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We explore the possibilities of entangling two distant material qubits with the help of an optical radiation field
in the regime of strong quantum electrodynamical couplingwith almost resonant interaction. For this purpose
the optimum generalized field measurements are determined which are capable of preparing a two-qubit Bell

state by postselection with minimum error. It is demonstrated that in the strong-coupling regime some of the
recently found limitations of the nonresonant weak-coupling regime can be circumvented successfully due to
characteristic quantum electrodynamical quantum interference effects. In particular, in the absence of photon loss
it is possible to postselect two-qubit Bell states with fidelities close to unity by a proper choice of the relevant

interaction time. Even in the presence of photon loss this strong-coupling regime offers interesting perspectives
for creating spatially well-separated Bell pairs with high fidelities, high success probabilities, and high repetition
rates which are relevant for future realizations of quantum repeaters.
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I. INTRODUCTION

Entanglement is a primary resource for quantum technology
[1]. For applications in quantum communication, such as
quantum key distribution, for example, the generation of well-
controlled entanglement between spatially separated quantum
systems is of crucial importance. For this purpose quantum
repeaters [2] are needed, which counteract the destructive
influence of uncontrolled environmental interactions.

Since the early work of Briegel et al. [3,4] there have been
numerous theoretical proposals suggesting different physical
platforms for realizing quantum repeaters [2]. They are based
on the main idea of creating entanglement between quantum
systems over large distances with the help of a chain of
many uncorrelated pairs of quantum systems, each of which
is entangled over a significantly shorter distance only. By
performing appropriate Bell measurements on each of the
two qubits of adjacent entangled pairs, it is possible to swap
the already existing short-distance entanglement to the far-
separated outermost quantum systems of such a chain.

From the experimental point of view the realization of
a quantum repeater still constitutes a major technological
challenge. Essential for any such realization are two prereq-
uisites, namely, efficient physical mechanisms for generating
highly entangled pairs of quantum systems with high success
probabilities and high repetition rates and optimal ways for
implementing complete Bell measurements accurately. It has
been demonstrated theoretically [2] that the exchange of
photons provides a powerful means for entangling material
quantum systems at least over distances of moderate lengths,
say a few kilometers, thus suggesting practicable solutions for
the first prerequisite.

An interesting example in this respect is the recent theoret-
ical proposal of van Loock et al. [5-7] of a hybrid quantum re-
peater based on continuous variables. It suggests the exchange
of a single-mode coherent state of an optical radiation field
between two cavities for the purpose of entangling spatially
separated material qubits. It takes advantage of the facts that
experimentally these field states can be controlled well and that
they can also be produced with high repetition rates. The main
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idea of this proposal is to entangle this optical radiation field
with two initially uncorrelated material qubit systems quantum
electrodynamically and to create entanglement between these
two qubits by an appropriate measurement of the quantum
state of the radiation field which postselects a Bell state
of the two material qubits. In their original proposal van
Loock et al. [5,6] discuss cases in which the qubit systems
couple to the radiation field in a nonresonant way inside
two spatially separated cavities connected by an optical fiber
so that their quantum electrodynamical interaction is weak
and can be described perturbatively. Although offering a
transparent theoretical description, this perturbative regime
of the electromagnetic coupling also causes major theoretical
limitations as far as the achievable degree of entanglement
between the material qubits is concerned. They can be traced
back to the fact that the relevant field states which have to be
distinguished in order to postselect a Bell state of the material
qubit pair are not orthogonal. Thus, these field states cannot be
distinguished perfectly by any quantum measurement so that
the entanglement of the postselected material two-qubit state
is never perfect.

The basic ideas of this theoretical proposal offer interesting
perspectives for the physical realization of entanglement
sources. In view of these developments the natural question
arises of whether it is possible to circumvent the theoretical
limitations of the weak-coupling regime and to provide a
physical mechanism which is capable of producing entangled
two-qubit pairs not only with a high repetition rate and high
success probability but also with an arbitrarily high degree
of entanglement. For any future realization of a quantum
repeater such a mechanism for creating at least short- to
intermediate-distance entanglement between two qubits is
useful as it is expected to increase significantly the final
rates of producing long-distance entanglement by subsequent
entanglement swapping and quantum state purification. It is a
main aim of this paper to address this question.

In the following it is demonstrated that the strong-coupling
limit of the quantum electrodynamical interaction offers inter-
esting perspectives for photon-assisted entanglement creation
between material quantum systems. By coupling two distant
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material few-level systems almost resonantly to the quantized
radiation field, the performance of entanglement creation
processes, such as the one originally proposed by van Loock
et al. [5], can be improved significantly. In this way it
is possible to circumvent previously discussed theoretical
limitations which result from the restriction of the quantum
electrodynamical interaction to the weak-coupling limit. In
contrast, in the strong-coupling limit it is even possible to real-
ize physical situations in which two material quantum systems
can be postselected in a perfect Bell state by an appropriate
von Neumann measurement of the quantized radiation field.
However, for this purpose it is necessary to control the relevant
interaction times between the quantized radiation field and the
two material few-level systems appropriately. For sufficiently
intense radiation fields these interaction times can even be
chosen so short that effects of spontaneous emission of photons
into other modes of the radiation field can be neglected so that
a major decoherence mechanism can be eliminated and all
advantages of quantum interferences can be exploited.

In this paper we focus on the exploration of theoretical
limits governing entanglement creation between distant mate-
rial qubits by postselective field measurements in the resonant
quantum electrodynamical interaction regime. Experimental
realizations of the theoretical scenario discussed require two
material qubits each of which is placed inside an optical cavity.
The two cavities are connected by a quantum transmission
channel, such as an optical fiber, which allows the transmission
of the radiation field from one cavity to the other. Although
the experimental realization of an efficient coherent transfer of
photons between cavities still constitutes a major technological
challenge, methods for coping with these challenges have
been discussed previously [8—10]. In particular, recently devel-
oped sophisticated experimental techniques [11,12] constitute
important steps towards achieving almost perfect coherent
couplings between a single mode of the radiation field of a
Fabry-Pérot cavity and an optical fiber.

This paper is organized as follows. In Sec. II we introduce
the quantum electrodynamical model in which two elementary
material three-level systems interact with local cavity fields
which are coupled by an optical fiber. Furthermore, we
develop the general framework for describing the postselection
procedure which prepares distant material qubits in a Bell
state by an optimal generalized field measurement which
introduces minimum errors. Numerical results are presented
for characteristic quantities which quantify the success with
which a Bell pair is prepared, its fidelity, and the minimum
error with which this postselection can be achieved. Whereas in
Sec. Il we discuss cases in which the propagation of the optical
radiation field between the two qubits through an optical fiber
is ideal, in Sec. IIIl modifications originating from photon loss
during this propagation process are taken into account. In an
Appendix we describe the photonic quantum state transfer
between two distant optical cavities connected by a long optical
fiber, and we determine the conditions for perfect photonic
quantum state transfer.

