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Generation of entangled matter qubits in two opposing parabolic mirrors
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We propose a scheme for the remote preparation of entangled matter qubits in free space. For this purpose, a
setup of two opposing parabolic mirrors is considered, each one with a single ion trapped at its focus. To get the
required entanglement in this extreme multimode scenario, we take advantage of the spontaneous decay, which
is usually considered as an apparent nuisance. Using semiclassical methods, we derive an efficient photon-path
representation to deal with this problem. We also present a thorough examination of the experimental feasibility
of the scheme. The vulnerabilities arising in realistic implementations reduce the success probability, but leave
the fidelity of the generated state unaltered. Our proposal thus allows for the generation of high-fidelity entangled
matter qubits with high rate.
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I. INTRODUCTION

The distribution of entanglement between macroscopically
separated parties constitutes a key ingredient of quantum-
information networks [1,2]. A quantum network is composed
of nodes, for processing and storing quantum states, and
channels linking the nodes. The implementation of quantum
nodes is a major challenge: different approaches are currently
being pursued, most of them involving single emitters, such as
ions, atoms, or nitrogen-vacancy centers [3–6], even though
they are inherently probabilistic.

Photonic channels are especially advantageous, as optical
photons can carry information over long distances with almost
negligible decoherence. In practice, there are two types of
these channels: optical fibers and free space. Optical fibers
are capable of transmitting single photons over large distances
with high efficiency, but suffer from effects as birefringence
or dispersion. The free space, however, is free from those
difficulties, yet photon losses can play a prominent role. Thus,
both types of photonic channels have their own pros and
cons [7] and distribution of entangled photonic qubits was
successfully demonstrated for both of them, over a distance of
200 km [8] using optical fibers and over 144 km [9] in free
space.

The main issue with a free-space channel is the low photon-
collection efficiency. This can be improved by placing the
single emitter at the focus of a parabolic mirror [10], which in
addition enhances the atom-field interaction [11,12].

Here, we propose to use two opposing parabolic mirrors to
prepare maximally entangled states of two matter qubits at the
corresponding focal points. Our scheme involves an extreme
multimode scenario; i.e., the atoms couple to a continuum of
modes of the radiation field. Thereby, we deal with intrinsic
multimode effects such as spontaneous decay processes, which
are usually considered as sources of undesirable decoherence.
Interestingly enough, we will be able to use these effects as
tools for entanglement generation, rather than avoiding them.

In other multimode schemes [13] each deviation from
the ideal situation, such as nonperfect mode matching, leads
to a reduction of the fidelity of the generated state. In

contradistinction, our scheme is robust against the vulnerabil-
ities that arise in experimental implementations: they reduce
the success probability, but leave the fidelity unaltered (and,
accordingly, it can be very high). As outlined below, this is
due to the use of photons originating from circular-dipole
transitions, a suitable choice of the quantization axis and direct
dispersive probing of the qubit states.

This paper is organized as follows. In Sec. II we advance
the basic ingredients of our scheme, which is fully analyzed
in Sec. III by resorting to a photon-path representation [14,15]
especially germane for a multimode description. To incor-
porate the boundary conditions for the relevant solution of
the Helmholtz equation, we apply a semiclassical approxi-
mation [16,17]. We discuss the results in Sec. IV and their
feasibility in Sec. V. Finally, our conclusions are briefly
summarized in Sec. VI.

II. REMOTE ENTANGLEMENT PREPARATION

Our setup, as roughly schematized in Fig. 1, consists of
two parabolic mirrors opposing each other, so they direct any
electromagnetic field from one focal point to the other with
great efficiency.

We consider a trapped 171Yb+ ion at the focus of each
parabolic mirror. This ion has a suitable hyperfine electronic
structure due to its nuclear spin I = 1/2. We concentrate
on the level scheme formed by the levels 62S1/2 and 62P1/2

shown in Fig. 2. The logical qubit is defined by the levels
|62S1/2,F = 1,m = −1〉 and |62S1/2,F = 1,m = 1〉 (note the
different choice in Refs. [3,18]). The corresponding dipole
matrix elements are denoted by dij = 〈j |d̂|i〉, where |i〉 and
|j 〉 are the wave functions of the different states.

The basic idea is to initially prepare ions 1 and 2 in the
states

|ψ (1)(0)〉 = |62P1/2,F = 1,m = 0〉,
(2.1)

|ψ (2)(0)〉 = |62S1/2, F = 1,m = 0〉,
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FIG. 1. (Color online) Scheme of the setup, including the posts-
election procedure: Two 171Yb+ ions are trapped at the foci of two
parabolic mirrors. Entanglement between the two ions is mediated by
a circularly polarized photon (σ ) emitted by ion 1 and absorbed by
ion 2. Successful entanglement is probed by the dispersive interaction
of weak linearly polarized coherent states (π ) with the ions. Only if
an ion resides in one of the desired entangled states, a phase shift
is imprinted onto the coherent state. Probe pulses are coupled into
the parabolic mirrors by means of beam splitters. For simplicity, the
coherent pulses used for dispersive state detection are indicated for
only one of the two ions.

and use the time evolution to generate an entangled state. For
that, we notice that ion 1 can decay into three different states:
|62S1/2,F = 1,m = −1〉, emitting a right-circularly polarized
(σ+) photon, |62S1/2,F = 1,m = 1〉, emitting a left-circularly
polarized (σ−) photon, and |62S1/2,F = 0,m = 0〉, emitting
a linearly polarized (π ) photon. Because we do not know
which of the three mentioned processes actually take place,
the complete state of the system is a linear superposition of the
three corresponding probability amplitudes. As a consequence,
ion 1 and the radiation field get entangled.

