglement swapping procedure, namely,

P sw
T = 0.25. (44)

Let us finally address the question to which extent the
entanglement swapping procedure discussed here may offer
interesting perspectives for current experimental activities in
realizing a quantum repeater. The experiments of Gleyzes
et al. [27] have demonstrated that controlled interaction be-
tween Rydberg atoms crossing several cavities and interacting
with single modes of the radiation field prepared inside these
cavities is possible. Thus, the entanglement swapping protocol
discussed here may be integrated in a hybrid quantum repeater
setup as proposed by van Loock et al. [20] or in a setup
based on almost resonant matter-field interaction [28], for
example, in the following way. In a first step, entanglement
is generated between neighboring stations by passing material
qubits through different cavities. Due to lossy transmission
channels between the stations entanglement purification [29]
may be performed. In a second step, the previously discussed
entanglement swapping procedure is applied at each station.
Even if the qubits A and B are destroyed after the entanglement
swapping procedure of Fig. 9, qubits D and C are still
prepared in a Bell state |�±〉DC . Problems arising from the
fact that radiatively long-lived stable electronic levels should
be used as material qubits may be resolved with the help
of appropriately applied π pulses. They transform radiatively
long-lived electronic states to higher electronic levels which
can be excited almost resonantly by photons easily. Further-
more, recent experiments indicate that also the condition of
negligible spontaneous photon emission into other modes of
the radiation field during the interaction between the qubits and
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the almost resonantly coupled cavity modes can be fulfilled.
Although the direct experimental investigation of the two-qubit
Tavis-Cummings model by Casabone et al. [30], for example,
performed on trapped 40Ca+ ions, reports a ratio between the
vacuum Rabi frequency g and the spontaneous decay rate
� of the qubits as small as g/� = 0.68, the experiment of
Colombe et al. [31] reports significantly higher ratios as large
as g/� = 71.66. Thus, the experimental realization of the
dynamical regime of negligible spontaneous photon emission
into other modes of the radiation field is within reach of current
experimental possibilities.

VI. CONCLUSIONS

We have discussed a quantum electrodynamical imple-
mentation of a probabilistic Bell measurement capable of
projecting an arbitrary initial state of two material qubits
perfectly onto a Bell state with success probability given by
the initial probability weight of this Bell state. It has been
demonstrated how this Bell measurement can be used as a
building block for implementations of entanglement-assisted
teleportation and entanglement swapping protocols, both of
which can be achieved with almost unit fidelity and 25%
success probability. This Bell measurement is performed by
entangling the two material qubits to be measured with single
modes of the radiation field in a Ramsey-type interaction
sequence and postselecting the resulting photon fields with the
help of balanced homodyne photodetection. Within the dipole
and rotating wave approximation the almost resonant quantum
electrodynamical matter-photon interaction involved in this
Bell measurement can be described by the two-qubit Tavis-
Cummings model. The protocols presented take advantage
of a characteristic feature of this particular interaction model,
namely the existence of an invariant two-qubit Bell state which
does not couple to the photons. Therefore, if initially the
ancillary photon fields are prepared in coherent states, this
invariant Bell state will always remain correlated with these
coherent states, which evolve freely despite the presence of
the quantum electrodynamical matter-photon coupling. If the
interaction times of the Ramsey-type interaction sequence
and the initial phases of the coherent photon states are
chosen appropriately, ideally these coherent states can be dis-
tinguished perfectly from the residual photon states which
are correlated with the other components of the material two-
qubit quantum state. This offers the possibility to postselect
these coherent components of the photon state by balanced
homodyne photodetection, thus preparing a perfect material
two-qubit Bell state with unit fidelity independently of the
two-qubit state which has been prepared before the interaction
with the radiation field. The properly chosen interaction
times and phases of the coherent photon states involved in

this Ramsey-type interaction sequence exploit characteristic
dynamical properties of the collapse and revival phenomena of
the Tavis-Cummings model and ensure that this postselective
unit-fidelity Bell state projection can be achieved. It is this
latter property which enables the use of this probabilistic
Bell measurement as a basic building block for probabilistic
entanglement-assisted quantum teleportation. Furthermore,
this probabilistic Bell measurement may also be used for
implementing entanglement swapping and may thus be of
particular interest for current experimental efforts aiming at
the realization of hybrid quantum repeaters.