II. PHOTON-ASSISTED ENTANGLEMENT CREATION

In this section we discuss a quantum electrodynamical
model in which two spatially well-separated elementary
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(material) three-level systems are entangled in a Ramsey-type
interaction scenario with single-mode photonic quantum states
inside cavities connected by a long optical fiber. In particular,
we explore the potential of producing high-fidelity material
Bell states with the help of postselection by minimum-
error field measurements which are capable of distinguishing
nonorthogonal photonic states optimally. Thereby, we exploit
the fact that perfect photonic quantum state transfer of
single-mode quantum states is possible between two optical
cavities connected by an optical fiber provided the cavity-
fiber couplings are engineered appropriately (compare with
the Appendix). Thus, generalizing a recent proposal of van
Loock et al. [5] to the regime of almost resonant strong
quantum electrodynamical coupling, we demonstrate that
this dynamical regime combined with optimal postselection
by field measurements offers interesting perspectives for
producing distant material Bell pairs with high fidelities and
with high success probabilities.

A. The quantum electrodynamical model

We consider two spatially separated optical cavities, say A
and B, which are connected by a long optical fiber (compare
with Fig. 1). We assume that the coupling between these
cavities and their connecting optical fiber is engineered in such
a way that it is possible to transfer a quantum state prepared
in a single mode of cavity A, say with frequency w, perfectly
to a single mode of cavity B with the same frequency. As
demonstrated in detail in the Appendix, this is possible if
these modes of cavities A and B are coupled resonantly to
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FIG. 1. Schematic representation of photon-assisted entangle-
ment creation: The field state inside cavity A interacts almost
resonantly for a short time T with the material quantum system inside
cavity A. The resulting photon state is transferred in a time 7 =
L/c > t to cavity B by propagation through a connecting optical
fiber. (c is the propagation speed in the optical fiber.) By appropriate
engineering of the cavity-fiber couplings this quantum-state transfer
can be achieved perfectly. After this quantum state transfer an
analogous second almost resonant short interaction takes place for
atime t. After this Ramsey-type interaction scenario the photon state
of cavity B is measured by a minimum-error two-valued positive
operator-valued measure (POVM measurement) with measurement
results m € {1,0}. The measurement result m = 1 prepares both
material quantum systems approximately in a Bell state |¥*) with
success probability P and with fidelity Fopy.
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the densely spaced modes of the long connecting optical fiber
and if the coupling constants between cavities and optical
fiber are engineered in such a way that a time reversal of the
decay process from cavity A to the optical fiber is possible.
In particular, this implies that the decay rates of the relevant
modes of both cavities have to be equal, i.e., 'y =T'p =T.
The total time T required for such a perfect photonic quantum
state transfer between both cavities is determined by the length
L of the long optical fiber and by the photonic propagation
speed c inside the fiber, i.e., T = L/c. Furthermore, this time
has to be large in comparison with the decay times of both
cavities so that the leakage both out of cavity A into the
fiber and from the fiber into cavity B can be completed, i.e.,
T > 2/T. Recent experimental advances constitute highly
promising steps towards realizing such links between cavities
and an optical fiber [11].

In generalization of the original quantum repeater proposal
of van Loock et al. [5] we consider two elementary (material)
three-level systems, such as trapped atoms or ions, with energy
eigenstates |0);, |1);, and |2); (i € {A,B}) and associated
energies Ey, Ei, and E, (compare with Fig. 1). One of them
(i =A) is located in cavity A and the other one (i = B)
in cavity B. The lowest-energy eigenstates |0); and |1); are
assumed to be hyperfine-split components of the ground state
with long radiative lifetimes so that spontaneous decay of these
states by photon emission can be neglected. In the following
these two states serve as the qubits which are going to be
entangled. The energy eigenstates |1); and |2); are assumed
to be of opposite parity and to be coupled almost resonantly
to the single mode of frequency w of cavity i € {A, B} by an
optical dipole transition. The coupling of the far-detuned third
level |0); to the radiation field is assumed to be negligible. It is
the main purpose of our subsequent discussion to demonstrate
the creation of entanglement between the two qubits formed
by the states |0); and |1); (i € {A,B}) with the help of almost
resonant quantum electrodynamical couplings between states
[1); and |2); (i € {A,B}) and their respective local cavity
fields, which are correlated by photonic quantum state transfer
through the connecting optical fiber.

For this purpose we consider a Ramsey-type interaction
scenario which starts from an initial state of the total matter-
field system of the form

10)a +1D)a 2 10)g + [1)p
V2 V2

|W(r=0) = ® la)a ®10).

ey

Thus, the two spatially well-separated material qubits are
prepared in a particular separable state and the single mode
of frequency w inside cavity A is prepared in a coherent
state |a). All other field modes of the radiation field involved
are prepared in the vacuum state. After this preparation in a first
step the single-mode radiation field inside cavity A interacts
with the three-level system A almost resonantly for a time ©
which is assumed to be small in comparison with the decay
time of this cavity mode, i.e., T < 1/I". We also assume that
this interaction time is so small that spontaneous emission of
photons from the excited state |2) 4 is negligible. Such a short
and almost resonant interaction between the material three-
level system and the field mode inside cavity A can be turned
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on and turned off by Stark switching techniques, for example,
by which the dipole transition between levels |1)4 and |2)4
is tuned with the help of an externally applied electric field.
After this almost instantaneous interaction (on the time scale
of the cavity decay) the resulting photonic quantum state inside
cavity A is strongly entangled with the three-level system A
and propagates to cavity B through the optical fiber. At time
T =L/c>?2/T > t the photonic quantum state produced
by the almost instantaneous interaction inside cavity A has
been transferred to the single mode of frequency w in cavity
B. In the second step of the Ramsey-type interaction scenario
at time 7 an analogous second almost resonant interaction
of the photon field with the second three-level system is
turned on and off for the short time 7 < 2/I" < T inside
cavity B. After these two almost instantaneous matter-field
interactions the resulting photon state is measured by photon
detectors.

In our subsequent discussion we are interested in cases
in which the interaction times 7 in cavities A and B are
significantly shorter than the decay time of the cavities and the
radiative lifetime of the excited states |2); (i € {A, B}) so that
effects of spontaneous decay from these levels during the inter-
action time can be neglected. In order to ensure that effects of
spontaneous decay from these excited states |2); (i € {A,B})
are negligible also during the long propagation of the photons
from cavity A to cavity B, one may transfer the excitations
of these levels coherently to radiatively stable hyperfine-split
ground-state components, say, |§) ; (i € {A,B}), with the help
of two (possibly classical) m pulses applied immediately
after the interaction of each three-level system with its local
single-mode photon field. Thus, by replacing in our subsequent
theoretical considerations the excited states |2); (i € {A,B})
and their energy E, by their corresponding radiatively stable
states |2); (i € {A,B}) with corresponding energy E,, effects
of spontaneous emission can be neglected during all stages of
this interaction scenario.