The geometry of the setup ensures that the photon wave
packet generated by the spontaneous decay of ion 1 propagates
to the focus of the second parabola, where it may excite ion 2.
After the absorption, the second ion is in the state |62P1/2,F =
1,m = 1〉, if it absorbs a σ+-polarized photon, and in the state
|62P1/2,F = 1,m = −1〉, if it absorbs a σ−-polarized photon.
These absorption processes map the field state onto the state
of the second ion and thereby generate entangled matter states.

The ion 2 being in an excited state (in the 62P1/2, F =
1 manifold) is affected by spontaneous decay. So, we have
to perform a state transfer from the manifold 62P1/2 to the
manifold 62S1/2 that is radiatively stable. One might think of

FIG. 2. (Color online) Hyperfine level scheme of a 171Yb+ ion:
The states of the logical qubit, depicted with lighter colors, are defined
by the electronic levels |62S1/2,F = 1,m = −1〉 and |62S1/2,F =
1,m = 1〉.

using a single π pulse, but this is not a proper solution because
the photon wave packet radiated by ion 1 has a certain temporal
width, which yields a probabilistic determination for the time
when the photon is absorbed by ion 2. If ion 2 is still in the
ground state when we apply the π pulse, the pulse does not
have the desired effect. If we wait a certain time to make sure
that the absorption has already taken place before applying the
π pulse, it is also likely that the spontaneous decay process
back to the 62S1/2 manifold may have already occurred. We
remind the reader that unit excitation probability can only be
achieved with a time-reversed single-photon wave packet [19].

We suggest using instead the spontaneous decay it-
self. To that end, we have to take into account the dif-
ferent decay channels. For example, consider that ion 2
is in the state |62P1/2,F = 1,m = 1〉: it can decay into
the states |62S1/2,F = 1,m = 0〉, |62S1/2,F = 0,m = 0〉, and
|62S1/2,F = 1,m = 1〉. But only the last process generates
entanglement. In a similar way, one can treat the case that ion
2 is in the state |62P1/2,F = 1,m = −1〉.

To discard the undesired decay processes, we have to
perform a postselection. Since only in case of successful
entanglement generation both ions end up in the qubit state,
by probing the occupation of the qubit states we discard
the undesired decay processes. This can be performed with
negligible loss of entanglement by using dispersive state
detection. It suffices to couple weak off-resonant coherent
pulses to the π transitions from S1/2,F = 1,m = ±1 to
P1/2,F = 1,m = ±1: population is then detected by the phase
shifts imprinted onto the coherent states. This procedure allows
us to check the population of the qubit states while preserving
the possible linear superpositions and thus does not disturb the
entangled state.

Furthermore, this postselection also detects photon losses,
so that the scheme is loss tolerant. This is due to the fact
that upon photon loss ion 2 remains in |S1/2,F = 1,m = 0〉
and postselection is probed on π transitions, which are for
|S1/2,F = 1,m = 0〉 either forbidden or detuned so strongly
that no phase shift of the probe pulse occurs. Of course, losses
reduce the success probability, but the fidelity after a successful
postselection is not affected. The low success probability can
be overcome with a high repetition rate. All the steps for
generating entangled states described above are depicted in
Fig. 3.

III. THEORETICAL ANALYSIS

A. System Hamiltonian

In the rotating-wave and dipole approximations, the Hamil-
tonian of the foregoing system can be written as

Ĥ = ĤA + ĤR + ĤAR, (3.1)

where

ĤA =
∑

i∈Se∪Sg

∑
j∈Se∪Sg

�(ωi + ωj ) |i(1)〉 〈i(1)| ⊗ |j (2)〉 〈j (2)|,

ĤR =
∑

r

�ωr â†
r âr , (3.2)

ĤAR = −
∑

α∈{1,2}
Ê+(xα) · d̂−

α + H. c.
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FIG. 3. (Color online) Sequence of the processes which are the building blocks for the remote entanglement preparation: The states of
the logical qubit, depicted with lighter colors, are defined by the electronic levels |62S1/2,F = 1,m = −1〉 and |62S1/2,F = 1,m = 1〉. Optical
transitions which are necessary for the entanglement generation are indicated by solid arrows, whereas the undesired transitions are indicated
by dashed arrows. The three columns correspond to three phases. The first column shows the possible decay channels of the first ion’s initially
prepared state |62P1/2,F = 1,m = 0〉; the second column shows the possible excitation procedures of the second ion which was initially
prepared in the state |62S1/2,F = 1,m = 0〉 followed by the spontaneous decay processes used to accomplish the state transfer from the 62P1/2

manifold to the radiatively stable 62S1/2 manifold; the last column shows the optical transitions used to perform the postselection procedure
based on hyperfine splitting and off-resonant matter-field interactions.