In view of significant recent progress in quantum state
engineering and in the distribution of remote entanglement the
postselective Bell measurement, the quantum teleportation and
entanglement swapping protocols discussed here may offer
interesting perspectives for future applications. Possible appli-
cations may not only include quantum optical implementations
of hybrid quantum repeaters and quantum communication
networks but also condensed-matter implementations of qubits
which are almost resonantly coupled to coherent states of
microwave fields.
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APPENDIX A: TIME EVOLUTION OF THE ALMOST
RESONANT TWO-QUBIT TAVIS-CUMMINGS MODEL

In this section the time evolution of the two-qubit Tavis-
Cummings model is discussed. Let us consider the situation of
an almost resonant coupling between the qubits and the single
mode of the cavity field. For simplicity we omit the labels of the
qubits while taking the convention of keeping the order A,B,
i.e., |1〉A|0〉B = |1,0〉. It is apparent that the state |�−〉|n − 1〉
is an eigenstate of the Hamiltonian in Eq. (1). Furthermore,
the number of excitations of the two-qubit-field system â†â +
1
2 (σ̂ z

A + σ̂ z
B) is a constant of motion of the Hamiltonian (1)

of the Tavis-Cummings model. This number of excitations is
diagonal in the basis

{|�−〉|n〉}∞n=0 ⊕ {|0,0〉|0〉}
⊕ {|�+〉|0〉,|0,0〉|1〉}
⊕ {|1,1〉|n − 2〉,|�+〉|n − 1〉,|0,0〉|n〉}∞n=2,

(A1)

and has a threefold degenerate spectrum for any fixed value
of n > 1 (two- and onefold degeneracy for n = 1,0, respec-
tively). Because the Hamilton of Eq. (1) commutes with the
number of excitation, it follows that it can be diagonalized in
blocks given by

H (0) = −�δ, H (1) = �

(
0 geiθ

√
2

ge−iθ
√

2 −δ

)
, H (n�2) = �

⎛
⎜⎝

δ + ω(n − 1) geiθ
√

2(n − 1) 0

ge−iθ
√

2(n − 1) ω(n − 1) geiθ
√

2n

0 ge−iθ
√

2n ω(n − 1) − δ

⎞
⎟⎠ . (A2)

We observe that the state |0,0〉|0〉 is an eigenstate of the system with eigenvalue E(0) = −�δ. For the second block we find that
there are two eigenvalues given by E

(1)
j = �

j

2 (
√

8g2 + δ2) with j = −1,1. The solution of the eigenvalue problem for n � 2
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involves the diagonalization of the 3 × 3 matrices H (n�2) of Eq. (A2) and leads to a characteristic polynomial of third order.
Its general, solutions are lengthly [32] and not of much interest for our purposes. For large photon numbers the approximate
eigenvalues of the system can be obtained with the help of perturbation theory. Choosing εn = 1/

√
8n − 4 as an expansion

parameter for each block we obtain the result

H (n) = H
(n)
0 + εnH

(n)
1 + O

(
ε2
n

)
,

H
(n)
0 = �

⎛
⎜⎝

ω(n − 1) + δ geiθ
√

2n − 1 0

ge−iθ
√

2n − 1 ω(n − 1) geiθ
√

2n − 1

0 ge−iθ
√

2n − 1 ω(n − 1) − δ

⎞
⎟⎠ ,

(A3)

H
(n)
1 = �

⎛
⎜⎝

0 −geiθ 0

−ge−iθ 0 geiθ

0 ge−iθ 0

⎞
⎟⎠ .

The eigenvalues of the zeroth-order blocks are �ω(n − 1) and
�ω(n − 1) ± ��n, with

�n =
√

(4n − 2)g2 + δ2. (A4)

The eigenvectors of these zeroth-order blocks are given by the
columns of the unitary matrix

U
(n)
0 =

⎛
⎜⎜⎝

− ωne
iθ√

2�n

δ−�n

2�n
eiθ δ+�n

2�n
eiθ

δ
�n

ωn√
2�n

ωn√
2�n

ωne
−iθ√

2�n

ω2
ne

−iθ

2�n(δ−�n)
ω2

ne
−iθ

2�n(�n+δ)

⎞
⎟⎟⎠ . (A5)

The corrections of first order in εn of the eigenvalues are given

by the diagonal elements of the matrices εnU
(n)
0

†
H

(n)
1 U

(n)
0 .