The dynamics of the short almost resonant interaction
between the three-level system j € {A,B} and the occupied
local field mode inside cavity j is described by the Hamiltonian

A; = B9 +hodla; +hga;|2) (1] +hg*al|1);2].  (2)
with the unperturbed Hamiltonian I:IJ(.Q) =D k=012
E¢|k) ;; (k| of the three-level system j. Thereby, the interaction
between the local optical field modes and the material systems
A and B is described in the dipole and rotating- wave
approximation. It is characterized by the coupling parameters
g; = —;(2d1);Viw/Qeo)g;(x;)/h  (j € {A.B}) which
involve the transition dipole moments ,-(2|£1| 1); and the
normalized mode functions of the single-mode radiation
field g;(x) in their respective cavities. In the following
we concentrate on cases with symmetric couplings, i.e.,
g = g4 = gp- The modulus of this characteristic coupling
strength defines the resonant vacuum Rabi frequency
Qvac = |g| [13]. The photonic annihilation (creation)
operators of the cavity modes A and B are denoted by a4 and
ap (&L and &L). with the corresponding Fock states |n) 4 and
In)p.

It is straightforward to determine the quantum state of the
two cavity modes and the two three-level systems attimer = T
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after the Ramsey-type interaction sequence described above.
If we assume that perfect quantum state transfer is achieved
between the two cavities coupled by the optical fiber(see the
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Appendix) the pure state |W(¢)) of both material three-level
systems and of the field mode inside cavity B is given
by

W (1)) = |gs() 1) al2) g™ ® + |g6(1))[2) 412) pe ™ ¥ + 110) 4|0) glore ™" ) e~ P + [ gy (1)) WF) g pe 10

+1a(0)(10)412) s~ + [2),410) g )

+ 1831 A1) pe™ " + [g4(1)[2)4l1) e~ 3)

with the Bell state |W) 5 = (|0)4]1)5 + |0)A|1)B)/«/§ involving the two distant qubits of systems A and B. The time-
dependent phases ®gy = 2Ept/h, ©1g = (Eg+ E)t/h+ At/2, Or9 = (Eog + Ex)t/h — At /2, dyy = (Eo + E| +hw)t/h +

Ar/2, o = 2E1l/h + A1, &, = (2E1 +ha))t/h + A1, &y
the interferences appearing in this Ramsey-type interaction

= (E| + Ex)t/h, and ®y = (E| + E» + hw)t/h characterize
scenario. The detuning from resonance is denoted by A :=

(E2 — E1)/h — w. The (unnormalized) pure field states |g;(¢)) (j =1,...,6) and lce™i®"y entering Eq. (3) are defined by

oo

e ) = ge—'alz/zwe?zjmmm
lg1(0)) = ge—'“'z/zj—%% (cos[Q(n)r] + i%(n) sin[Q(n)r]) e " n) g,
lg2(0) = — ge—'“'z/z J% ’fzﬁ% SIn[Q0n + 1)le ™ ) 5.
lga (1)) = ge"“'z/zj—;% (cos[Q(n)r] o sin[sz(n)r])ze—fw"wnm, )
lga(t)) = — ge—'“'zﬂ \/% ’éﬁ sin[Q(n + l)r]% (cos[Q(n)r] +i ) sin[Q(n)t]) e n) g,
lgs(t) = — ge—'“'zﬂ \/% iéﬁ Si“[Q(’;+ Dl (cos[Q(n + D]+ iﬁ Sin[Q(n + 1)z]> e Y g,
lge(?)) = — ge—'“'zﬂ \/% iz ﬁ sin[Q(n + 1)r]f2(n"—*/+T22)% sin[Q(n 4+ 2)t]le " |n) 5

with the normalized photon-number states |n)p (n € Np).
The parameter Q(n) := 1/ A2/4+ | g |* ndenotes the effective
Rabi frequency associated with the photon number n of the
optical radiation field in cavity B.

The quantum state of Eq. (3) yields a complete description
of the interaction between the material quantum systems A and
B and the optical radiation fields in the idealized case of perfect
quantum state transfer between cavities A and B mediated by
propagation through the connecting optical fiber. In particular,
it clearly exhibits the resulting entanglement between the ma-
terial systems A and B on the one hand and the radiation field
inside cavity B on the other hand. In the weak-coupling limit
of large detunings from resonance, this latter entanglement has
been used in the proposal by van Loock et al. [5] for creating
an entangled Bell state | W ™) , g by projecting out the field state
|gi1(¢)) by a generalized positive-operator-valued quantum
measurement [ 14—16] performed on the optical radiation field.
However, in the weak-coupling limit the field states |g;(¢))
(i =1,...,6) are not orthogonal so that the field state |g;(¢))
cannot be distinguished perfectly from the other field states.

This limits the achievable entanglement of the entangled state
of the two material qubits significantly. In our subsequent
section it will be demonstrated that in the strong-coupling
limit of almost resonant quantum electrodynamical coupling
these limitations can be circumvented and in certain dynamical
regimes even perfect Bell states |W'1) 45 can be prepared by
suitable quantum measurements performed on the optical field
inside cavity B.

B. Postselection of Bell states by minimum-error
field measurements

In this section we investigate to what extent the Ramsey-
type interaction scenario discussed in the previous section
can be optimized in order to prepare a maximally entangled
Bell state between the distant material quantum systems A
and B by an appropriate minimum-error POVM measurement
of the optical field in cavity B. This aspect is of particular
interest for future realizations of quantum repeaters which
require high-fidelity Bell pairs as a resource. It is demonstrated
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that in the ideal case of perfect state transfer of the optical
radiation field through the fiber from cavity A to system B
in the strong-coupling limit of almost resonant interaction
between the local cavity fields and the material three-level
systems high-fidelity Bell states of the material systems A and
B can be prepared provided the relevant interaction times t
are controlled appropriately.

Let us start from the pure quantum state |W(z)) of Eq. (3)
which describes the entanglement of the matter-field system
after the Ramsey-type interaction scenario with the single
occupied field mode inside cavity B. The resulting reduced
density operator of the field state pr(¢) in cavity B is obtained
by tracing out the material degrees of freedom, i.e.,

Pr(t) = Trap{|lYONVY DI} = po1 + (A —p)p2 (5)
with the field states

s lg1(0)){(g1(®)]
v

>

1 A .
Py = <Z|oee‘”‘”><ae_“”’| + 2(82(1)) (g2(1)]

6
+y Igj(t))(gj(t)|>/(1 - D) (6)

j=3

and with p = (g1(¢)|g:1(¢)) denoting the a priori probability of
the pure field state |g;(¢)). In general, the quantum states p,
and p, are not orthogonal so that they cannot be distinguished
by any quantum measurement perfectly [17-19].