Here, ĤA describes the dynamics of the matter. We indicate by
Se (excited) the set of states in the manifold 62P1/2 and by Sg

(ground) the set of states in the manifold 62S1/2. The vectors
|i(1)〉, |j (2)〉 represent states of the ion 1 and ion 2 living in i,j ∈
Se ∪ Sg , with energies �ωi and �ωj , respectively. ĤR gives the
dynamics of the field, characterized by the annihilation (âr )
and creation (â†

r ) operators of the modes (of frequency ωr ) that
couple to the ions (they depend on the boundary conditions).
Finally, the interaction between the ions and the field is given
by ĤAR , wherein H.c. stands for the Hermitian conjugate and

Ê+(r) = −i
∑

r

√
�ωr

2ε0
gr (r) â†

r ,

(3.3)
d̂−

α =
∑
i∈Se

∑
j∈Sg

dij |j (α)〉 〈i(α)|,

x1 and x2 being the position of the first and second ion,
respectively. The orthonormal mode functions gr (r) are so-
lutions of the Helmholtz equation with the proper boundary
conditions, fulfilling, in addition, the transversality condition
∇ · gr (r) = 0.

B. Photon-path representation

Since only one excitation is available in our initial state, and
the Hamiltonian (3.3) preserves the number of excitations, the
state of the system at time t can be written as

|ψ(t)〉 =
∑
i∈Se

∑
j∈Sg

b
(1)
ij (t) |i(1)〉|j (2)〉|{0}〉

+
∑
i∈Sg

∑
j∈Se

b
(2)
ji (t) |i(1)〉|j (2)〉|{0}〉

+
∑

r

∑
i∈Sg

∑
i∈Sg

f
(r)
ij (t) |i(1)〉|j (2)〉|1r〉, (3.4)

where |{0}〉 is the vacuum state and |1r〉 = â
†
r |{0}〉 a single-

photon state of the radiation field. The amplitude b
(1)
ij (t)

describes the evolution when the field is in the vacuum, the
first ion is in one of the excited levels i ∈ Se, and the second
ion is in one of the ground levels j ∈ Sg , and an analogous

interpretation for b
(2)
ji (t). The amplitude f

(r)
ij (t) is related to the

evolution when there is an excitation in the field mode r and
both ions are in one of the ground electronic levels i,j ∈ Sg .

Now, we can solve the time-dependent Schrödinger equa-
tion, with the ansatz (3.4). If we assume that the field is initially
in a vacuum state and we use the Laplace transform, we get,
after eliminating the transforms of the probability amplitudes
for photonic excitations f̃

(r)
ij (s),

s b̃
(α)
ij (s) − b

(α)
ij (0) = −i(ωi + ωj ) b̃

(α)
ij (s)

+
∑

β∈{1,2}

∑
k∈Se

∑
	∈Sg

T
α;ij
β;k	 (s) b̃

(β)
k	 (s), (3.5)

where α ∈ {1,2} indexes the ions, i ∈ Se, j ∈ Sg , and

T
α;ij
β;k	 (s) =

{
δj	

∑
m∈Sg

A
β;km

α;im (s + iωm + iωj ), α = β,

A
β;kj
α;i	 (s + iωj + iω	), α �= β.

(3.6)

The function

A
α;ij
β;k	(s) =

∑
r

κ
α;ij
r

(
κ

β;k	
r

)∗

s + iωr

, (3.7)

with

κα;ij
r =

√
ωr

2ε0�
d†

ij · gr (xα), (3.8)

describes all possible photon emission and absorption pro-
cesses and encodes the whole geometry of the setup through
the modes gr (r). Its explicit calculation turns out to be a dif-
ficult task, although in Appendix A we sketch a semiclassical
method.

Equation (3.5) can be recast in a suggestive vectorial form

(s + iω + T ) b̃(s) = b(0), (3.9)

where the functions b̃
(a)
ij are arranged in a vector b̃ and iω is

a diagonal matrix which represents the term i(ω1 + ω2). The
contribution T can be split as

T = T0 + T1, (3.10)
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where T0 is equal to 3
2�, with � being the spontaneous

decay rate in free space, and T1 embodies exponentially
decaying terms of the form e−st . In principle, one could try to
perform an inverse Laplace transform to solve (3.9). However,
this involves finding the poles of the integrand, which is a
formidable task because T depends itself on s in a highly
nontrivial way.

To determine b̃(s) we use instead an alternative route based
on the Neumann expansion

(1 − K)−1 = 1 + K + K2 + · · · + Kn + · · · . (3.11)

If we take K := −T1(s + iω + 3
2�)−1 we get

b̃(s) =
∞∑

n=0

(s + iω + 3�/2)−1Knb(0), (3.12)

and each term in the series can be immediately Laplace
inverted. The price we pay is that we have to deal with an
infinite series.

In most circumstances, only a few terms contribute to
Eq. (3.12): since each summand is damped by an exponential
of the form e−st , and when applying the inverse Laplace
transform, each term leads to a Heaviside step function, i.e.,
a retardation, shifted into the positive direction by time t . If
we are looking at the evolution in a finite time interval, we
can neglect terms which are so far retarded that they do not
contribute.