Using these corrections up to first order in εn, the eigenvalues
are given by

E
(n)
j = �

[
ω(n − 1) + j�n + (−1)j (2)1−|j |g2δ

�2
n

]
, (A6)

with j = −1,0,1. It should be mentioned that these results are
valid for arbitrary detunings δ from resonance.

Let us now determine the time evolution of the two-qubit-
field quantum state with the initial condition

|�0〉 = (c−|�−〉 + c1|1,1〉 + c+|�+〉 + c0|0,0〉)

⊗
( ∞∑

n=0

pn|n〉
)

,

fulfilling the normalization condition

(|c−|2 + |c+|2 + |c0|2 + |c1|2)

( ∞∑
n=0

|pn|2
)

= 1.

Using the zeroth-order eigenvectors in εn and the correspond-
ing first-order eigenvalues the time evolution is approximately
given by

|�(t)〉 = c−|�−〉 ⊗
( ∞∑

n=0

pne
−inωt |n〉

)

+ |1,1〉|χ1(t)〉 + |�+〉|χ0(t)〉 + |0,0〉|χ−1(t)〉,
(A7)

with

|χ1(t)〉 =
∞∑

n=2

1∑
k=−1

η
(n,t)
1,k eiθ |n − 2〉,

|χ0(t)〉 =
∞∑

n=1

1∑
k=−1

η
(n,t)
0,k |n − 1〉, (A8)

|χ−1(t)〉 =
∞∑

n=1

1∑
k=−1

η
(n,t)
−1,ke

−iθ |n〉 + eiδt c0 p0|0〉,

and with the definitions

η
(n,t)
j,±1 = ω2

n√
2|j |�2

n

(
δ ± �n

ωn

)j[
c+pn−1

2
+ ωnc0e

iθpn

2
√

2(δ ± �n)

+ (δ ± �n)c1e
−iθpn−2

2
√

2ωn

]
e−iE

(n)
±1t/�,

(A9)

η
(n,t)
j,0 =

(
δ

ω

)δj,0

(−1)δj,1
ω2

n√
2|j |�2

n

×
(

δc+pn−1

ωn

+ c0e
iθpn − c1e

−iθpn−2√
2

)
e−iE

(n)
0 t/�.

In the case of an initially prepared coherent photon state the
probability amplitudes are given by

pn =
√

nn

n!
e− n

2 +iφ. (A10)

In order to obtain an expansion in terms of coherent states, one
may perform a Taylor expansion of the eigenfrequencies up
to first order in n around the mean photon number n � 1.
Thus, the eigenvalues take the form of Eq. (6) with the
definitions of Eq. (7). In the limit n̄ � √

n̄ summations over
photon numbers n may be restricted approximately to intervals
n ∈ [n̄ − 4

√
n̄,n̄ + 4

√
n̄]. Thus, the probability amplitudes of

the single-mode radiation field simplify to

pn =
√

n̄

n
eiφpn−1 ≈ eiφpn−1

and the functions of Eq. (A9) can be approximated by

η
(n,t)
j,k ≈ ηj,ke

i{j [φ−(ω+k )(n−1)t]−�kt}pn−j−1. (A11)
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Substituting these approximations into Eq. (A8), we arrive
at the result of Eq. (9). Thereby, the interaction times are
restricted by the condition of Eq. (8).

1. Perfect resonance δ = 0

In the resonant case the exact solutions have remarkably
compact form. For real-valued dipole couplings, for example,
θ = 0, the blocks of the Hamiltonian H (n) can be diagonalized
by the transformations

U (1) = 1√
2

(
1 1

−1 1

)
,

(A12)

U (n�2) = 1√
4n − 2

⎛
⎜⎝

√
2n

√
n − 1

√
n − 1

0 −√
2n − 1

√
2n − 1√

2n − 2
√

n
√

n

⎞
⎟⎠ .

