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Symmetries and security of a quantum-public-key encryption based on single-qubit rotations
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Exploring the symmetries underlying a previously proposed encryption scheme that relies on single-qubit
rotations, we derive an improved upper bound on the maximum information that an eavesdropper might extract
from all the available copies of the public key. Subsequently, the robustness of the scheme is investigated in the
context of attacks that address each public-key qubit independently. The attacks under consideration make use
of projective measurements on single qubits and their efficiency is compared to attacks that address many qubits
collectively and require complicated quantum operations.
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I. INTRODUCTION

Quantum-public-key cryptography, where the public keys
are quantum-mechanical systems, is a largely unexplored area
of problems. Various cryptographic primitives can be defined
in this context (e.g., digital signatures, identification schemes,
encryption schemes, etc.), which aim at different goals (e.g.,
integrity, confidentiality, etc.) [1–10]. Of particular interest
are quantum-public-key encryption (QPKE) schemes [6–10],
which facilitate the communication between many users over
insecure channels. Typically, a legitimate user participating
in such a QPKE scheme has to choose a random secret
(private) key, and prepare the public key in a state that
is in accordance with the private key. Many copies of the
public-key state can be created in this manner and become
available to any potential sender in an authenticated manner,
e.g., via a key-distribution center, whereas the corresponding
private key is never revealed and is used by the receiver for
decryption only. In a nutshell, QPKE combines the provable
security of quantum-key-distribution (QKD) protocols [11]
with the flexibility of conventional public-key encryption
schemes, facilitating thus the key distribution and the key
management in large networks [10,12]. Key distribution
and key management are crucial issues associated with the
security and the efficient operation of large networks, and can
not be solved efficiently in the context of QKD (followed
by a classical symmetric cryptosystem) or quantum direct
communication (QDC) protocols such as [13–15]. The main
reason is that, by construction, the protocols of QKD and
QDC are point-to-point protocols, and thus the total number
of secure links and keys scales quadratically with the number
of users in the network. This power law can be improved
if the communications are performed via a key-distribution
center (KDC), which possesses all the secret keys. In this
case, however, the center becomes an attractive target, while a
compromised KDC renders immediately all communications
insecure. In QPKE schemes, on the other hand, the KDC
deals with the public keys only, whereas the private keys
are in possession of the legitimate users [16]. The study of
QPKE schemes is also of fundamental importance for the field
of quantum cryptography because of the quantum trap-door
one-way functions, which are essential ingredients not only
for the development of efficient encryption schemes, but also

for many other cryptographic primitives (digital signatures,
fingerprinting, zero-knowledge protocols, etc.) [1,3–5,12,17].

The mere fact that in QPKE schemes many copies of
the public keys become available allows an eavesdropper to
launch new strategies that go beyond QKD and QDC protocols
(e.g., see [18]). Although the actual state of the public key is
unknown to an adversary, the multiple copies, when processed
judiciously, may reveal more information on this state than a
single copy. Hence, a security analysis of a particular QPKE
scheme has to address questions related to the lengths of
the private and the public keys, as well as the number of
public-key copies that can become available before the entire
cryptosystem is compromised. Clearly, such questions are
intimately connected to specific aspects of QPKE, which are
present neither in QKD nor in QDC protocols.

The QPKE scheme of [10] is rather intuitive as it relies on
single-qubit rotations. The public key consists of a number
of qubits that are prepared at random and independently in
some unknown state. A message can be encrypted in one of
the public keys by rotating appropriately the corresponding
qubit states, and the resulting cipher state is subsequently
sent for decryption. Due to its simplicity, this scheme may
serve as a theoretical framework for addressing questions
pertaining to the power and limitations of QPKE as well
as its robustness against various types of attacks. In this
context, it has been shown recently that any deterministic
QPKE requires randomness in order to be secure against a
forward-search attack [18]. Furthermore, in contrast to the
classical setting, a QPKE scheme can be used as a black box
to build a new randomized bit-encryption scheme that is no
longer susceptible to this attack.