The time interval of interest in our setup is of the order of
τ = (4f + d)/c, which is the typical travel time of a photon
to go from the first to the second ion and f being the focal
length of the mirrors and d the separation between foci. In
consequence, we can neglect all terms n > 1 in the sum; as
shown in Ref. [14], the higher-order terms are relevant when
the focal length is comparable with the wavelength, which
is not the case for our actual mirrors [10] (f =2.1 mm and
wavelength λ = 369 nm).

IV. RESULTS

If one uses the method of the preceding section in the time
interval t ∈ [0,2τ ), it turns out that only four of the atomic
probability amplitudes b

(α)
ij (α ∈ {1,2}) are of relevance:

b
(1)
62P1/2, F=1 m=0,62S1/2, F=1 m=0(t),

b
(2)
62P1/2, F=1 m=1,62S1/2, F=1 m=−1(t),

(4.1)
b

(2)
62P1/2, F=1 m=−1,62S1/2, F=1 m=1(t),

b
(2)
62P1/2, F=0 m=0,62S1/2, F=0 m=0(t).

If the hyperfine splitting is large in comparison to
the spontaneous decay rate �, as happens for 171Yb+

in the time window of interest, we can also neglect
b

(2)
62P1/2, F=0 m=0,62S1/2, F=0 m=0(t).

In Fig. 4 we plot the excitation probabilities of the two
ions for vanishing Zeeman splitting. As discussed in Sec. II,
the process generates an entangled state if one uses the
states |62P1/2, F = 1 m = 1〉 and |62P1/2, F = 1 m = −1〉
of the second ion as qubit. But these states do not form a

FIG. 4. (Color online) Time evolution of the excitation probabil-
ity P in the case of ion 1 (dashed line) and of ion 2 (solid line):
The interaction time t is plotted in units of the time τ = (4f + d)/c
which a photon needs to travel from the first ion to the second ion. f

is the focal length of the parabolas and d is the distance between the
foci. We set the spontaneous decay �τ = 3 and the Zeeman splitting
was neglected.

stable qubit; spontaneous decay transfers them to the ground
states |62S1/2, F = 1 m = 1〉 and |62S1/2, F = 1 m = −1〉
by emitting a single photon. By detecting whether or not both
ions are in one of the states |62S1/2, F = 1 m = ±1〉, we check
whether the entanglement generation was successful.

The postselection is equivalent to a von Neumann measure-
ment described by the projection operator

P̂ = |00〉 〈00| + |01〉 〈01| + |10〉 〈10| + |11〉 〈11| , (4.2)

where |q1q2〉 (q1,q2 ∈ {0,1}) correspond to the states of the
logical qubit. In addition, we also have to deal with the photon
emitted in the transfer from the excited to the ground states.
This photon, which carries information about the state of
the ions, might cause decoherence and therefore destroy the
entangled state generated by the time evolution. To certify
that this is not the case, we have to trace out the uncontrolled
photonic degrees of freedom, which amounts to knowing

ρ̂(t) = TrR[|ψ(t)〉〈ψ(t)|]. (4.3)

This density matrix is evaluated in Appendix C. In the limit
�(t − τ ) → ∞ with τ < t < 2τ , we have that

P̂ ρ̂(t)P̂ = 2

3(9 + δ2)
|01〉〈01| + 2

3(9 + δ2)
|10〉〈10|

+ 2

3[−9 + δ(−9i + 2δ)]
|01〉〈10|

+ 2

3[−9 + δ(9i + 2δ)]
|10〉〈01|. (4.4)

The parameter δ = (�1 − �2)/� characterizes the Zee-
man splitting of the energy levels: �1m is the splitting in
the 62P1/2, F = 1 manifold and �2m the splitting in the
62S1/2, F = 1 manifold. Note that the magnetic field has the
same orientation and strength for both ions.

For |δ| � 1, which is justified in our experimental
setup [10], we get

P̂ ρ̂(t)P̂ = 2
27 (|01〉 − |10〉)(〈01| − 〈10|), (4.5)
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which corresponds to a maximal entangled state with a success
probability 4/27 ≈ 15%. Of course, in a real experiment, one
has to take additional effects into account. As we explore in
the next section, it should be possible to achieve free-space
communication over several kilometers.

V. EXPERIMENTAL FEASIBILITY

A. Realistic parabolic mirrors

In a real setup, the parabolic mirror does not cover the full
solid angle. Actually, in our parabolic mirror [10] we have

� = {(ϕ,θ ) : ϕ ∈ (0,360◦),θ ∈ (20◦,135◦)} , (5.1)

whereby the angle 135◦ gives the front opening of the parabola
and the angle 20◦ accounts for the hole on the backside for
inserting the ion trap. This has to be taken into account in
integrations as in Eq. (A7).

Furthermore, our mirrors are made out of aluminum,
which has a finite electrical conductivity. The properties of
the material are well described by introducing a frequency-
dependent dielectric constant ε(ω). In our case ε(ω) =
−18.74 + i3.37 [20]. Now, we have to split the field in a
transverse electric (TE) and a magnetic (TM) part and apply
Fresnel equations to deal with the boundary conditions. But
these equations are different for the two basic polarizations
and give angle-dependent phase shifts and reflectivities, which
leads to a further reduction of the efficiency for entanglement
generation. One might think that this effect could also reduce
the fidelity of the entangled state but this is not the case. Such
a reduction could occur if a σ+(σ−) decay of the first ion could
drive a σ−(σ+) transition of the second ion, but due to the
symmetry this does not occur.

