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We investigate the quantum electrodynamics of a single two-level atom located at the focus of a parabolic cavity.
We first work out the modifications of the spontaneous emission induced by the presence of this boundary in the
optical regime, where the dipole and the rotating-wave approximations apply. Furthermore, the single-photon state
that leaves the cavity asymptotically is determined. The corresponding time-reversed single-photon quantum state
is capable of exciting the atom in this extreme multimode scenario with near-unit probability. Using semiclassical
methods, we derive a photon-path representation for the relevant transition amplitudes and show that it constitutes
a satisfactory approximation for a wide range of wavelengths.
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I. INTRODUCTION

The physics of strong light-matter coupling has been
attracting a great deal of attention over the last few years.
Since the early eighties, single atoms have been coupled
to optical and microwave cavities, leading to fundamental
demonstrations of cavity quantum electrodynamics (QED)
[1–3]. More recently, impressive developments in circuit QED
[4], involving superconducting qubits coupled to microwave
cavities, atom chips [5], and chip-based microresonators [6]
have opened the door to the ultrastrong coupling regime,
holding the promise to exploit light-matter interaction at
the single-photon level in scalable architectures. This is
of pivotal significance for future applications of quantum
technologies.

Thus far, in typical cavity QED configurations, the atomic
properties are considerably changed because the cavity bound-
aries modify the electromagnetic mode structure [7]. Actually,
the radiating atom can excite only one or a few radiation modes
[8]. In these cases, we can observe spontaneous emission
enhancement or inhibition into the modes that are resonant
or nonresonant with the cavity, respectively.

The extreme opposite regime of free-space QED, where a
continuum of modes is available, has also received notable
recognition [9], motivated by the hope of finding simpler
solutions for quantum communication over large distances.
In these circumstances, it is essential to increase the strength
of the light-matter interaction: strongly focused light improves
the coupling [10] and matching the incoming field with
the spatial atomic radiation mode improves focusing [11].
Moreover, tailoring the polarization pattern can be significant
for achieving near perfect coupling [12].

An intriguing intermediate instance between the
single-mode and the continuum limit is the case of a
large cavity [13–15], in which an atom couples to a large
but not continuous number of modes. A half cavity, i.e., a
cavity with one mirror, constitutes a good example of such
a situation [16,17]. It has been verified experimentally that
also in this regime one can witness a change of the density

of field modes near an atom, which manifests in a modified
spontaneous-emission rate [18,19].

A parabolic cavity is a remarkable example of a half cavity.
The parabolic shape ensures that light entering parallel to the
symmetry axis couples to an atom located at its focus in a
particularly efficient way, the light impinging on the atom
from all directions [20]. Conversely, such a parabola collects
the light emitted by an atom in the spontaneous decay in all
directions.

In a classical ray picture, valid for focal lengths of the
parabola large in comparison with the relevant wavelengths
of the radiation, only the small fraction of radiation emitted
by the atom along the symmetry axis in the direction of
the vertex of the parabola is back-reflected towards the
atom. Thus, it might seem that the atom scarcely feels
the presence of boundaries. However, this picture is largely
oversimplified: if the focal length becomes comparable to
the relevant wavelengths, diffraction effects become important
and significant modifications of the spontaneous emission can
be expected. Besides, the atom is not a point, but it scatters
photons within a region whose linear extension is of the order
of the wavelength. Thus, both diffraction and resonant photon
scattering by the atom are expected to modify the simple
short-wavelength picture substantially.

Prompted by the current interest in radiative effects in
half-open cavities, we look here into the QED of a two-level
atom located at the focus of a parabolic mirror. First, we find
the vector field modes that can couple efficiently to the atom
in the dipole approximation. In terms of them, we study the
ensuing modifications of the spontaneous emission as well as
the quantum statistical space-time properties of the generated
photon.

For that purpose, we develop a semiclassical path represen-
tation of probability amplitudes that interpret them as sums of
contributions associated with different photon paths inside the
parabolic cavity. Exploiting in a systematic way the separabil-
ity of the Helmholtz equation in parabolic coordinates, such
a representation provides an adequate quantitative description
of the spontaneous emission, not only in the short-wavelength
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limit, but also in the regime of wavelengths comparable or
even smaller than the focal length of the cavity.

The plan of this paper is as follows. In Sec. II the basic
model and the approximations involved are summarized. The
dynamics of the spontaneous decay process is described in
Sec. III: the decay rate and its dependence on the focal length
is discussed in Sec. III A, while the subsequent subsection
explores the conditions under which the spontaneous emission
can be described by an exponential decay and the modifications
that occur due to the presence of the cavity. Finally, in Sec. IV
characteristic properties of the spontaneously generated one-
photon quantum state are discussed.

II. SETTING THE MODEL

A. Atom-field interaction in a parabolic mirror

We consider an atom situated at the focus x0 of an axially
symmetric parabolic cavity, as sketched in Fig. 1. We take
the atom initially prepared in an excited electronic state, say
|e〉, that decays to the ground state |g〉 via an allowed dipole
transition. In the Schrödinger picture, we can model this atom
by a two-level system with the Hamiltonian

ĤA = Ee|e〉〈e| + Eg|g〉〈g| . (2.1)

The free evolution of the quantized radiation field inside
this cavity is described by

ĤF =
∑

n

∫
dωh̄ωâ†

ω,nâω,n , (2.2)

which has to include all the modes which couple quasireso-
nantly to the atom. These modes (whose explicit form will
be determined in the next subsection) are labeled by their
continuous frequencies ω and by a discrete parameter n that
incorporates the boundary effects. In Eq. (2.2), â

†
ω,n and âω,n

are the creation and destruction operators of the corresponding
modes, respectively.