Thereby, U (n)†H (n)U (n) is the diagonal matrix of eigenval-
ues. These eigenvalues are given by En

j = �[ω(n − 1) +
jg

√
4n − 2] with j = −1,0,1 (j = 1,−1) for n > 1 (n = 1).

The resulting time evolution of an initial state of the form
of Eq. (2) has the form of the state vector in Eq. (5) with the
field states given by

|χ1(t)〉=
∞∑

n=2

eiθ

√
n − 1(ξ−

n,t − ξ+
n,t ) − √

nξn√
2n − 1

|n − 2〉,

|χ0(t)〉=
∞∑

n=1

(ξ−
n,t + ξ+

n,t )|n − 1〉, (A13)

|χ−1(t)〉= c0 p0|0〉+
∞∑

n=1

e−iθ

√
n(ξ−

n,t − ξ+
n,t ) + √

n− 1ξn√
2n − 1

|n〉,

with

ξ±
n,t =

e±iωnt

2

(
c+pn−1 ∓

√
n c0e

iθpn + √
n− 1 c1e

−iθpn−2√
2n − 1

)
,

ξn =
√

n − 1 c0e
iθpn − √

n c1e
−iθpn−2√

2n − 1
, (A14)

and with pn denoting the photon-number probability ampli-
tudes which are given by Eq. (A10) in the case of a coherent
state.

APPENDIX B: HOMODYNE PHOTODETECTION AS A
PROJECTIVE MEASUREMENT

For the sake of completeness, in this appendix we sum-
marize basic facts about balanced homodyne photodetection
measurements which are relevant for our discussion in Sec. III
and which have been reviewed in detail by Lvovsky and
Raymer [23], for example. In particular, we summarize the
approximations which allow one to describe a homodyne
photodetection measurement by a projective von Neumann
measurement, as in Eq. (18).

In a typical balanced homodyne photodetection experiment
a single mode of the radiation field to be measured is
superposed with the single mode of a local oscillator with
the help of a 50% beam splitter. Ideally, this process can be

described by the canonical transformation(
ĉ2

ĉ1

)
= 1√

2

(
1 1

−1 1

) (
âS

âL

)
, (B1)

with âS denoting the destruction operator of the field mode
to be measured and âL the mode of the local oscillator. The
destruction operators of the field modes emerging from the
beam splitter are denoted by ĉ1 and ĉ2. With the help of two
photodetectors one measures the resulting difference of photon
numbers, which is described by the Hermitian operator n̂− =
ĉ
†
1ĉ1 − ĉ

†
2ĉ2. According to the photodetection theory of Kelley

and Kleiner [33] the probability of detecting n− = n1 − n2

photons is given by

P (n−)=Tr

{
ρ̂L ⊗ ρ̂S : e−ξ (n̂1+n̂2)

(
n̂1

n̂2

)n−/2

I|n−|(2ξ
√

n̂1n̂2) :

}
,

(B2)

with the mean photon numbers

nj = Tr{ρ̂L ⊗ ρ̂S ĉ
†
j ĉj }, (j = 1,2).

Thereby, it is assumed that the two field modes described by the
destruction operators âL and âS are statistically independent
and are initially prepared in the separable quantum states
ρ̂L and ρ̂S . The quantity 0 � ξ � 1 denotes the quantum
efficiency of the photodetection process and In denotes the
modified Bessel function of integer order n. Furthermore,
normal ordering of an operator Ô with respect to the
destruction and creation operators âj and â

†
j (j ∈ {L,S}) is

denoted by :Ô:.
If the magnitude of the difference of the photon numbers

n− is much less than the mean photon numbers of both modes
emerging from the beam splitter, i.e., |n−| � n1,n2, and in
addition the local oscillator is initially prepared in a coherent
state ||αL|eiθL〉 with |αL|2 � Tr{ρ̂S â

†
SâS},1 this photodetection

probability simplifies to the expression

PθL
(n−) = Tr

{
ρ̂S :

1√
2πξ |αL|2

e
− [n−−ξ |αL |(âS e−iθL +â

†
S

eiθL )]2

2ξ |αL |2 :

}
.