Therefore, in order to optimize the postselection of a
perfectly entangled Bell state | W ™) 4 5 itis necessary to perform
a POVM measurement on the optical radiation field with two
possible measurement results m, say, m € {1,0}. The first
measurement result m = 1 indicates an optimal projection of
the field state pr(¢) onto the pure field state p; and the second
measurement result m = 0 indicates an optimal projection of
Or(t) onto the mixed field state g,. Let us denote the positive
operators associated with these two measurement results by
f"l >0 and 0 < To =1- Tl. (I denotes the unit operator
in the Hilbert space of the single-mode radiation field.) The
positive operator T} of this POVM {7}, 7} has to be determined
in such a way that for a given a priori probability p the error
probability

E = pTr{piTo) + (1 — p)Tr{p 11} (7)

is as small as possible. Diagonalizing the Hermitian operator
A= = pp1 — (1 — p)p, according to A= Z)\M)\ (A] the so-
lution of this optimization problem is given by the projection
operator [14-16]

T =) WA =1-T, ®)

A=0

which projects onto the non-negative spectral components of
the operator A. The corresponding minimal error probability
E in of the optimal POVM measurement defined by Eq. (8) is
determined by the trace norm distance between the two (un-
normalized) components pp; and (1 — p)p, of the quantum
state pp(t),i.e. [14,16],

Enin = 3[1 = lpp1 = (1 = p)al]. ®)
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The probability Pgj; with which this optimal POVM measure-
ment of the optical radiation field prepares the distant material
quantum systems A and B in the Bell state |W™) is thus given
by

Pgen = pTtealpi T1}. (10)

From Egs. (9) and (10) it is apparent that if the quantum
states ) and p, were orthogonal the positive operator 7} of the
POVM measurement would be a projection operator onto the
support of the state p; and the success probability Pge would
be given by p. In addition, the minimal error probability E\,
would vanish. However, the typical nonorthogonality of the
field states p; and p, complicates matters and causes unavoid-
able errors even if minimum-error POVM measurements are
performed.

With the optimal POVM measurement (T,To} as defined
by Eq. (8) we can associate a deterministic quantum operation
[20] with the Kraus operators {U 1\/?1 , UO\/I — f"l} which
allows us to determine the quantum state of the matter-field
system associated with the two measurement results m € {1,0}
of the optimal POVM. Thereby, the linear operators U; and Uy

are partial isometries between the ranges of \/TT and \/?0
and the Hilbert space of the optical radiation field. After
a successful POVM measurement the state of both material
quantum systems A and B is given by

Traietas{ W () (W ()| T1}
oap(t) = —. 11
P = V)T (b

Note that this quantum state of systems A and B is independent
of the transformation U;. Thus, the fidelity Fopt of an optimally
prepared Bell pair which is postselected by a measurement
result with value m = 1 (corresponding to the POVM operator
1) is given by

Fope = V(WH|pap@)|WH). (12)

In order to obtain some insight into the dynamical parameter
regimes in which this postselection procedure may yield
high-fidelity Bell pairs, let us concentrate on the practically im-
portant case of large mean photon numbers, i.e.,n = |« |2 > 1,
and on intermediate values of the interaction times 7 of the
optical radiation field with the quantum systems A and B so
that in Eq. (3) the photon-number-dependent Rabi frequencies
Q(n) can be linearized around the mean photon number 7.
This linearization is valid if the condition

e - Ll g
S8 QP

1]d*Q
‘ (n)

2

is fulfilled so that revival phenomena [13] can be neglected.
Thereby, An = |a| = +/7 denotes the photon-number uncer-

tamty of the coherent state |a) and Q = /A2/4 + |g|?n and

= |g|+/7 are the effective Rabi frequency and the resonant
Rabi frequency associated with the mean photon number
n. In this linearization the field states of Eq. (3) can be
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approximated by
1+A/2Q)
2V2

|g2> — _el(ﬂ%(|ae*lw[gl9>elwﬂ‘[

1-A/29Q)
W2

|g1) — |a€7iwtei9>eia)[-t + |a€7iwt€7i9>€7iwcr

. _iOy —i
_|ae twte 1 )e twcr)’

ON12 _ ON12 _ V12
ongio o LEAJODE iy gy L= AJODP 1= [4/C)]

14
8 8 4 ’ (14)

lg3) = lae

% R A e A A
— — _ezqo = ae—lwteZZG eZzwcr <l 4 _) _ ae—lwle—210 e—Zta)(r (1 _ _) _ ae—ta)t :i| ,
|g4) = 18s) o [I ) 75 | ) %ol | >gz
—=2

|g6> — ezi(p _02 (laefiwteZl‘@)eZier 4 |O{€7iwt€72i9)€72l'wrr _ 2|aefiwt))

withg = ¢'?|g|,0 = 531: /(2Qn) < 1,and with the modified effective Rabi frequency w, = Q[1 — 5(2) / (2Q°)]. This linearization
implies that the a priori probability p entering Eq. (5) can be approximated by

A? 1 A\ — — = 2
=—+|-—-(= 1+ cos2Qr)exp [ —[Qot /(QVR)] /2. 15)
p= 2t i () |1 el -G/ @vmy ) <
Furthermore, the overlaps between the coherent state |g;(¢)) and the states |oe’®’) and |g3(t)) constituting significant parts of the
quantum state p, reduce to
. 1 — — — A —
(e |g1(1)) = —=exp{ — [Qﬁr/(ﬂﬁ)]z/z} (cos(Qt) + iE sin(Qt)) ,

V2
_ [ @r/aVDr2 4@% iﬂr%)
(83()lg1(0) = e (6 V2 162
1 o~ 9RuT/QAVIP/2 <e—3iﬂr [1+A/QQP[1 — A/Q2Q)] i L+ A/QDIL A/(25)12>

1672 1672
@eavirs e L+ A/CDH1 - [A/QQ)P) _,.m[l—A/(zﬁ)]{l—m/@ﬁ)]z}) 6
+e (e 5/ +e Wi - (16

From Eq. (16) it is apparent that in the case of resonant
excitation, i.e., A =0, these overlaps vanish at interaction
times T = (7w + 2k71)/(2§0) (k € Ny). Furthermore, at these
particular interaction times also all other overlaps (g;(¢)|g:1(¢))
with j = 2,4,5,6 vanish. Thus, in this linearization approxi-
mation the quantum states p; and p, are orthogonal at these
interaction times so that they can be distinguished perfectly
by a von Neumann measurement described by the projection
operators {fl = ﬁl,f"o =I- Tl}. In this case the success
probability reduces to p = {1 — exp[—(Qt/+/7)?/2]}/4 and
approaches the value of p = 1/4 in the limit of sufficiently
large interaction times of the order of the inverse vacuum Rabi
frequency, i.e., T > NG /50 = 1/ Qy,c. In addition, the error
probability Ey, of this optimal von Neumann measurement
vanishes, and the fidelity Fyy of the prepared Bell state W)
equals unity.