We recall that, in the Schrödinger picture, the operators of
the electric field Ê(x) and of the magnetic field B̂(x) of these

F

20 mm

FIG. 1. (Color online) Schematic representation of the parabolic
cavity: the two-level atom is situated at the focus F (which is taken as
x0 = 0). In parabolic coordinates the boundary of this cavity is given
by the equation η = 2f . We also include a picture of the real mirror
in the Erlangen experiment, with focal length of f = 2.1 mm and a
front opening of 20 mm in diameter.

modes are given by

Ê(x) = i

√
h̄ω

2ε0

∑
n

∫ ∞

0
dω[gω,n(x) âω,n − H. c.] ,

(2.3)

B̂(x) =
√

h̄ω

2ε0

∑
n

∫ ∞

0
dω[∇ × gω,n(x) âω,n + H. c.] ,

with H. c. denoting the Hermitian conjugate operators. The
orthonormal mode functions gω,n(x) fulfill the transversality
condition ∇ · gω,n(x) = 0 and they are solutions of the vecto-
rial Helmholtz equation(

∇2 + ω2

c2

)
gω,n(x) = 0 , (2.4)

with c the speed of light in vacuum. This equation has to be
interpreted in the sense that it applies to each Cartesian com-
ponent of the mode function separately. The orthonormality
condition reads∫

R3
d3x g∗

ω,n(x) · gω′,n′ (x) = δnn′δ(ω − ω′) . (2.5)

In the dipole approximation, the atom-field interaction is de-
scribed by −d̂ · Ê(x0), with d̂ being the atomic dipole operator.
In the optical range, where the rotating-wave approximation is
valid, this coupling reduces to

ĤAF = −i

√
h̄ω

2ε0

∑
n

∫
dω[d · gω,n(x0) âω,n |e〉〈g| + H. c.] ,

(2.6)

where d = 〈e|d̂|g〉 is the atomic-dipole matrix element be-
tween the excited |e〉 and the ground state |g〉.

To assess the dynamics of the spontaneous emission, one
has to solve the time-dependent Schrödinger equation with the
Hamiltonian

Ĥ = ĤA + ĤF + ĤAF (2.7)

and the initial condition that at time t0 the state of the atom-field
system is

|ψ(t0)〉 = |e〉 ⊗ |0〉 , (2.8)

|0〉 being the ground (vacuum) state of the free electromagnetic
field.

B. Normal modes and quantization

We assume the two-level atom located at the focus of the
parabolic cavity (which we take as x0 = 0), with its transition
dipole matrix element d oriented along the symmetry axis
of the parabola, i.e., d = de3 for this is the case in the
experimental setup in our laboratory [21]. As a result, this
atom couples exclusively to those modes whose electric field
at the focus is oriented along the symmetry axis. For distances
close to the atom (|x − x0|ω/c � 1), these mode functions are
not modified by the boundary conditions and are of the same
form as in free space, i.e.,

gω,n(x) → ∇ × Cρeϕ = 2Ce3 , (2.9)
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where C is a normalization constant and we have used cylin-
drical coordinates (ρ,ϕ,z). The vector eϕ = cos ϕe2 − sin ϕe1

denotes the unit tangent vector in the angular direction ϕ.
Far away from the atom, however, these modes are altered

by the presence of the parabola. Transversality can be ensured
by imposing

gω,n(x) = ∇ × Gω,n(x) , (2.10)

so that G(x) = f (x,y)eϕ is also a solution of the Helmholtz
equation.

The separability of that equation in parabolic coordinates,
suggests the ansatz (see the Appendix)

Gω,n(x) = 1√
2πωNω,n

χω,n(ξ )√
ξ

χω,n(η)√
η

eϕ , (2.11)

provided the regular functions χω,n(ξ ) and χω,n(η) fulfill(
d2

dξ 2
+ ω2

4c2
− α

ξ

)
χω,n(ξ ) = 0 ,

(2.12)(
d2

dη2
+ ω2

4c2
+ α

η

)
χω,n(η) = 0 .

For each frequency ω, the possible values αn of the separation
constant −∞ < α < ∞ have to be determined by the bound-
ary conditions at the surface of the parabola. The frequency-
normalized solutions of Eqs. (2.12) can be expressed in terms
of the Coulomb functions FL(μ,ρ) [22]

χω,n(ξ ) =
√

4

πk
F0(αn/k,kξ/2) ,

(2.13)

χω,n(η) =
√

4

πk
F0(−αn/k,kη/2) ,

with k := ω/c. In lieu of this procedure, one could also find
Gω,n(x) from the general solution of the scalar Helmholtz
equation in parabolic coordinates worked out in Ref. [23] by
imposing the Coulomb gauge condition and the appropriate
boundary condition at a later stage. However, in general such
an approach may lead to formidable mathematical problems.

In these coordinates, the parabola of focal length f is
given by the equation η = 2f , so the normalization factor
in Eq. (2.11) reads

Nω,n =
∫ 2f

0
dη

χ2
ω,n(η)

η
, (2.14)

and has been chosen in such a way that the mode function
gω,n(x) satisfies the condition (2.5).

The quantization of the separation constant α is determined
by the boundary conditions at the surface of the parabola.
To simplify the details as much as possible, we take a
perfect metallic mirror with no losses and reflection coefficient
r = −1 (we neglect any dependence of r on the angle of
incidence or on the wavelength). This corresponds to imposing
the tangential components of the electric field and the normal
component of the magnetic field to vanish, which is warranted
whenever

dχω,n

dη

∣∣∣∣
η=2f

= 0 , (2.15)

wherefrom the permitted values αn can be determined for each
possible frequency ω and for n ∈ N.

In the semiclassical limit, χ2
ω,n(η) is a rapidly oscillating

function over the range of integration in Eq. (2.14). The
quantization condition can be encoded in an eikonal func-
tion S(ω,α) = π [n(ω,α) + 1/2] and the normalization factor
fulfills the characteristic relation

Nω,n = 2
∂n

∂α
(ω,αn) , (2.16)

which establishes an important relation between the separation
constant α and the quantization number n. We underline that
for the setup in our laboratory in Erlangen, where f = 2.1 mm
and a wavelength of 369 nm is used, this semiclassical limit is
well satisfied.

III. QED EFFECTS AT THE FOCUS OF A PARABOLIC
MIRROR

In this section, we first discuss the dependence of the
spontaneous decay rate �(ω0) on the focal length f of the
parabola in the framework of a time-dependent perturbation
theory.

The second subsection is devoted to an investigation of
the dynamics of the spontaneous emission. In particular, we
demonstrate that for moderate focal lengths the spontaneous
decay is exponential, whereas, if the focal length is large
enough so that subsequent reflections of the photon at the
parabola can be distinguished in space-time, this exponential
decay is appreciably modified.

For the quantitative analysis of this latter phenomenon a
photonic semiclassical path representation is developed. In the
spirit of the path integral approach [24], it resolves the proba-
bility amplitudes of interest into contributions corresponding
to all possible photon paths and their multiple reflections at the
parabolic mirror. This picture also sheds light onto the validity
of the pole approximation [25].