This is obvious from the following reasoning: After
collimation by the parabolic mirror, the polarization vector
of the electric field in the exit pupil of the parabolic mirror
reads [21]

σ± � (r2 − 4)(cos φ ± i sin φ)er

+ (r2 + 4)(sin φ ∓ i cos φ)eφ, (5.2)

with r the distance to the optical axis in units of the mirror’s
focal length, φ the azimuthal angle, and er and eφ the unit
vectors in radial and azimuthal direction, respectively. Upon
reflection on the parabolic surface, these vectors correspond to
TM and TE components. The influence of the metallic mirror
can be accounted for by additional complex prefactors which
depend on r only. It is straightforward to show that the overlap∫

σ̃± · σ �
∓ of this modified field σ̃± with the state of opposite

helicity vanishes.
We can sum all the above effects in a factor η which has to be

multiplied with the probability for a successful entanglement
creation to take the more realistic mirrors into account: η =
1 corresponds to perfectly conducting parabolic mirrors that
cover the full solid angle. In the specific case treated here, we
have η ≈ 0.47.

B. Free-space versus fiber-based transmission

Our scheme is designed to be compatible with free-space
communication by photonic qubits, for it does not rely on

the strong-coupling regime, but on intrinsic multimode effects
such as spontaneous emission.

There are other multimode schemes, such as the one in
Ref. [13], which might be adapted to free-space communi-
cation, but our proposal offers considerable advantages. The
scheme in Ref. [13] heavily relies on fibers as mode filters
to achieve almost perfect mode matching on a beam splitter
and, besides, the fidelity is mainly limited by the fact that the
postselection is performed on the radiation field and is sensitive
to dark counts of the detectors. In contrast, in our proposal,
postselection is performed on the ions, which circumvents
detector dark counts.

Of course, we have to take into account experimental
imperfections, mainly connected with the free-space transmis-
sion of the one-photon wave packet. This gives rise to beam
wandering and phase-front distortions due to atmospheric
turbulences [9]. In both cases, the intensity at the focus
is reduced [22–24], affecting the success probability. Once
the distance between the two parabolic mirrors becomes
large enough, beam broadening plays a crucial role, which
also results in a lower success probability. All these effects,
however, diminish the success probability but seem to leave
the fidelity rather untouched, which is of big importance for
practical applications.

One could also think about the transmission of the photon
from ion 1 to ion 2 via an optical fiber. This would circumvent
all problems related to atmospheric transmission, but, due to
their complex polarization pattern, cf. Eq. (5.2), the photons
collimated by the parabolic mirror have subunit overlap with a
fundamental Gaussian mode with circular polarization. Hence
the efficiency in coupling these photons to a single-mode
fiber is limited to a maximum of 49% [21]. Therefore, fiber
transmission alone would limit the success probability of our
entanglement scheme to 24%. Moreover, the strong attenuation
of ultraviolet radiation in standard optical fibers reduces the
success probability by orders of magnitude, even for distances
about 1 km. Finally, fibers are not well suited to perform
communication via polarization coding [7], as in our scheme.

C. Postselection

As advanced in Sec. II, the best way to perform postselec-
tion seems to probe qubit states directly by dispersive state de-
tection. This can be implemented by coupling weak coherent-
state pulses to the π transitions from S1/2,F = 1,m = ±1 to
P1/2,F = 1,m = ±1. Population in the S1/2,m = ±1 states is
then detected by the phase shifts imprinted onto the coherent
states. The detuning and pulse amplitudes can be chosen such
that one is far from saturating the respective transitions. For
example, choosing an on-resonance saturation parameter of
s0 = 0.01 and a detuning of two linewidths, the excitation
probability is about 10−5, while the phase of the coherent pulse
is shifted by 25◦, according to the formalism of Ref. [25].

One has to balance the amplitude and the detuning of
the incident coherent state carefully. Larger amplitudes and
smaller detunings result in lower error probabilities for detect-
ing the phase of the coherent state, but also enforce a stronger
excitation of the ion. The latter might lead to transferring the
ion out of the m = ±1 state during state detection, hindering
the phase shift of the coherent state and hence resulting in
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FIG. 5. (Color online) Error probability P in determining the
phase of a coherent pulse probing the π transitions from S1/2 to
P1/2 plotted over the beam-splitter reflectivity R. Solid line: ion 1,
dashed line: ion 2. In both cases, the relative detuning to resonance is
two linewidths, corresponding to a phase shift of 0.14π . The length
of the pulse is 104 upper-state lifetimes or 81 μs, respectively. The
amplitude of the coherent state incident onto the ion is chosen such
that the probability to excite the respective upper state is 5 × 10−4,
as marked by the thin dotted line. The calculation for ion 2 accounts
for the threshold reflectivity found for ion 1, which is marked by the
crossing of the solid and the dotted line.

erroneous postselection. Furthermore, the reflectivity of the
beam splitters in front of the parabolic mirrors not only affects
the success probability of our entangling scheme, but also
influences the error in measuring the phase of the coherent
state.