This resonant behavior at these particular interaction times
is in marked contrast to the behavior at large detunings
|A/2] > |Qo| at which we obtain Q — |A/2| so that the
above-mentioned overlaps tend to the nonvanishing values

(e |g1)| = exp{—[2r/(QVDI/2}/v/2 and |{gs]g1)] =
exp{—[531’/(25\/%)]2/2}/(8\/5). As a result, in this weak-
coupling limit, it is only for extremely large interaction times,
ie., T > |A/§0|/Qvac > 1/ Qyac, that these overlaps become

small. However, at these interaction times, which are signifi-
cantly larger than the inverse vacuum Rabi frequency, typically
additional effects originating from spontaneous emission of
photons also have to be taken into account which have been
neglected in our analysis. Thus, apart from these extremely
large interaction times, in the weak-coupling limit it is never
possible to distinguish the relevant field states p; and B,
perfectly so that the preparation of perfect Bell states [¥™)
is impossible.

Physically speaking, these marked differences between
the strong- and the weak-coupling cases are due to the
characteristic dephasing phenomena which are also respon-
sible for the well-known collapse phenomena in the Jaynes-
Cummings-Paul model [13]. For the case of interaction times
7 characterized by the inequalities (13) these interference
phenomena are captured quantitatively by the various slightly
shifted coherent states entering Eq. (16). Although these
coherent states of the form |we™'®'e?%) with +k =0,1,2
are shifted in their phases only slightly by multiples of
the small amount 6 = 531/(25%) < 1, their overlaps are
given by

|<ae—iwle—ik9 |ae—iwte—ik’0>|

=exp{ — [(K — Qe /@VD]'/2). A7)
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This implies that for very small interaction times t or

large mean photon numbers 7, i.e., 531 / (ﬁﬁ)/Z < 1, the
coherent states entering Eq. (16) are almost identical. Thus,
in this limit the dynamics is well approximated by the
semiclassical limit, i.e., 7 — oo, in which the influence of
the single-mode radiation field can be approximated well by
a classical field and the influence of photon fluctuations is
negligible. However, for intermediate interaction times of the

order of ﬁ(z)r / (ﬁx/ﬁ )/2 > 1,the overlaps of the coherent states
entering Eq. (16) become small so that their interferences are
suppressed significantly. This suppression of interference due
to dephasing of these coherent states is also the reason for
the appearance of the well-known collapse phenomena in the
Jaynes-Cummings-Paul model. In particular, in the case of
resonant excitation it implies that even for arbitrary interaction
times of the order of T > N /50 1= 1/ Qy, the field states
and p, are almost orthogonal so that they can be distinguished
almost perfectly by an appropriate quantum measurement.
Effects of spontaneous emissions of photons from the excited
state |2) with a spontaneous decay rate I' can still be
neglected as long as the matter-field coupling as characterized
by the vacuum Rabi frequency is sufficiently large so that
Quac > I'. Meeting these requirements is within reach of
current experimental possibilities. The recent experiment by
McKeever et al. [21], for example, was performed in the optical
frequency regime and was characterized by the parameters
Qyac/(27) =16 MHz and I'/(2) = 2.6 MHz. More recent
experiments have even reported vacuum Rabi frequencies
Quac/(2m) exceeding 20 GHz [12]. However, in cases of large
detunings, i.e., |A/2| > Qo, according to Eq. (16) strong
dephasing requires significantly larger interaction times of the
order of T > |A/Q|/ Qeay > 1/ Qyac, for which typically the
influence of spontaneous decay processes can no longer be
neglected.

In Figs. 2, 3, and 4 numerical results are presented for
characteristic quantitative measures which exhibit to what
extent postselection by a minimum-error POVM measurement
on the optical radiation field is capable of preparing a Bell
state | W) 4 5. These numerical results are based on the exact
quantum state of Eq. (3) from which the minimum-error
POVM measurement is determined according to Eq. (8). This
optimum minimum-error POVM depends on the characteristic
electrodynamical interaction parameters involved, namely,
the interaction time t, the mean photon number 77, the
detuning from resonance A, and the strength of the quantum
electrodynamical coupling as measured by the resonant mean
Rabi frequency Q. In all these figures the mean photon
number of the initially prepared coherent field state |«) is
given by 77 = |a|?> = 100, so that typical quantum electrody-
namical effects originating from photon-number fluctuations
asmeasuredby An = /i = 10are still apparent. In particular,
this implies that deviations from the previously discussed
analytical predictions of the linearization approximation are
still observable.

Characteristic features of the strong-coupling regime, i.e.,
A = 0, are depicted in Fig. 2 as a function of the dimensionless
parameter Q7 /(2) which involves the interaction time 7 and
the effective mean Rabi frequency Q. Consistent with the
approximate analytical expression for the a priori probability
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FIG. 2. (Color online) Dependence of characteristic quantities on
the interaction time 7 in the strong-coupling limit A = 0: Top: The
success probability for postselecting a Bell state W) 45 of Eq. (10);
middle: the minimum-error probability of the POVM measurement
of the field of Eq. (9); bottom: the fidelity of the postselected Bell
state W) 45 of Eq. (12).

p as given by Eq. (15) for shorter interaction times 7 the
success probability Pge; of Eq. (10) exhibits maxima at
integer multiples of the interaction time T = 7/ (Fig. 2, top).
These maxima correspond to multiples of Rabi cycles at
which the material three-level systems are found again in
their initially prepared states |0) and |1) which constitute
the qubits to be entangled. Correspondingly. also minima
appear at odd integer multiples of the interaction time t =
(r/2)/<2 at which the three-level systems involved populate
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FIG. 3. (Color online) Dependence of characteristic quantities on
the interaction time 7 in the weak-coupling limit A = 5%: Top: The
success probability for postselecting a Bell state W) 45 of Eq. (10);
middle: the minimum-error probability of the POVM measurement
of the field of Eq. (9); bottom: the fidelity of the postselected Bell
state W) 45 of Eq. (12).

the excited state |2). However, for larger interaction times
these maxima and minima become less pronounced. This
reflects the influence of the dephasing originating from the
dependence of the Rabi frequencies 2(n) on the photon
number n in Eq. (3), which is also responsible for the collapse
phenomena in the Jaynes-Cummings-Paul model [13]. In the
limit of large interaction times, i.e., QT > /7 the success
probability approaches the value 1/4 consistent with Eq. (15).
The minimum-error probability of Eq. (9) always exhibits
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FIG. 4. (Color online) Fidelity of the postselected Bell state
|W+) 4 of Eq. (12) in the weak-coupling limit A = 59, for long
interaction times: The effects of dephasing lead to an asymptotic
increase to unity.