A. The spontaneous decay rate

The spontaneous decay rate characterizes the basic aspects
of the spontaneous emission of a photon of frequency ω0 =
(Ee − Eg)/h̄. In the dipole approximation and in the lowest
order of time-dependent perturbation theory [26], it is given
by

�(ω0) = 2π

h̄2

√
h̄ω0

2ε0

∑
n

∣∣d · gω0,n(x0)
∣∣2

. (3.1)

Using the mode functions gω,n(x) we obtain for our case

�(ω0) = �s(ω0)
6

πk0

∑
n

1

Nω0,n

(
παn(ω0)/k0

sinh[παn(ω0)/k0]

)2

,

(3.2)

with k0 = ω0/c and

�s(ω0) = |d|2ω3
0

3πε0h̄c3
(3.3)

is the free-space spontaneous decay rate. Equation (3.2)
conveys all the modifications in the spontaneous emission
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brought about by the parabolic mirror. As we can see, it
involves a sum over all the quantized separation constants
αn(ω0), which makes its explicit evaluation difficult, except if
only a few values of the separation constants αn(ω0) contribute
dominantly to the summation.

Alternatively, we can rewrite Eq. (3.2) making use of the
semiclassical relation (2.16) and of the Poisson summation
formula [27] as

�(ω0) = �s(ω0)
∞∑

M=−∞

3

π2

∫ ∞

−∞
dx

x2

sinh2 x

× exp[i2πMn(ω0,x)] , (3.4)

where x := παn(ω0)/k0. This form is particularly convenient
if the exponential functions involved in the integration over x

are rapidly oscillating functions. In these cases, the dominant
contribution of Eq. (3.4) comes from the term with M = 0,
which yields precisely 1. Consequently, if the contributions to
Eq. (3.4) resulting from M �= 0 are neglected, the spontaneous
decay rate �(ω0) reduces to its value in free space �s(ω0).

The effective range of integration in Eq. (3.4) is centered
around x = 0 with a width �x = O(1). For x = 0, the mode
function χω,0(η) and the normalization constant Nω,0 are
known exactly [22], namely,

χω,0(η) =
√

4

πk
sin(kη/2) ,

(3.5)

Nω,0 = 4

πk

∫ 2f

0
dη

sin2(kη/2)

η
.

In the semiclassical limit of large eikonals, i.e., kf  1,
Eq. (2.16) gives the normalization constant Nω,0 as

Nω,0 = 2π

k

∂n

∂x
(ω,x = 0) . (3.6)

Therefore, expanding n(ω,x) around x = 0, we obtain the
linear approximation to Eq. (3.6), i.e.,

n(ω,x) = kf

π
− 1

2
+ x

∂n

∂x
(ω,x = 0) , (3.7)

where

∂n

∂x
(ω,x = 0) = 2S (kf )

π2
, (3.8)

and the stability function

S (u) =
∫ u

0
dy

sin2 y

y
, (3.9)

which has the asymptotic behavior

S (u) −→
u1

1

2

[
ln(2u) + γ − sin 2u

2u

]
+ O(u−2),

S (u) −→
u�1

u2

2
+ O(u4), (3.10)

where γ = 0.5772156649015328606 is the Euler constant
[22]. The accuracy of this linear approximation can be
appreciated in Fig. 2, in which the scaled separation constant
α/k is depicted as a function of the scaled focal length kf . It
is apparent that, in range of values of α that contribute signifi-
cantly to the decay rate in Eq. (3.2), the linear approximation
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FIG. 2. (Color online) Quantization of the separation constant
αn(ω) as a function of the focal length f of the parabola: exact (dots)
and analytical (full curves) results for n = 0 and n = 1 (upper figure)
and for n = 10 (lower figure). It is apparent from the upper figure that
within the range of separation constants contributing significantly to
the spontaneous decay rate, i.e., αn(ω)/k ∈ (−1,1) (dashed horizontal
lines), the analytical approximation in Eq. (3.7) is satisfactory even
for the lowest possible values of the quantum number n.

is quite a satisfactory description, even in the range of small
quantum numbers n.

Moreover, by using the integral∫ ∞

−∞
dx

x2

sinh2 x
eiβx/π = π2 (β/2) coth(β/2) − 1

sinh2(β/2)
, (3.11)

we finally obtain in this linear approximation

�(ω0)

�s(ω0)
= 1 + 2

∞∑
M=1

3 cos[2M(u − π/2)]

× 2MS (u) coth[2MS (u)] − 1

sinh2[2MS (u)]

∣∣∣∣
u=k0f

. (3.12)

This result allows for a straightforward and elegant interpre-
tation. The first term on the right-hand side accounts for the
free-space spontaneous decay rate. The terms with M > 0 size
up the boundary effects and can be attributed to the repeated
reflections of the emitted photon at the parabolic mirror, with
M counting the number of reflections. This is noticeable from
the characteristic phase factors in Eq. (3.12), which appear in
integer multiples of the classical eikonal 2k0f characterizing
a photon traveling from the focus, along the symmetry axis, to
the mirror and back again.

With each of those closed orbits an additional phase shift
of π is attached, which is equivalent to a Maslov index 2 [28].
The corresponding amplitude is given by the integer multiple
M of the factor 2S (k0f ) that specifies the stability of the
classical trajectories.
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FIG. 3. (Color online) Scaled spontaneous decay rate
�(ω0)/�s(ω0) as a function of the scaled focal length k0f of
the parabola with k = ω0/c: exact results of Eq. (3.2) (dots),
semiclassical results (solid) of Eq. (3.12) (we also indicate the
free-space value as a horizontal line).

The dependence of �(ω0) on f is shown in Fig. 3. It
is clear that in the limit of large focal lengths (k0f  1),
�(ω0) eventually tends to its free-space value �s(ω0) in an
oscillatory manner. These oscillations evidence the presence
of the parabolic cavity and are satisfactorily described by the
M terms in Eq. (3.12).

It is also patent from Fig. 3 that this approximation
also yields remarkably accurate results even for smaller
focal lengths with k0f < 1, as long as n(ω0,x = 0) � 0.
Furthermore, we also recognize from Eq. (3.12) that �(ω0)
vanishes when k0f � 1. This reflects that in those cases the
cavity is so small that, at the frequency ω0, effectively only
the field mode with separation constant αn=0(ω0) is coupled
dominantly to the two-level dipole. From Fig. 2 one can
conclude that αn=0(ω0) tends to infinity for k0f � 1, so the
factor [παn(ω0)/k0]2/[sinh (παn(ω0)/k0)]2 in Eq. (3.2) tends
exponentially to zero. This situation is in extreme contrast to
the spontaneous photon emission in free space.