We compute the corresponding error probabilities accord-
ing to the Helstrom bound [26]. The a priori probabilities in
this calculation are obtained from all relevant branching ratios,
excitation probabilities, and reflectivities. The amplitude of the
coherent state is chosen such that the probability to excite the
ions with the probe pulse is 5 × 10−4. We also choose this value
as an upper bound for the acceptable error probability. This
is motivated by the fact that postselection schemes probing
the m = 0 states are limited in fidelity to values � 0.995 by
the branching ratio of the P1/2 state to the D3/2 state of 0.5%.
Keeping all errors in our postselection scheme an order of
magnitude below this value is reasonable and desirable.

The minimum error probability as a function of the
reflectivity of the beam splitters coupling the coherent states
into the parabolic mirrors is plotted in Fig. 5. First, we
determined the reflectivity for the beam splitter in front of
ion 1 that ensures being below the error threshold for a set of
suitable parameters, yielding R1 = 0.5. Next, this result was
used in the calculations for ion 2, leading to R2 = 0.22. From
these reflectivity values one would obtain a reduction of the
success probability for entanglement generation by 61%.

In practice the Helstrom bound will not be reached entirely,
with the actually obtainable error probability depending on
the method employed for measuring the phase of the probe
pulse. Nevertheless the error threshold marked in Fig. 5 can
be reached. This may be achieved at the cost of using beam
splitters with larger reflectivities and thus accepting lower
success probabilities.

To guarantee that the entangled state is not destroyed, we
have to ensure that no information about the state of the qubit

is extracted by our postselection. That condition is fulfilled if
the magnetic field fixing the quantization axis is sufficiently
small (i.e., the frequency shifts caused by the Zeeman effect
are small compared to the spontaneous decay rate), so that
the phase shift imprinted by an ion in the m = −1 Zeeman
state will be practically the same as for the other ion in the
m = +1 state. Therefore, probing the qubit dispersively will
not project the ions into one of these states and entanglement is
preserved. The parameter set in Fig. 5 yields a fidelity of 0.998
when postselecting. Even higher fidelities can be reached by
larger beam-splitter reflectivities (accompanied by decreasing
success probabilities), lower pulse amplitudes, or longer pulse
lengths. A lower pulse amplitude has to be compensated for
by larger beam-splitter reflectivities or longer pulse lengths.
The latter in turn affects the repetition rate.

D. Repetition rate

We finally estimate the achievable repetition rate. Typically,
an experimental cycle starts with Doppler-cooling the ion,
which takes about 200 μs for the ions treated here [27]. For
the trap frequencies inherent to the parabolic mirror trap,
500 kHz in radial direction and 1 MHz along the optical
axis, the average number of motional quanta according to the
Doppler limit is 20 and 10, respectively. This corresponds to
widths of the ion wave function in position space about 0.13
and 0.07 wavelengths. With these numbers we estimate that
the ions experience 78% of the focal intensity obtained by
diffraction-limited focusing. Applying only Doppler cooling
the success probability of our entanglement scheme would be
reduced accordingly. One could additionally apply resolved
side-band cooling, but the increase of the success rate is
obviously accompanied by a lower repetition rate due to
the elongated cooling procedure. Furthermore, as soon as
there is a broadened focus due to incompletely compensated
atmospheric aberrations, etc., the above spread of the ion’s
wave function is negligible.

After cooling, both ions have to be prepared in the state
S1/2,F = 0 which takes less than 1 μs [18]. Additionally,
ion 2 has to be flipped to the state S1/2,F = 1,m = 0. This
can be accomplished in 6 μs using microwaves [18] or in
100 ps applying Raman transitions [28]. Likewise, ion 1 is
brought to the P1/2,F = 1,m = 0 state by an optical π pulse
on a time scale smaller than a nanosecond. The postselection
requires around 80 μs, as was outlined in Sec. V C. The
photon traveling time from ion 1 to ion 2 is of the order of
10 μs for distances of a few kilometers. At least, the same
time has to be spent in communicating the postselection via
a classical communication channel. Thus, the time spent for
state preparation, attempting entanglement of the ions, and
postselection is on the order of 100 μs.

From the numbers given above, one would estimate a
repetition rate of 3.3 kHz if Doppler cooling is applied after
each entanglement attempt. One could increase the repetition
rate if Doppler cooling is performed regularly after a certain
number of entanglement trials. Since one entanglement trial
takes about 100 μs, a repetition rate in excess of 10 kHz
is not feasible, unless one accepts a reduced fidelity and/or
success probability. Assuming a realistic heating rate of 10
quanta per ms [29], the spread of the ion wave function would
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roughly double in radial direction within 8 ms. Accepting
the accompanying, continuously increasing loss of success
probability, one could enhance the repetition rate towards
9.8 kHz, which is close to the inverse of the duration of one
entanglement trial. Anyhow, in every experimental realization,
the repetition rate is dictated by the specific requirements on
fidelity, success probability, and inter-ion distance.

VI. CONCLUDING REMARKS

In summary, we have presented a scheme for preparing
maximally entangled states of two matter qubits with high
fidelity by using a free-space channel. The qubits are encoded
in the level structure of two distant 171Yb+ ions located at the
foci of two parabolic mirrors. The theoretical description of
the setup involves an extreme multimode scenario to model
the radiation field and a level structure far more complicated
than a simple two-level atom.