maxima at completed Rabi cycles, i.e., at integer multiples of
the interaction time 7 = 7 /5 (Fig. 2, middle). Thus, at these
interaction times it is difficult to distinguish the field states
01 and p, even by a minimum-error POVM measurement.
This is due to the fact that in view of the periodic Rabi
oscillations at these interaction times the atom-field state is
similar to the initially prepared quantum state of Eq. (1)
which is characterized by the property that the field states
p1 and p, are identical and thus indistinguishable. This is
also the reason for the vanishing success probability at T = 0.
However, due to dephasing the difference between minima and
maxima of the minimum-error probability eventually vanishes
in the limit of sufficiently large interaction times. Similarly,
also the fidelity of a Bell pair which is postselected by such
a minimum-error POVM field measurement exhibits periodic
oscillations with the Rabi frequency Q (Fig. 2, bottom). The
maxima of these oscillations appear at odd integer multiples of
the interaction time T = (17/2)/Q. At these interaction times
the three-level systems are likely to be found in the excited
states |2) so that we expect small success probabilities at these
interaction times. However, due to dephasing and the related
collapse phenomena at sufficiently long interaction times,
the differences between minima and maxima of the fidelity
eventually tend to zero and the achievable fidelity approaches
its maximum possible value of unity. These sufficiently long
interaction times of the order of T > /7 /50 = 1/Qy, are
therefore most favorable for preparing a high-fidelity material
Bell pair in the Bell state |W*),p provided spontaneous
emission of photons into other modes of the radiation field
is negligible. Recent quantum electrodynamical experiments
performed in the strong-coupling regime [21] demonstrate
that such large vacuum Rabi frequencies are within current
experimental possibilities.

This strong-coupling behavior is in marked contrast to the
dependence of these characteristic quantities on the interaction
time in the weak-coupling limit in which the detuning is large,
i.e., |A] > Q. This case is depicted in Figs. 3 and 4. From
the interaction times shown in Fig. 3 characteristic oscillations
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of these quantities with the mean Rabi frequency Q — |A /2|
are apparent. They originate from the instantaneous turning on
and off of the interactions between the optical radiation field
and the quantum systems A and B. Although at their maxima
the success probabilities Pge) are slightly larger than in the
resonant case of Fig. 2, the fidelity of the postselected Bell pairs
is significantly smaller and oscillates slightly around the value
of Fope =1/ V2. In view of the large detuning considered, the
effects of dephasing are negligible for the interaction times
depicted in Fig. 3. The effects of dephasing become important
only in the limit of extremely long interaction times of the
order of T > |A/Q|/ Reay > 1/ Qyac. The resulting collapse
phenomena cause an increase of the achievable fidelities so that
asymptotically they approach the maximum possible value
of unity (compare with Fig. 4). However, typically at these
extremely long interaction times the influence of spontaneous
emission of photons into other modes of the radiation field
is no longer negligible, and our theoretical model is no
longer adequate for describing such cases. Therefore, for
the preparation of high-fidelity Bell states by postselection
the weak-coupling regime exhibits clear limitations even if
the postselection is performed by minimum-error POVM
measurements.

III. EFFECTS OF PHOTON LOSS

In this section we investigate additional effects of photon
loss during the propagation of the optical radiation field
through the optical fiber by modeling the propagation-induced
photon loss by the dynamics of damped harmonic oscillators
with equal decay rates. This may describe a physical situation,
for example, in which only a single transverse but many
longitudinal modes of the radiation field are excited in the
optical fiber during the photonic propagation process and in
which the photon loss is due to leakage of this transversal mode
out of the optical fiber. It is demonstrated that in the strong-
coupling regime of resonant interactions, besides an overall
decay of success probabilities and achievable fidelities of the
postselected Bell pairs, characteristic interference oscillations
also appear which originate from dephasing.

Let us consider again the quantum electrodynamical model
of Sec. ITA with the only difference that during the prop-
agation of the optical radiation field through the fiber the
dynamics is described by damped harmonic oscillators. Thus,
during the time interval T — 27 (with T « 2/ " <« T) of the
propagation through the optical fiber the free dynamics of the
optical radiation field previously described by the Hamiltonian
Y e hoi &I-T a; (compare with the Appendix) is replaced by the
Lindbladian master equation

dp . Afa A
a7 = ieZLwi[a,-ai,p]
+ Y (Lpl+(Lip LD =2Lp  (18)

ielL

for the field state p(f) with the Lindblad operators L=
v /2a;. Thereby, the damping rate y characterizes the photon
loss in the optical fiber.
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Expanding the density operator of a particular mode, say i,
into photon-number states, i.e.,

PO =" pd, (expl—iwi(n — mytlinyi (m],  (19)

n,m=0

and taking matrix elements of the density operator equa-
tion (18) we obtain the result

NG 4 i i
Pii = =5 m +mpl, + yy/(n+ Dm + Dl
(20)

A general solution of this equation can be obtained with the
help of the Laplace transformation

PV() = / POy dt @1
0

which transforms the master equation with the initial condition
pD(t = 0) into an algebraic equation for p(z). Inverting its
solution with the help of the inverse relation

AG) 1 2t AG)
o (t)=2 - | e 0 (2)dz, (22)
Tl Jc

we obtain the corresponding solution 5)(¢) for the field state
of mode i at time ¢. Thereby, the path of integration C has to
be chosen in such a way that all poles of 5)(z) are included.

In the photon-number-state representation the time-
dependent solution of the master equation (18) can be
determined by induction, thus yielding the result

o0
A ) N
P (1) = eVt N " 0 (= 0)

j=0
« Vo + DIV + DI —e 7 23)
N J!

for mode i. With the help of this solution it is straightforward
to propagate field coherences of the form |n);; (m| of any
mode / from an initial time immediately after the excitation
by the optical cavity field A to the time after completion
of the propagation through the optical fiber. Thus, an initial
coherence between coherent states, such as |B8);; (x|, for
example, evolves to a coherence of the form

e“T1B)ii (]

la2+1p12 x
— ¢ II=exp(—y D=7 —pa )|f3€_yT/2>ii (ote_VT/2|. (24)

In Fig. 5 numerical results are presented which demonstrate
characteristic properties of the postselection of a Bell state
|[U+) 45 by a minimum-error POVM measurement of the
optical radiation field in the presence of photon loss during
propagation through the optical fiber. Thereby, the quantum
state resulting from all interactions between the optical field
and the quantum systems A and B has been evaluated
numerically with the help of relation (23). Apart from the
photon loss during the propagation through the optical fiber
and the choice of a fixed interaction time the parameters are
the same as in Fig. 2. The interaction time t = (23/4)27/Q
has been chosen in such a way that in the absence of photon
loss the fidelity of creating a Bell state has a maximum
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FIG. 5. (Color online) Dependence of characteristic quantities
on the propagation time 7 (in units of 1/y) through a lossy optical
fiber in the strong-coupling limit A = 0 for an interaction time 7 =
(23/4)27 /: Top: The success probability for postselecting a Bell
state |W*) 45 of Eq. (10); middle: the minimum-error probability of
the POVM measurement of the field of Eq. (9); bottom: the fidelity
of the postselected Bell state | W) 45 of Eq. (12).

and that its value is close to unity (compare with Fig. 2).
Figure 5 depicts the dependence of the characteristic quantities
Pgeit, Emin, and Fyp of this minimum-error postselection
procedure on the time 7 of propagation through the fiber.
It is apparent that photon loss tends to decrease the success
probability Pge and the fidelity Fop of the postselected Bell
pair. At the same time it also increases the minimum error
Enin. For an optical fiber with an intensity loss of D dB/m