B. Dynamics of the spontaneous decay

We next investigate the dynamics of the spontaneous photon
emission in more detail, to elucidate under which conditions
it can be properly described by an exponential decay.

In the dipole and rotating-wave approximations, the time
evolution of the spontaneous decay is determined by the time-
dependent Schrödinger equation with the Hamiltonian (2.7)
and the initial condition (2.8). Taking advantage of the explicit
form of the semiclassical mode functions of Sec. II B, the
interaction Hamiltonian (2.6) can be rewritten in the equivalent

form

ĤAF =
∑

n

∫ ∞

0
dωc∗

ω,n |e〉〈g| âω,n + H. c. (3.13)

Here, the coupling constants are

cω,n = i

√
2πh̄c

ωNω,n

D(xn) , (3.14)

with xn = cπαn(ω)/ω, and

D(x) =
√

3

π2

x2

sinh2 x

h̄�s(ω)

2π
. (3.15)

In terms of these quantities, the free-space spontaneous decay
rate can also be recast as

�s(ω0) = 2π

h̄2

∫ ∞

0
dn|cω0,n|2 = 2π

h̄

∫ ∞

−∞
dx|D(x)|2 .

(3.16)

Consistently with the rotating-wave approximation, we have
that �s(ω0) � ω0.

For our initial conditions, we can write down

|ψ(t)〉 = Ae(t)|e〉|0〉 +
∑

n

∫ ∞

0
dωAω,n(t)|g〉â†

ω,n|0〉 ,

(3.17)
and the resulting Schrödinger equation can be solved with the
help of a Laplace transformation to get

A(±)
ω,n(t) = ± 1

2π

∫ ∞±i0

−∞±i0
d�e−i�t/h̄e−iEgt/h̄

cω,n

� − h̄ω

i

f (�)
,

(3.18)

A(±)
e (t) = ± 1

2π

∫ ∞±i0

−∞±i0
d�e−i�t/h̄e−iEgt/h̄

i

f (�)
,

with

f (�) = � − h̄ω0 − �(�) , (3.19)

and �(�) being the self-energy of the two-level system, viz.,

�(�) =
∑

n

∫ ∞

0
dω

|cω,n|2
� − h̄ω

. (3.20)

The ± signs refer to the retarded (+) and advanced (−)
solutions valid for sgn(t) = ±1. The notation ±i0 indicates
that the integration has to be performed in the complex �

plane parallel to the real axis with an infinitesimal positive (+)
or negative (−) imaginary offset.

1. The self-energy in the semiclassical approximation

To perform the � integrations in Eqs. (3.18), we have first to
determine the � dependence of the self-energy function f (�)
in the region around � ≈ h̄ω0. To achieve this, we redraft
Eq. (3.20) with the help of the Poisson summation formula as

�(�) = −
∞∑

M=−∞

∫ ∞

−∞
dx

×
∫ ∞

0
dω

∂n(ω,x)

∂x

|cωn|2
h̄ω − �

ei2πMn(ω,x) . (3.21)
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Thereby, we have used the smooth real-valued function n(ω,x)
given by Eq. (3.7). The imaginary part of n(ω,x) tends to plus
(minus) infinity for large ω with a positive (negative) imaginary
part, whence we obtain the semiclassical approximation

�±(�) = �(� ± i0) = h̄δω ∓ i
h̄�s(�/h̄)

2

×
[

1 + 6

π2

∞∑
M=1

∫ ∞

−∞
dx

x2

sinh2 x
e±i2πMn(�/h̄,x)

]
,

(3.22)

for real values of �. Herein, δω is the resonant contribution of
the Lamb shift of the two-level transition |g〉 → |e〉 originating
from the real part of the M = 0 contribution in Eq. (3.21).
Henceforth, we assume that this contribution is incorporated in
a renormalized transition frequency ω0 in which the complete
Lamb shift is taken into account in second-order perturbation
theory [29].

The contribution of a particular value of M � 1 in
Eq. (3.22) can be attributed to M reflections of a photon path at
the parabolic mirror; each photon path being associated with
a particular value of the separation constant x ∈ (−∞,∞).

By adopting the approximation (3.22), the � integration in
Eqs. (3.18) can be performed in two complementary ways. In
the dressed-state representation, this integration is evaluated
using residue calculus. Alternatively, this can be directly
performed with the help of a photon-path representation of
the integrand. In what follows, we scrutinize both options.

2. The dressed-state representation in the pole approximation

The poles of the integrands in Eq. (3.18) [which stem
from the zeros of f (�)] yield the complex-valued dressed
energies of the strongly-coupled atom-field system. The time
dependent quantum state (3.17) can thus be expressed as a sum
of contributions of all these dressed states.

In all these � integrations the dominant contributions are
expected to arise from values of � ≈ h̄ω0. According to
Eq. (3.22), the characteristic values of the self-energy �±(�)
are of the order of O(h̄�s(�/h̄)). Therefore, as long as the
self-energy is a slowly varying function of � around � ≈ h̄ω0,
i.e., whenever

h̄�s(ω0)

∣∣∣∣∂�±(�)

∂�

∣∣∣∣
�=h̄ω0

� 1 , (3.23)

we can approximate �±(�) by its value at � = h̄ω0. In this
case, the equation f (�) = 0 has only one solution, namely,

�0 = h̄ω0 + �±(h̄ω0) . (3.24)

In this pole approximation [25], the dressed-state representa-
tion (3.18) reads

A(±)
e (t) = e−i[Eg+h̄ω0+�(ω0)]t/h̄e−|t |�(ω0)/2 , (3.25)

for both the retarded (t ∈ [0,∞)) and advanced (t ∈ (−∞,0])
dynamics of the state |e〉. The quantity �(ω0) = Re[�±(h̄ω0)]
represents the resonant energy shift induced by the spon-
taneous emission. Equation (3.25) hints at an exponential
decay of the probability amplitude Ae(t), with a rate �(ω0).
This is a consequence of the rotating-wave approximation,
which involves an averaging over times scales of the order of

1/ω0. At very short times (say, of the order of 1/ω0 or less),
this pole approximation breaks down and deviations from an
exponential decay may occur [30].