We have used a semiclassical photon-path representation to
deal with the boundary conditions at the two parabolic mirrors,
which leads to a intuitive representation of the quantum
dynamics of the two ions and the radiation field.

To obtain a more realistic description, we have focused on
the experimental details in Ref. [10] and on more realistic
boundary conditions. Our results confirm the feasibility of the
scheme to achieve reasonable success probabilities, which in
combination with a relatively high repetition rate leads to a
proper rate for preparing entangled matter qubits. Indeed, we
expect an entanglement rate of 54 per second under diffraction-
limited focusing.

One of the main issues is the fidelity of these states.
Our scheme is robust against imperfections arising in
the experimental implementation. All these effects reduce
the success probability of entanglement generation, but leave
the fidelity untouched.

We hope that our work is a step towards an experimental
realization of remote entangled matter qubits in free space,
which is a key building block for future quantum technologies.
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APPENDIX A: DETERMINATION OF THE
FUNCTIONS Aα;i j

β;k�

We describe here how to evaluate the functions A
α;ij
β;k	(s).

The main idea is to relate these functions with the Laplace
transform of the retarded Green’s functions of the vectorial
d’Alembert operator, which can be determined by using the
multidimensional JWKB approximation. This is valid when
the typical wavelength λ is much smaller compared to the
focal length of the cavities f . Besides, this will enable us to
clarify the retardation effects in A

α;ij
β;k	(s) due to the propagation

of a photon wave packet.

Let us introduce the functions

B
α;ij
β;k	(s) = − i

ε0�
d†

ij L [∇ × ∇ × G(xα,xβ,t)] dk	, (A1)

where L denotes the Laplace transform and G is the Green’s
function of the vectorial d’Alembert operator satisfying the
appropriate boundary conditions. We recall that G can be
expanded in terms of the mode functions as

G(x,x′,t) = c2
∑

r

gr (x) ⊗ gr (x′)
sin(ωrt)

ωr

�(t), (A2)

where ⊗ is the dyadic product and �(t) the Heaviside step
function. We can immediately show that

B
α;ij
β;k	(s) = 1

2ε0�

∑
r

d†
ij gr (xα) ⊗ gr (xβ)dk	

×
(

ωr

s + iωr

− ωr

s − iωr

)
. (A3)

If we compare with our definition of A
α;ij
β;k	(s), viz.

A
α;ij
β;k	(s) = 1

2ε0�

∑
r

ωr

s + iωr

d†
ij gr (xα) ⊗ gr (xβ) dk	, (A4)

we see that the two expressions just differ by

A
α;ij
β;k	(s) − B

α;ij
β;k	(s)

= 1

2ε0�

∑
r

ωr

s − iωr

d†
ij gr (xα) ⊗ gr (xβ) dk	. (A5)

This term can be neglected by using the same argument
employed to justify the rotating-wave approximation and,
therefore, to a good approximation, we can identify A

α;ij
β;k	(s)

with B
α;ij
β;k	(s).

Our next step is to get a manageable expression for these
functions. To achieve this we divide our cavity in three
regions:

(1) A sphere of radius R centered around the first ion. R

has to be chosen such that R � λ, but small when compared
with f and d.

(2) The whole volume, except the spheres centered around
the ions.

(3) A sphere of radius R centered around the second ion.
In regions 1 and 3, we use the free-space propagator, while

in region 2 we use a JWKB approximation for the Green’s
function (which is presented in Appendix B). After matching
the resulting expressions, we obtain

A
1;ij
1;k	(s) = A

2:ij
2;k	(s) = 1

2
d†

ij dk	

ω3

3πc3ε0�
,

(A6)

A
1;ij
2;k	(s) = A

2:ij
1;k	(s) = −d†

ij�reldkl

ω3

3πc3ε0�
e−τs,

where

�rel = 3

8π

∫
�

sin θ P⊥er2
dθ2dϕ2,

(A7)
P⊥er2

= 1 − er2 ⊗ er2 ,
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� denotes the solid angle around the ions covered by the
parabolic mirrors, and ω denotes the transition frequency of
the corresponding optical transitions.

APPENDIX B: THE MULTIDIMENSIONAL
JWKB METHOD

As heralded in Appendix A, we derive here semiclassical
approximations for the functions A

α;ij
β;k	 by using the multi-

dimensional JWKB method [17]. In region 1, we use the
free-space Green’s function

Gfree(x,x′,t) = 1

4π |x − x′|δ(t − |x − x′|/c), (B1)

and, since λ � R, we can use the approximation

∇ × ∇ × Gfree(x,x′,t)

�−δ′′(t − |x − x′|/c)

4πc2|x − x′|
(
1− x − x′

|x − x′| ⊗ x − x′

|x − x′|
)

. (B2)

If we introduce for each focus a system of spherical coordi-
nates, with the focus lying at the origin, we can represent this
Green’s function in region 1 as

∇ × ∇ × Gfree(x1,r1,θ1,ϕ1,t) = −δ′′(t − r1/c)

4πc2r1
P⊥er1

, (B3)

where P⊥er1
has been defined in Eq. (A7).