PHYSICAL REVIEW A 87, 012311 (2013)

propagation durations 7 can be translated into lengths L of the
optical fiber by the relation L = (y7)20/(DIn10). Thus, at a
wavelength of 1550 nm with a photon loss of 0.2dB/km, for
example, the maximum value of yT = 0.3 depicted in Fig. 5
corresponds to a fiber length of L = 13029 m. It is interesting
to note that all the characteristic quantities depicted in Fig. 5
exhibit also an oscillatory behavior. It can be traced back to the
fact that according to Eq. (24) for small photon loss, i.e., y T <
1, all relevant field coherences between coherent states also
involve a characteristic frequency @ = yIm(a*8). According
to Eq. (14) due to dephasing typical relevant coherent states
are of the form |we’*®) with k = £1,42, . ... Therefore, an
estimate of these characteristic frequencies can be obtained
by assuming that o = +/ne’? and B = +/n, for example,
which yields an oscillation frequency of the order of & =
yu[Q07/(21)] = Qpy /2 for resonant coupling, i.e., A = 0.

IV. SUMMARY AND CONCLUSION

In the context of the hybrid quantum repeater model, we
have studied optimal possibilities of preparing high-fidelity
Bell pairs of two material qubits by postselection with the help
of two single-mode cavities and an optical fiber connecting
them. Whereas the original proposal of van Loock et al.
[5] concentrated on the dynamical regime of weak coupling
in which the interaction between the optical radiation field
and the two material quantum systems involved can be
described perturbatively, our discussion concentrated on the
strong-coupling regime of almost resonant interaction. We
also discussed the problem of photonic quantum state transfer
through an optical fiber and determined by what choices of the
coupling parameters between cavities and optical fiber perfect
photonic quantum state transfer is possible. We determined the
optimum POVM measurements which have to be performed
on the single-mode optical radiation field of cavity B in
order to postselect a Bell pair with minimum error. On the
basis of this analysis we demonstrated that some of the
limitations of the nonresonant weak-coupling limit can be
circumvented successfully in the strong-coupling regime. In
particular, provided the propagation of the optical radiation
field through the fiber is ideal it is possible to create Bell pairs
of fidelities arbitrarily close to unity provided the interaction
time between the material quantum systems and the optical
field is chosen properly. This is due to the fact that at these
particular interaction times the quantum states of the optical
radiation field which are entangled with the desired two-qubit
Bell state and with the other material quantum states involved
are almost orthogonal so that they can be distinguished
almost perfectly by a von Neumann measurement. According
to Eq. (14) this von Neumann measurement involves an
approximate projection onto a cat-state-like superposition of
two coherent states. This is in marked contrast to the weak-
coupling regime of nonresonant interaction where the relevant
field states are always nonorthogonal, so that they cannot be
distinguished perfectly by any quantum measurement and the
resulting postselection is never perfect. Furthermore, due to
photon-induced dephasing effects which are characteristic for
the collapse phenomena of the Jaynes-Cummings-Paul model
at these interaction times, the success probabilities of the
strong-coupling regime tend to the limiting value of 1/4 and
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are not significantly smaller than the corresponding values (of
the order of 0.4) achievable in the weak-coupling regime. We
have also explored effects originating from photon loss taking
place during the propagation of the optical radiation field
through the optical fiber. In addition to an overall decrease of
achievable fidelities and success probabilities, in the strong-
coupling regime also an oscillatory behavior is apparent. Thus,
the strong-coupling regime of the hybrid quantum repeater
model offers interesting perspectives for entangling material
quantum systems over not too long distances and thus for
providing high-fidelity Bell pairs at high repetition rates for
future realizations of quantum repeaters.
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APPENDIX: PERFECT QUANTUM STATE TRANSFER
BETWEEN TWO SINGLE-MODE CAVITIES COUPLED
BY AN OPTICAL FIBER

In this Appendix it is demonstrated that within the validity
of the rotating-wave and pole approximations perfect quantum
state transfer between two single modes of two spatially well-
separated cavities connected by a long optical fiber is possible
provided the coupling between the cavities and the optical
fiber is engineered appropriately. Explicit expressions for these
optimal couplings are determined.

In the following we consider a quantum state transfer
scenario in which a single mode of cavity A with frequency
w is coupled almost resonantly to a dense set of modes of an
optical fiber. Initially, a photonic quantum state is prepared in
this single mode of cavity A and all other modes of the fiber
and of the second distant cavity B are prepared in their vacuum
states. After having left cavity A the photons propagate through
the fiber so that cavity A is left in its vacuum state (apart from
exponentially small terms). After this decay process a photonic
wave packet propagates through the optical fiber whose spatial
extension is of the order of ¢/ I"4, with ¢ denoting the speed
of photonic propagation in the fiber and with I" 4 denoting the
resonant decay rate of cavity A into the fiber. In particular,
we assume that the length L of the optical fiber is large, i.e.,
L > ¢/ T 4. Thus, during the propagation of the photon wave
packet through the optical fiber the coupling of the fiber modes
to the second field mode of frequency w which is localized in
the second distant cavity B is turned on adiabatically. In the
following it is shown that the photonic wave packet can leak
from the optical fiber into cavity B almost perfectly provided
the couplings between both cavities and the optical fiber are
engineered appropriately.

In the rotating-wave approximation the almost resonant
coupling of the single mode of frequency w in cavity A to
the optical fiber modes is described by the Hamiltonian

A =hodlas+ Y hoala; +Y (galas + i aha)
ieL ielL

=Y aj Hyja,

k,jel

(AL)
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with L denoting the set of modes of the optical fiber and
with I = L U {A}. As we want to transfer a photonic quantum
state through a long optical fiber we assume in our subsequent
discussion that only one transverse mode but a large number
of longitudinal modes of the optical fiber couple to the
optical cavity A almost resonantly in the frequency band
(—A + w,w 4+ A). The rotating-wave approximation is valid
if A <« w. In a simple approximation one may assume that in
this frequency band the frequencies of the almost resonantly
coupled modes of the optical fiber can be described by the
relation w, = 2mcn/l with integer values of n and with /
denoting the length of the optical fiber. (c is the speed of
light inside the optical fiber.) Accordingly, in terms of the
bare modes the matrix representation of the Hamiltonian of
Eq. (Al) is given by

ho ki &

K1 fza)l 0

A

A— |k 0 §ho (A2)

This Hamiltonian can be diagonalized by a unitary trans-
formation U which describes the transformation to normal
coordinates or to dressed modes, i.e.,

o O 0

0 vy 0

H=0AU'", A— |0 0 Fhir (A3)

with the dressed eigenfrequencies {A;} (j € Ng) and the
destruction and creation operators of the dressed eigenmodes