From the linear estimate (3.7) we conclude that the semi-
classical approximation (3.22) is valid as long as k0f  1, so
that many modes are excited by the spontaneous emission. In
addition, f must also be small enough so that inequality (3.23)
is fulfilled. This latter condition implies f � c/�s(ω0) and
states that the focal length still has to be significantly smaller
than the typical length �l = c/�s(ω0) of the spontaneously
generated photonic wave packet in free space. Physically
speaking, this condition implies that the repeated reflections
of the photon wave packet at the parabola overlap significantly
in space-time, so that they cannot be resolved and thus
interfere. This interference gives rise to the oscillations of
the spontaneous decay rate �(ω0), which have already been
investigated in subsection III A.

3. The semiclassical photon-path representation

As soon as the smoothness condition (3.23) is no longer
fulfilled, the � integrations in Eqs. (3.18) have to be evaluated
by more sophisticated means. According to our previous
considerations, this happens if the focal length is so large
that f > c/�s(ω0). In this instance, the contributions from
the repeated reflections of the photon at the parabola are
separated sufficiently well in space-time, so that they can be
distinguished by appropriate measurements.

In this regime, a systematic photon-path representation
of the amplitude A(±)

e (t) is convenient not only from the
computational, but also from the physical point of view.
In the spirit of the path-integral approach, A(±)

e (t) can be
appropriately represented as a sum of amplitudes associated
with all photon paths which start and end at the position of
the two-level system and which are reflected repeatedly at the
cavity.

To obtain that representation, we start from the semiclassi-
cal approximation of the self-energy given in Eq. (3.22). After
some direct computations, one gets

1

f (� ± i0)
= 1

f0(� ± i0)
± i2π

1

f0(� ± i0)

∫ ∞

−∞
dx1

×
∫ ∞

−∞
dx2D(x1)Y ±(x1,x2)e±i2πn(�/h̄,x2)

×D(x2)
1

f0(� ± i0)
, (3.26)

where

f0(� ± i0) = � − h̄ω0 ± i
h̄�s(�/h̄)

2
,

Y ±(x1,x2) = −δ(x1 − x2)

+
∫ ∞

−∞
dx3Y

±(x1,x3)e±i2πn(�/h̄,x3)S±(x3,x2) ,

(3.27)

and the scattering S matrix given by

S±(x3,x2) = δ(x3 − x2) ∓ 2iπD(x3)
1

f0(� ± i0)
D(x2) .

(3.28)
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Let us set out the (generalized) basis vectors {|x〉} in the
Hilbert space of square-integrable functions of the separation
constant x ∈ R. Using Eq. (3.15) and defining the dipole vector
|D〉 by

|D〉 :=
∫ ∞

−∞
dxD(x)|x〉, 〈D | :=

∫ ∞

−∞
dxD(x)〈x|, (3.29)

Eq. (3.26) can be conveniently recast as

1

f (� ± i0)
= 1

f0(� ± i0)
∓ i2π

1

f0(� ± i0)

×
∞∑

M=0

〈D |(e±i2πn(�/h̄)S±)Me±i2πn(�/h̄)|D〉

× 1

f0(� ± i0)
, (3.30)

with the scattering operator

S± = 1 ∓ 2iπ |D〉 1

f0(� ± i0)
〈D | . (3.31)

The quantity

e±i2πn(�/h̄) =
∫ ∞

−∞
dx|x〉〈x|e±i2πn(�/h̄,x) (3.32)

encodes the phase accumulated by a photon during all closed
paths starting and ending at the focus.

For sufficiently large focal lengths f , for which the pole
approximation is not applicable but for which the linear
approximation still applies, A(±)

e (t) can be evaluated term by
term with the help of Eq. (3.30). The contributions with M � 2,
for example, are explicitly given by

A(±)
e (t) = e−i(Eg/h̄+ω0)t−|t |�s (ω0)/2 +

2∑
M=1

�(|t | − MT )e−i(Eg/h̄+ω0)t e±i2πMn(ω0,x=0)

×
M−1∑
k=0

(
M − 1

k

)
(−1)k+1

(k + 1)!
[(|t | − MT )�s(ω0)]k+1 e−(|t |−MT )�s (ω0)/2

×
(∫ ∞

−∞
dx

3x2

π2 sinh2 x
e±ix2π(M−k)(∂n/∂x)(ω0,x=0)

) (∫ ∞

−∞
dx

3x2

π2 sinh2 x
e±ix2π(∂n/∂x)(ω0,x=0)

)k

+ · · · . (3.33)

In this expression

T := 2πh̄
∂n(ω0,x = 0)

∂�
= 2f

c
(3.34)

is the classical period of the closed photon path with separation
constant x = 0, which starts at the focus of the parabola and
extends along the symmetry axis to the vertex and back again.

The various terms appearing in Eq. (3.33) allow again
for a sensible interpretation. In the retarded solution (+), for
example, the very first term on the right-hand side expresses
the spontaneous decay process of the excited state |e〉 in the
absence of the cavity and is governed by free-space decay rate
�s(ω0). The remaining terms with M � 1 describe the time
dependence of the probability amplitudes for the photon after
M reflections. The Mth contribution represents a process in
which a photon is emitted at time t = 0 and is reabsorbed
again at a time t � MT . This photon accumulates a phase
of 2πMn(ω0,x = 0), which is the eikonal associated with the
classical path with separation constant x = 0. Furthermore,
the photon can be scattered 0 � k � (M − 1) times during its
intermediate returns to the focus of the parabolic cavity.

The stability of the path with x = 0 is described by
the characteristic quantity ∂n/∂x(ω0,x = 0) [compare with
Eq. (3.9)]. If this path were stable, i.e., ∂n/∂x(ω0,x = 0) = 0,
the representation (3.33) would reduce to previous results for
a spherically symmetric cavity, in which all relevant photon
paths are stable and their contributions add up in phase [13].