(B3)

Therefore, if the balanced homodyne detection measure-
ment is ideal, i.e., ξ → 1, the resulting probability of detecting
a difference photon number n− simplifies to the expression

PθL
(qθL

) =
∫

d2βW (β,β∗)δ

[
qθL

− (βe−iθL + β∗eiθL )√
2

]
,

(B4)

with qθL
= n−/

√
2|αL| and with W (β,β∗) denoting the Wigner

function of the photonic quantum state ρ̂S as given by Eq. (21)
and with δ(x) denoting the Dirac delta distribution. Using the
quadrature eigenstates of Eq. (19) the probability distribution
of Eq. (B4) can be rewritten in the equivalent form of
Eq. (18). This form demonstrates explicitly that in this limit
balanced homodyne detection of photons can be described by a
projective von Neumann measurement. According to Eq. (B2),
however, in general, balanced homodyne detection has to be
described by a positive operator valued measure.
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For a coherent state |α〉, for example, the Wigner function
is given by W (β,β∗) = 2exp(−2|β − α|2)/π so that the
corresponding probability distribution of balanced homodyne
photodetection is given by

PθL
(qθL

) = 1√
π

exp
[−(

qθL
− q̃θL

)2]
, (B5)

with q̃θL
= 1√

2
(αe−iθL + α∗eiθL ). Thus, postselecting photon

counts by balanced homodyne photodetection with differ-
ence photon numbers n− in the range n−/

√
2|αL| ∈ (q̃θL

−
δL,q̃θL

+ δL) is equivalent to projection onto the coherent state
|α〉 with probability

Prob(α) = erf(δL) � 1 − e−δ2
L√

πδL

, (B6)

with erf(x) denoting the error function [34]. Thus, choosing
δL = 2, for example, yields Prob(α) > 0.995 322 265 0 and
δL = 3 yields Prob(α) > 0.999 977 909 5.

APPENDIX C: TIME EVOLUTION OF
DIFFERENT QUBITS

In this appendix we analyze the more general situation
when the qubits have different coupling strengths to the cavity
and also different transition frequencies. We focus on small
deviations from the ideal Hamiltonian in Eq. (1), which in this
case is replaced by

Ĥ = �ωâ†â +
∑

i=A,B

�

(
δi − ω

2
σ̂ z

i + giσ̂
+
i â + giσ̂

−
i â†

)
,

(C1)

where gA = g + εg , gB = g − εg , δA = δ + εδ , and
δB = δ − εδ . The state |�−〉|n〉 is no longer an eigenstate of
the Hamiltonian in Eq. (C1). Therefore, for photon numbers
n � 2 its blocks are 4 × 4 matrices, which in the basis
{|ψ−〉|n− 1〉,|1,1〉|n− 2〉,|�+〉|n − 1〉,|0,0〉|n〉} are given by

H (n�2) = �

⎛
⎜⎜⎜⎜⎝

ω(n − 1) εg

√
2n − 2 −εδ −εg

√
2n

εg

√
2n − 2 ω(n − 1) + δ g

√
2n − 2 0

−εδ g
√

2n − 2 ω(n − 1) −g
√

2n

εg

√
2n 0 −g

√
2n ω(n − 1) − δ

⎞
⎟⎟⎟⎟⎠ . (C2)

Thereby, for the sake of simplicity we have concentrated to
the special case of θ = 0 so that the coupling strengths g are
positive. However, the eigenvalues of the matrices of Eq. (C2)
do not depend on the choice of this phase.

If δ � ωn and the number of excitations is large, i.e.,
n � 1, the four eigenvalues of each block are approximately
given by the two pairs �ω(n − 1) ± ��(S)

n and �ω(n − 1) ±
��(L)

n . They reduce to �ω(n − 1) ± 0 and �ω(n − 1) ± ��n in
the limit of εg → 0 and εδ → 0. Therefore, the asymmetries
between the coupling strengths and the detunings induce new
Rabi oscillations that will collapse (and revive) at a slower time
scale. This behavior can be identified in Fig. 6. To estimate
this time scale, we aim for a coherent-state expansion of the
photonic state |χ2(t)〉 involving the smallest frequencies. In
order to obtain simple analytical solutions that approximate
the eigenvalues of (C2), we take the zeroth-order expansion
analog to Eq. (A3). Linearizing the pair of smallest eigenvalues
in εg , εδ and n − n, we obtain �(S)

n ≈ � +  (n − n), with

� = ω2
n

g�n

εg + δ

�n

εδ,  = 2
�2

n + δ2

�3
n

gεg + g2δ

�3
n

εδ. (C3)