We use the multidimensional JWKB method to propagate
this expression to the second focus, that is, in region 2.
Therefore, we construct the rays from geometrical optics. The
result reads

∇ × ∇ × G(x1,r2,θ2,ϕ2,t)

= −δ′′(t − τ + r2/c)

4πc2r2
P⊥er2

{
1, (θ2,ϕ2) ∈ �,

0, (θ2,ϕ2) /∈ �.
(B4)

We have introduced the typical time τ = (4f + d)/c and we
have neglected contributions that are small when f,d � λ.
Of course, in Eq. (B4) we have taken into account that the
parabola covers only a finite solid angle �.

Next, we have to take care of region 3. Here, we use the
free-space propagator, because the JWKB method would cause
a singularity at the second focus. The mentioned propagator
for the electric field, which can be derived by using Gfree, is
given by

D(x2,t) = 1

4π

∫ π

0

∫ 2π

0
sin θ2

(
d

dr2
+ 1

c

d

dt

)
P⊥er2

× [r2D(r2,θ2,ϕ2,t − �t)] dθ2dϕ2, (B5)

where �t = r2/c. If we apply this expression to our problem
with the dyadic Green’s function we finally obtain

∇ × ∇ × G(x1,x2,t) = − 1

3c3π
δ′′′(t − τ ) �rel. (B6)

In the limiting case that the mirrors cover the full solid angle,
we obtain �rel = 1.

So far, we have neglected the fact that we could also
continue the described geometrical rays, which would add
further terms to our expression for the dyadic Green’s function.

But as long we are only interested in time intervals t ∈ [0,2τ )
we can neglected this continuation of the rays. Of course, the
relation

∇ × ∇ × G(x2,x1,t) = ∇ × ∇ × G(x1,x2,t) (B7)

holds true.
We have to calculate also ∇ × ∇ × G(x1,x1,t) and ∇ ×

∇ × G(x2,x2,t). We are retaining only the dominant contribu-
tion, which is associated with the free-space part of the Green’s
function. The problem is that this part leads to a divergent
expression that needs to be regularized. For simplicity, we
only take care of the problem ∇ × ∇ × Gfree(x1,r1,θ1,ϕ1,t)ez,
because the symmetry of the problem leads to the general
solution. So, we get

∇ × ∇ × Gfree(x1,r1,θ1,ϕ1,t)ez

= ∇ × ∇ ×
[
δ(t − r1/c)

4πr1

]
ez. (B8)

In this expression terms of the form δ(n)(t − r1/c)/rm
1 appear.

By applying a formal Taylor expansion, we get

δ(n)(t − r1/c)

rm
1

=
∞∑

k=0

δ(n+k)(t)

k!
rk−m

1 (−c)−k −−−→
r1→0

δ(n+m)(t)

m!
(−c)−m

+
m−1∑
k=0

δ(n+k)(t)

k!
rk−m

1 (−c)−k. (B9)

As one can see the sum in the second line contains singular
terms, which lead to the divergent Lamb shift appearing after
the dipole approximation. If we neglect those terms, we get

∇ × ∇ × Gfree(x1,x1,t)ez = δ′′′(t)
6πc3

ez, (B10)

which, given the symmetry of the problem, gives the general
solution

∇ × ∇ × Gfree(x1,x1,t) = δ′′′(t)
6πc3

. (B11)

From here, we immediately get

B
α;ij
α;k	(s) = −is3

6πc3ε0�
d†

ij dk	, (B12)

for α ∈ {1,2}. Since the time evolution of the different
probability amplitudes is dominated by rapid oscillations of
the form e−iωt , one can replace each s by −iω and we thus get
directly the result in Eq. (A6).

APPENDIX C: TRACING OUT THE PHOTONIC
DEGREES OF FREEDOM

To calculate the fidelity of the entangled state generated by
our scheme, we have to trace out the uncontrolled photonic
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degrees of freedom, which in general cause decoherence and
destroy entanglement. Our goal is to determine the reduced
density matrix

ρ̂(t) = TrR[|ψ(t)〉〈ψ(t)|]
= 〈{0}|ψ(t)〉〈ψ(t)|{0}〉 +

∑
r

〈1r |ψ(t)〉〈ψ(t)|1r〉. (C1)

The second line of this equation, which denotes ρ̂ground(t), is
of main interest, because the ions are affected by spontaneous
emission and both of them will be in the ground state after a
short while. To obtain an expression for ρ̂ground(t) we have to
evaluate an infinite sum. It is possible to rewrite this sum to
a finite sum by using the functions A

α;i,j
β,k,l(s). The result is the

following expression:

〈
i

(1)
1

∣∣〈i(2)
2

∣∣ρ̂ground(t)
∣∣j (1)

1

〉∣∣j (2)
2

〉
=

∫ t

0
e−i(t−t ′)(ωi1 +ωi2 −ωj1 −ωj2 )

⎛⎝ ∑
k,l∈Se

∑
α∈{1,2}

∑
β∈{1,2}

L−1[Aα;kiα
β;ljβ

(
s + iωi1 + iωi2

)̃
b

(α)
ki3−α

(s)
]
(t ′) b

(β)
lj3−β

[t ′]∗

+
∑

k,l∈Se

∑
α∈{1,2}

∑
β∈{1,2}

L−1
[
A

β;ljβ

α;kiα

(
s + iωj1 + iωj2

)̃
b

(β)
lj3−β

(s)
]
[t ′]∗ b

(α)
ki3−α

[t ′]

⎞⎠ dt ′. (C2)
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