As far as the time evolution of A(±)
e (t) is concerned,

two different regimes may be distinguished. If the classical
period is significantly smaller than the free-space decay, i.e.,

T = 2f/c � 1/�s(ω0), the probability amplitudes associated
with different photon bounces M � 1 overlap in time signif-
icantly and cannot be distinguished in the evolution. In this
case, A(±)

e (t) leads to an exponential decay with the modified
rate �(ω0), which has been discussed in detail in Eqs. (3.2)
and (3.12). In the opposite limit of long classical periods,
i.e., T = 2f/c  1/�s(ω0), the contributions associated with
different returns M � 1 are well separated in time and the
overall time evolution of A(±)

e (t) is modified significantly.
The time evolution of the probability |A(±)

e (t)|2 is depicted
in Fig. 4. For typical free-space decay rates of the order of
109 s−1, focal lengths significantly larger than 10 cm would
be required. Furthermore, in view of the stability properties
of the photon path with x = 0, already for small values of the
quantization number n the contributions of repeated returns
of the photon with M � 1 are suppressed significantly. So,
in view of current technological capabilities, the experimental
observation of the modified spontaneous decay as described
by Eq. (3.33) is challenging.

To sum up this discussion, with the present values in our
experimental setup (focal length f = 2.1 mm and wavelength
of 369 nm), one can reach the typical condition for strong cou-
pling. It follows then that there should be several phenomena
which can be observed in this limit, as reviewed in Ref. [31].

IV. PHOTON DYNAMICS

Although the mean values of the electric and magnetic field
strengths vanish for any one-photon state, their fluctuations
may be seen as stemming from an effective one-photon
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FIG. 4. (Color online) Time evolution of the probability
|A(±)

e (t)|2. The interaction time t is plotted in units of the classical
period T of the photon path connecting the two-level system at
the focus of the parabola with its vertex. The parameters are n =
k0f/π − 1/2 = 0, �s(ω0)T = 0.01 (dashed curve), and �s(ω0)T = 5
(full curve).

amplitude. In the long-time limit, this latter amplitude consists
of an asymptotic wave propagating along the symmetry
axis of the parabola with a characteristic transversal spatial
modulation and polarization pattern and of a spherically
outgoing wave whose amplitude vanishes far from the focus
of the parabola. The multiple reflections of the spontaneously
emitted photon manifest themselves in the transversal spatial
modulations.

An especially interesting quantity to ascertain the dy-
namics of this single-photon state is the normally-ordered
electric-field correlation function. Taking into account the time
evolution in Eq. (3.17), we can write [32]

〈ψ(t)| : Êk(x)Ê�(x) : |ψ(t)〉
= (ek · ∇ × F±(x,t))(e� · ∇ × F±∗(x′,t)) + c. c. , (4.1)

where ek and e� are Cartesian unit vectors and the effective
one-photon amplitude reads

F±(x,t) = −i
∑

n

∫ ∞

0
dω

√
h̄ω

2ε0
A±∗

ω.n(t)G∗
ω,n(x). (4.2)

According to Glauber’s theory [33], this (and analogous
normally-ordered higher-order correlation functions) can be
measured by optical photodetection.

In general, the one-photon amplitude (4.2) has to be
evaluated numerically. However, we can grasp its basic space-
time dependence, if we concentrate on the long-time limit
�(ω0)|t |  1, for which

A(±)
ω,n(t) = e−iωt e−iEgt/h̄

cω,n

h̄(ω − ω0) − �±(h̄ω)
, (4.3)

where we have used Eq. (3.18) and neglected exponentially
small terms. Provided the semiclassical relation (2.16) is
applicable, the one-photon amplitude (4.2) can be rewritten,
using the Poisson summation formula, as a sum of all possible
photon paths originating at the focus, i.e.,

F±(x,t) = −eϕ

∞∑
M=−∞

∫ ∞

0
dω

∫ ∞

−∞
dx

x

sinh x

√
3�s(ω)h̄3ω

16ε0cπ5

χω.n(ξ )√
ξ

χω,n(η)√
η

ei(ω+Eg/h̄)t ei2πMn(ω,x)

h̄(ω − ω0) − �∓(h̄ω)
. (4.4)

The dominant contribution to the integral over x comes from a small neighborhood around x = 0, so we can use the linear
approximation (3.7) for n(ω,x). Besides, in the radiation zone, i.e., far from the focus of the parabola, the mode functions χω,n(ξ )
and χω,n(η) can be replaced by their asymptotic expressions (see the Appendix). Finally, if the focal length f is not too large,
i.e., 2f �(ω0)/c � 1, the ω integration can be performed with the pole approximation. With all this in mind, the final result turns
out to be

F±(x,t) = ±i
eϕ√
ξη

√
3�s(ω0)h̄c

4ε0π5ω0
eiEgt/h̄

∑
M�0

e∓i2πMn(ω0,x=0)

×
{
�

(
|t | − ξ + η

2c
− MT

)
π2e±iω0[|t |−(ξ+η)/(2c)] e−�(ω0)[|t |−(ξ+η)/(2c)]/2

2 cosh2[− ln
√

ξ/η + 2MS (k0f )]

− �

(
|t | − ξ − η

2c
− MT

)
π2e±iω0[|t |−(ξ−η)/(2c)] e−�(ω0)[|t |−(ξ−η)/(2c)]/2

2 cosh2[− ln
√

ηξ/(2f )2 + 2(M − 1)S (k0f )]

}
. (4.5)

In the derivation of Eq. (4.5), we have used the relation

∫ ∞

−∞
dx

x

sinh x
eiβx/π = π2

2 cosh2(β/2)
, (4.6)

and we have neglected exponentially small terms. In the limit �(ω0)2f/c � 1, which we are considering here, the unit
step functions �(u) associated with different M values have almost identical support. For S (ω0f/c)  1, in Eq. (4.5) only
contributions with M = 0 for the first term in curly brackets and with M = 1 for the second term in curly brackets are significant
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so that the one-photon amplitude simplifies to

F±(x,t) = ±ieϕ

√
3�s(ω0)h̄c

16ε0πω0
eiEgt/h̄

(
�(|t | − r/c)e±iω0(|t |−r/c)e−�(ω0)(|t |−r/c)/2 ρ

r2

−�(|t | − z/c − T )e±iω0(|t |−z/c)e−�(ω0)(|t |−z/c)/2e∓i2πn(ω0,x=0) 2

f

ρ/(2f )

{1 + [ρ/(2f )]2}2

)
. (4.7)

This expression could also be obtained by evaluating the one-
photon amplitude directly with the help of multidimensional
Jeffreys-Wentzel-Kramers-Brillouin (JWKB) methods [28].
This indicates that the residual terms in Eq. (4.5) can be
attributed to diffraction phenomena and to photon scattering by
the atom. In particular, these contributions become important
for values of the stability function S (k0f ) of the order of
unity.