The field state that accompanies the Bell state |�−〉 in
Eq. (28) can be assumed to depend on coherent states in a
similar way as the states in Eq. (9) and therefore can be written
in the form

|χ2(t)〉 ≈
∑
±

η2,±e∓i(�−n)t |αe−i(ω± )t 〉. (C4)

In the case of small values of εδ and εg the deviation of the
state |χ2(t)〉 from the coherent state evolving with frequency
ω is small. The exact form of the coefficients in Eq. (C4) is not
relevant for our analysis as we focus only on the frequencies

of the system. From Eq. (11) we can conclude that the overlap
|〈αe−iωt |χ2(t)〉|2 undergoes Rabi oscillations at frequency 2�

which decay as exp{−n 2t2}.
At this point it is convenient to summarize the steps of our

scheme in order to have a clear picture of how the fidelity of
the final state and the success probability of postselecting the
state |�−〉 change. We start with the initial state of Eq. (2)
which for an interaction time τ evolves under the influence of
the Hamiltonian in Eq. (C1) to a state given by Eq. (28). A
projection onto the photonic state |αe−iωτ 〉 is performed with
success probability P = ∑2

j=−1 |zj |2, which is given in terms
of the overlaps zj = 〈αe−iωτ |χj (τ )〉. In the ideal case, this
reduces to the expression of Eq. (17). The resulting material
qubits are allowed to interact with a second cavity prepared
in a coherent state that differs from the first coherent state by
a phase ϕ̃ given in Eqs. (23) and (26). Thereby, the tripartite
system for the second interaction is given by

|�1〉 = 1√
P

(z2|�−〉 + z1|1,1〉 + z0|�+〉 + z−1|0,0〉)|αeiϕ̃〉.

This state evolves under the action of a Hamiltonian Ĥ ′ in the
form of Eq. (C1) to the state |� ′(τ )〉 in the form of Eq. (28)
with the photonic states |χ ′

j (τ )〉, j = −1,0,1,2. A projection
onto the field state |αei(ϕ̃−ωτ )〉 is performed with success
probability P ′ = ∑2

j=−1 |z′
j |2 with z′

j = 〈αei(ϕ̃−ωτ )|χ ′
j (τ )〉.

The total success probability of the scheme is given by
PT = PP ′ and the material qubits result in the state

|ψf 〉 = 1√
P ′ (z

′
2|�−〉 + z′

1|1,1〉 + z′
0|�+〉 + z′

−1|0,0〉),
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which in the ideal case matches the Bell state |�−〉. The fidelity
with respect to this Bell state is F = |〈�−|ψf 〉| and in the ideal
case it attains values close to unity.

In our numerical examples the success probability involves
two measurements at time τ → τr/4 with the revival time
τr as given by Eq. (12). Its decay depends on  and it is
proportional to exp{−2n 2(τr/4)2}. This sets a boundary for
the applicability of our scheme as the success probabilities
become arbitrarily small for large arguments of the exponential
function. The boundary for which the argument of the
exponential is less than unity is determined by the inequality

εg

g
� 1

π

√
2

n

(
1 + δ2

�2
n

)−1

− 1

2

δεδ

�2
n + δ2

. (C5)

The oscillations of the fidelity in Fig. 7 achieve their
maximum values close to unity whenever the asymmetry εg is
such that the corresponding Rabi oscillation completes a cycle
at the interaction time τ = τr/4. This condition is fulfilled for
2�τr/4 = 2lπ with l ∈ N+. From Eq. (C3) we obtain that this
happens for

ε(l)
g /g = (4g2l − δεδ)/ω2

n, (C6)

which is taken for a fixed value of εδ . The first minimum in
the fidelity as a function of εg occurs at ε(1)

g /2. For εδ = 0 this
value is approximately 1/2n.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[2] H. J. Kimble, Nature (London) 453, 1023 (2008).
[3] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
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