& =Y Ujsai and @ = 3, Ui, respectively. Thus, in
these dressed modes the Hamiltonian is diagonal, i.e.,

A= na a'lal.

jeNy

(A4)

Fori € L and j € Ny the matrix elements of the diagonalizing
unitary transformation U are given by

K;
Uj=—————Us =U; Aj
j heo —h)\, Aj ( )
1
Uy, = —— = UaG) (A
\/ U Der Go, iy

with the dressed frequencies {A;} being determined by the
zeros of the quantization function f(}), i.e.,

2
fO) ==ho—hi; =Y bl o (a6

ha)n — h)uj
eL

With the help of this transformation to normal coordinates
the time evolution of any coherent initial state |V (¢t = 0)) =
Hoi}) = |lap)a ® |a1)1 @ o)z - - -. of the bare modes with
a;|B)i = BIB)i and i € I can be determined easily because
fort >0

M () = ¢ Tier 2K e )0) = Yoy (1)) (AT)
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with the vacuum state of all modes |0) and with (i € I)

a)= Y Upe ™Uja;. (A8)
keNy,jel
Thereby, we have taken into account the identity
Dl =Yyl (A9)

jel jel
which is a consequence of the unitary time evolution. The

time evolution of «;(¢) (i € I) as given by Eq. (A7) can also
be determined by complex integration, i.e.,

df/di(x)

-1 00+i0
a;(t) = Z_m[ d)\Ui()\)W

00+i0

Z o, Uk (R)e ™.

mel

(A10)

Evaluating Eq. (A10) with the help of the calculus of residues
one arrives at Eq. (A7).

In the continuum limit of a very long optical fiber, in which
the bare mode frequencies {w;, i € I} are so densely spaced
that they can be described by a continuum, the quantization
function of Eq. (A6) can be approximated by

. hT4
FO-+10) = hilw — d0) = A —i—= (A11)
with
2 dn
Cu=—lk,|? Al2
A 7 | | o (A12)

nlw,=w

This approximation is an immediate consequence of the
relation

Jicu? AP
Y =hbw+i—> (A13)
hw, —h) —i0 2
neL
and of the Weisskopf-Wigner or pole approximation [22].
This latter approximation assumes that the interaction-induced
frequency shift Sw as well as the decay rate I'4 are slowly
varying functions of A so that they can be replaced by their
values at . = w and can be considered as being X independent.
For its validity it is necessary that both the frequency shift dw
and the decay rate I' 4 are small in comparison with the cavity
frequency w, i.e., |dw|, ['4 < A < w. In the following we ab-
sorb the frequency shift w in a renormalized cavity frequency,
i.e., w — w — w. The A-independent decay rate I" 4 describes
the loss of photons from cavity A due to the coupling of the
cavity mode with frequency w to the optical fiber.
From Egs. (A10) and (A11) the solution of the Schrodinger
equation with Hamiltonian (A1) and with initial condition

Yt =0)) =la)a H 0); (Al4)
ielL
is given by [y/(1)) = le(0) 4 [T;cs lei (1)) with
O{(l) — ae—iwt—I‘Al/Z,
OKi —iwit —iwt—Ts1/2 (AL5)
= he vt ¢ .

Thus, for a sufficiently long interaction time, i.e., 7} >
1/ T4, apart from exponentially small terms of the order of
exp(—I"4T;/2) the depletion of the cavity mode is perfect and
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| (2)) describes a pure quantum state in which the cavity mode
A isinits vacuum state and a photonic wave packet propagates
through the optical fiber.

Let us now consider a time 77 with 77 > 1/ "4 at which
the occupied modes of the radiation field are described by
the quantum state ]_L. e lai(T1)); and at which cavity A
is approximately in its vacuum state. This quantum state
describes a photonic wave packet in the optical fiber with
a spatial extension of the order of ¢/ I' 4. If the optical fiber is
sufficiently large, i.e., [ >3> ¢/ "4, at this time 7} this photonic
wave packet is localized well inside the optical fiber and
propagates towards the second cavity B, which is assumed
to be prepared in its vacuum state at time 7;. In the course
of this propagation process the coupling between the optical
fiber and cavity B which is negligible at time 7] is turned on
adiabatically and eventually leads to the leakage of this photon
wave packet into cavity B. Thus, in analogy with Eq. (A1) for
times ¢ > T) the interaction Hamiltonian between the optical
fiber and this second cavity B is given by

A’ =hoagap + Y hodla; + Y (alap + «*aba)
ieL ieL
(A16)

with complex-valued coupling coefficients «;. In general they
may differ from the coupling coefficients «; for cavity A.
Again, in the continuum limit and in the pole approximation
one can characterize the coupling between the optical fiber and
cavity B by a decay rate

271| 2 dn

Iy = an
B= 5% dheo,

(A17)

Wp=w

Evaluating the quantum state of the optical fiber and of cavity
mode B|Y (T, + t)) for t > 1/ I'p with the help of Eq. (A10),
we obtain the result

(T + 1)) = |la(T1 +1))p l_[ o (T7 + 1)) (A18)
ielL
with
K aKl_e—iw,(T]+t)
ali+0=) L . :
s hw; —hw +ihlg /2 hw; —ho + ihT4/2
00+i0 < o—iM
ai(Ty +1) = — dx : -
2wi ) _oorio hwj —hAw— X —ilp/2

Ik

oK e—i ;T ;

% ; ho; —ho il a2 i, —fn A
where in the first equation we already neglected terms which
are exponentially small in the parameter exp(—I'pf/2). A
comparison of Eq. (A19) with the initial condition of Eq. (A14)
shows that for interaction times 77 + ¢ with t > 1/I'p the
necessary and sufficient condition for perfect quantum state
transfer between cavities A and B is o =a(T) +1). A
sufficient condition for satisfying this condition is to choose
the coupling constants between the optical fiber and the second
cavity B in such a way that

“ﬂi’ eZi‘Pi ha)l—hw+1hI‘A/2

= , (A20
ha),—hw—lhl"A/Z ( )

Kl =K=|Ki|e
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and to choose the interaction time ¢t = 7, with 11,7, >
1/ 4,1 so that w,(T; + T3) is an integer multiple of 2. If
the relevant modes of the optical fiber fulfill the condition
w, = 2mcn/l with integer values of n, for example, this latter
condition can be fulfilled by the choice c¢(7} + T;) = [. This
condition describes the fact that the total interaction time
T = T, + T, has to allow for a propagation of photons through
the optical fiber of length /. In addition, this interaction time has

PHYSICAL REVIEW A 87, 012311 (2013)

to be large enough so that the leaking out of cavity A and the
leaking into cavity B can be completed, i.e., 71,7, > 1/ 4.
The complex conjugation involved in Eq. (A20) reflects the
fact that for perfect quantum state transfer a time-reversal
process is necessary. The phase modulation of the coupling
constants «; required by Eq. (A20) is characteristic for the
scattering phase shift of a Breit-Wigner resonance with a
Lorentzian frequency distribution.
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