Starting from Eq. (4.5), it is straightforward to demonstrate
that in an asymptotic plane z → ∞, the photon transversal
energy density is∫ ∞

−f

dz
ε0

2
〈ψ(t)| : Ê2(x) + c2B̂2(x) : |ψ(t)〉 = h̄ω0I (y) ,

(4.8)

with y = [ρ/(2f )]2 and with the planar energy distribution

I (y) = �s(ω0)

�(ω0)

1

4πf 2

{
6

y

(1 + y)4

+12
∞∑

M=1

cos[2M(k0f − π/2)]
ye2Mv

(1 + y)2(e2Mv + y)2

}
,

(4.9)

with v = 2S (k0f ). With the help of Eq. (3.12) one can easily
check that ∫ 2π

0
dϕ

∫ ∞

0
dρρI (y) = 1 , (4.10)

consistent with the fact that, within the rotating-wave approx-
imation, the total energy of the one-photon state is h̄ω0.

According to Eq. (4.9), the terms with M � 1 contribute
the most when the quantization condition k0f = π (n + 1/2) is
fulfilled for n ∈ N. In Fig. 5 the transversal energy distribution
is depicted for the frequencies corresponding to the two lowest
integer quantization values n = 0 and n = 1. For n = 0, the
contributions of repeated reflections at the parabolic boundary
slightly modify the transversal energy distribution. However,
already for n = 1, it turns out that, due to the instability of the
photon path determined by the parameter v, the contributions
of the terms with M � 1 are negligible in the transverse energy
distribution.

We also point out that we have recently demonstrated
the experimental generation of temporal modes allowing for
an efficient coupling of single photons and single two-level
systems in free space using a deep parabolic mirror [34], which
confirms the theory developed here.

V. CONCLUDING REMARKS

We have explored the dynamics of the spontaneous emis-
sion by a two-level atom at the focus of a parabolic cavity.
Concentrating on the optical regime, we have determined the
time evolution of both the atom and the photon in the dipole
and rotating-wave approximations. We have investigated also
the advanced solution, for it approaches, at a particular time
(t = 0), a quantum state in which the atom is in its excited state
and the field in its ground (vacuum) state. Thus, it describes
a physical situation in which the atom is excited with near
certainty by a single photon in a multimode scenario.

By taking into account the vectorial character of the
electromagnetic field, we have demonstrated that the photon
exchange can be described in a physically transparent way with
the help of semiclassical methods. Thereby, the observables
of interest are represented as sums of probability amplitudes
associated with repeated reflections of the photon at the
boundary of the parabolic cavity and with its repeated resonant
scatterings by the atom. This semiclassical description does
not only yield a quantitatively adequate description of this
physical exchange in the limit of short wavelengths, but also
constitutes a satisfactory approximation in the opposite limit
of long wavelengths.

Bearing in mind the current experimental activities aiming
at the realization of quantum repeaters, half-open cavities, such
as the one discussed in this paper, offer interesting perspectives
for coupling an elementary material qubit almost perfectly to
the electromagnetic radiation field even in extreme multimode
scenarios. Experimental work in that direction is in progress
in our laboratory.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

ρ 2f

h n 1

n 0

FIG. 5. (Color online) Asymptotic transverse energy distribution
h(ρ/(2f )) = π (2f )2I (y)�(ω0)/�s(ω0) of the one-photon quantum
state for two different values of the quantization constant n = 0
(dashed line) and n = 1 (full line).
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APPENDIX

In this Appendix, details concerning the separation of
the vectorial Helmholtz equation in parabolic coordinates
and the frequency normalization of the mode functions are
summarized.

The parabolic coordinates (ξ,η,φ) are defined through

x =
√

ξη cos φ , y =
√

ξη sin φ , z = 1
2 (ξ − η) , (A1)

where 0 � ξ , η < ∞, and 0 � φ < 2π . The surfaces η =
constant are paraboloids of revolution about the positive
Z axis, having their focal point at the origin, while the surfaces
ξ = const are directed along the negative Z axis. The plane
z = 0 corresponds to the condition ξ = η.

In these coordinates, the Laplacian operator governing the
vectorial Helmholtz equation (2.4) is given by

∇2 = 4

ξ + η

(
∂

∂ξ
ξ

∂

∂ξ
+ ∂

∂η
η

∂

∂η

)
+ 1

ξη

∂2

∂φ2
. (A2)

This implies that mode functions of the form of Eq. (2.11)
fulfill Eqs. (2.12). According to Eq. (2.14) these mode func-
tions involve Coulomb functions of zero angular momentum
L, F0(μ,ρ). We have the asymptotic limit (for large ρ)

F0(μ,ρ) ∼ sin[�(μ,ρ)] , (A3)

with the Coulomb phase

�(μ,ρ) = ρ − μ ln(2ρ) + arg �(1 + iμ). (A4)

For |μ| � 1, the corresponding asymptotic expression reads

F0(μ,ρ) ∼ ρ

√
eπμπμ

sinh(πμ)
. (A5)

Note that in our case, ρ = ωη/(2c) and μ = −αc/ω.
If μ is of the order of unity or less, then, consis-

tent with the linear approximation (3.7), the argument

of the � function appearing in the Coulomb phase
(A4) can be approximated by arg �(1 + iμ) � −γμ,
with γ = 0.5772156649015328606 = limn→∞(

∑n
k=1 1/k −

ln n) denoting Euler’s constant [22].
To determine the frequency normalization factor Nω,n of

the vector mode functions gω,n(x) = ∇ × Gω,n(x), we start
from the differential identity

(∇ × A) · (∇ × A) = ∇ · [A × (∇ × A)]

+ A · [∇(∇ · A) − ∇2A], (A6)

which is valid for any nonsingular vector field A(x). Using
Gauss’s theorem together with the fact that the mode func-
tions fulfill the relations ∇ · Gω,n(x) = 0 and Gω,n(x) × ∇ ×
Gω,n(x)|∂V = 0 on the surface of the parabola ∂V , we obtain
the normalization condition∫

V

d3x[∇ × Gω,n(x)∗] · [∇ × Gω′,n′ (x)]

= ω′2

c2

∫
V

d3x Gω,n(x)∗ · Gω′,n′ (x) , (A7)

where V denotes the volume bounded by the parabola. The
integral on the right-hand side can be evaluated with the help
of the one-dimensional differential equations (2.12). In this
way, we obtain the relation for n = n′, for example,

1√
ω′ωNω′,nNω,n

W (χω′,n(ξ ),χω.n(ξ ))
∫ 2f

0
dη

χω′,n(η)χω,n(η)

η

= (ω′ − ω)
ω′ + ω

c2

∫
V

d3x Gω′,n(x)∗ · Gω,n(x) , (A8)

with the Wronskian-type quantity

W (χω′,n(ξ ),χω.n(ξ )) = lim
ξ→∞

[
χω′,n(ξ )

dχω,n

dξ
(ξ )

− χω,n(ξ )
dχω′,n

dξ
(ξ )

]
. (A9)

With the help of Eq. (A9), the normalization constant Nω,n can
be determined in such a way that the frequency normalization
condition of Eq. (2.5) is fulfilled. For this purpose we use the
following representation of the Dirac δ function

δ(ω′ − ω) = lim
ξ→∞

sin[(ω′ − ω)ξ ]

π (ω′ − ω)
. (A10)

This allows us to find the explicit form of the normalization
factor given in Eq. (2.14).

[1] Cavity Quantum Electrodynamics, edited by P. R. Berman
(Academic Press, San Diego, 1994).

[2] H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, Rep.
Prog. Phys. 69, 1325 (2006).

[3] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms,
Cavities and Photons (Oxford University Press, Oxford, 2006).

[4] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[5] Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger,
and J. Reichel, Nature (London) 450, 272 (2007); M. F. Riedel,
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[32] M. Stobińska, G. Alber, and G. Leuchs, Europhys. Lett. 86,

14007 (2009).
[33] R. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963);

P. L. Kelly and W. H. Kleiner, ibid. 136, A316 (1964);
H. Carmichael, Lecture Notes in Physics (Springer, Berlin,
1991), Vol. 18.

[34] A. Golla, B. Chalopin, M. Bader, I. Harder, K. Mantel,
R. Maiwald, N. Lindlein, M. Sondermann, and G. Leuchs, Eur.
Phys. J. D 66, 190 (2012).

023825-11

http://dx.doi.org/10.1103/PhysRev.174.1764
http://dx.doi.org/10.1103/PhysRevA.50.1830
http://dx.doi.org/10.1103/PhysRevA.56.2308
http://dx.doi.org/10.1103/PhysRevE.62.8677
http://dx.doi.org/10.1103/PhysRevA.77.013804
http://dx.doi.org/10.1103/PhysRevA.77.013804
http://dx.doi.org/10.1103/PhysRevA.78.012105
http://dx.doi.org/10.1103/PhysRevA.82.063812
http://dx.doi.org/10.1103/PhysRevLett.50.1903
http://dx.doi.org/10.1103/PhysRevLett.50.1903
http://dx.doi.org/10.1103/PhysRevA.35.5081
http://dx.doi.org/10.1103/PhysRevA.35.5081
http://dx.doi.org/10.1103/PhysRevLett.58.1320
http://dx.doi.org/10.1103/PhysRevLett.59.2955
http://dx.doi.org/10.1103/PhysRevLett.59.2955
http://dx.doi.org/10.1103/PhysRevLett.98.033601
http://dx.doi.org/10.1103/PhysRevLett.98.033601
http://dx.doi.org/10.1021/nl0717255
http://dx.doi.org/10.1103/PhysRevLett.101.180404
http://dx.doi.org/10.1103/PhysRevLett.101.180404
http://dx.doi.org/10.1038/nphys812
http://dx.doi.org/10.1038/nphys1096
http://dx.doi.org/10.1103/PhysRevLett.105.153604
http://dx.doi.org/10.1103/PhysRevA.83.063842
http://dx.doi.org/10.1103/PhysRevA.83.063842
http://dx.doi.org/10.1103/PhysRevA.63.023809
http://dx.doi.org/10.1103/PhysRevLett.100.123904
http://dx.doi.org/10.1103/PhysRevLett.100.123904
http://dx.doi.org/10.1103/PhysRevA.69.043813
http://dx.doi.org/10.1103/PhysRevA.69.043813
http://dx.doi.org/10.1364/OL.29.001968
http://dx.doi.org/10.1364/OL.29.001968
http://dx.doi.org/10.1007/s00340-007-2859-4
http://dx.doi.org/10.1007/s00340-007-2859-4
http://dx.doi.org/10.1103/PhysRevLett.100.093603
http://dx.doi.org/10.1103/PhysRevLett.100.093603
http://dx.doi.org/10.1016/S0030-4018(99)00729-4
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://arXiv.org/abs/1304.3761
http://dx.doi.org/10.1103/PhysRevA.46.R5338
http://dx.doi.org/10.1103/PhysRevA.67.013805
http://dx.doi.org/10.1103/PhysRevA.67.013805
http://dx.doi.org/10.1140/epjd/e2005-00018-8
http://dx.doi.org/10.1103/PhysRevA.66.023816
http://dx.doi.org/10.1142/S1230161212500230
http://dx.doi.org/10.1142/S1230161212500230
http://dx.doi.org/10.1038/35097017
http://dx.doi.org/10.1038/35097017
http://dx.doi.org/10.1016/j.optcom.2009.10.064
http://dx.doi.org/10.1016/j.optcom.2009.10.064
http://dx.doi.org/10.1016/j.optcom.2008.07.046
http://dx.doi.org/10.1016/j.optcom.2008.07.046
http://dx.doi.org/10.1103/PhysRevA.86.043431
http://dx.doi.org/10.1103/PhysRevA.86.043431
http://dx.doi.org/10.1007/BF01336768
http://dx.doi.org/10.1103/PhysRev.72.339
http://dx.doi.org/10.1007/BF02453244
http://dx.doi.org/10.1007/BF02453244
http://dx.doi.org/10.1088/0022-3700/10/5/019
http://dx.doi.org/10.1080/09500340.2012.716461
http://dx.doi.org/10.1209/0295-5075/86/14007
http://dx.doi.org/10.1209/0295-5075/86/14007
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRev.131.2766
http://dx.doi.org/10.1103/PhysRev.136.A316
http://dx.doi.org/10.1140/epjd/e2012-30293-y
http://dx.doi.org/10.1140/epjd/e2012-30293-y