Here, we discuss a symmetry that underlies the scheme
of [10] and that reduces considerably the information that an
eavesdropper might extract from the copies of the public key.
Subsequently, we analyze the security of the protocol against
attacks that aim at the encrypted message and that rely on
individual projective measurements on the qubits of the public
key(s) and of the cipher state. It is shown that the performance
of such attacks can be slightly worse than the performance
of the forward-search attack [18], which requires complicated
quantum transformations that are beyond today’s technology.

We like to emphasize that discussions on the scheme of [10]
with an appropriate choice of the parameters also apply on
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a specific so-called ping-pong protocol [14] that pertains to
the category of the so-called quantum direct communication
(QDC) protocols. The different context has to be taken into
account to achieve meaningful statements.

This paper is organized as follows: In Sec. II, basic aspects
of the recently introduced quantum-public-key protocol of [10]
are summarized. The influence of symmetric eavesdropping
strategies on upper bounds of the probability for an eavesdrop-
per to guess correctly the private key or the encrypted message
are investigated in Sec. III. Security aspects of the private key
are discussed in Sec. III A on the basis of Holevo’s bound. In
Sec. III B, an attack on encrypted messages is studied, which
pertains to individual projective measurements on the qubits
involved. As a main result, it is shown that Eve’s success
probability converges to the value of one half exponentially
with the numbers of qubits in which the message is encrypted
with a scale depending on the number of its publicly available
copies of the public key. Furthermore, it turns out that the
success probability of this attack differs only slightly from
the already known optimal probability of successful state
estimation by means of collective measurements. In addition,
as discussed in Sec. III C, the resulting lower bound of the
security parameter of the public-key protocol is also close
to the previously derived security parameter of the forward-
search attack of Ref. [18]. Finally, in Sec. III D, a symmetry-
test attack with projective measurements is explored, which
attacks the message directly and makes use of only a single
copy of the public-key quantum state and the corresponding
cipher state.

II. PROTOCOL

For the sake of completeness, let us summarize briefly
the main ingredients of the protocol proposed in Ref. [10].
Each user participating in the cryptosystem generates a key
consisting of a private part and a public part, as determined by
the following steps.

(i) Choice of a random positive integer n � 1. Additional
limitations on n will be derived in the following section.

(ii) Choice of a random integer string k of length N , i.e.,
k = (k1,k2, . . . ,kN ). Each integer kj is chosen at random and
independently from Z2n , and thus it has a uniform distribution
over Z2n .

(iii) The classical key k is used for the preparation of the
N -qubit public-key state

|�k(θn)〉 =
N⊗

j=1

|ψkj
(θn)〉, (1a)

where

|ψkj
(θn)〉 ≡ cos

(
kj θn

2

)
|0z〉 + sin

(
kj θn

2

)
|1z〉, (1b)

while { |0z〉, |1z〉} denote the eigenstates of the Pauli operator
σ̂z ≡ |0z〉〈0z| − |1z〉〈1z| , which form an orthonormal basis in
the Hilbert space of a qubit. The Bloch vector associated with
Eq. (1b) is given by Rj (θn) = cos(kj θn)ẑ + sin(kj θn)x̂ with x̂,
ẑ denoting unit vectors and with

θn = π/2n−1 (1c)

denoting the elementary angle of rotations around the axis with
unit vector ŷ.

(iv) The private (secret) part of the key is k, while the public
part is {n,N, |�k(θn)〉}.

Note that since each kj is distributed uniformly and inde-
pendently over Z2n , the random state |ψkj

(θn)〉 is uniformly
distributed over the set of states

H(n) = {∣∣ψkj
(θn)

〉∣∣kj ∈ {0, . . . ,2n − 1}}. (2)

The state of the j th public-key qubit |ψkj
(θn)〉 is known if the

corresponding Bloch vector (or equivalently the angle kj θn) is
known. The full characterization of the angle kj θn requires n

bits of information.
In general, a legitimate user should never reveal his private

key, whereas he can produce at will as many copies of the
public key as needed. The number of public-key copies T ′ [19],
however, should be kept sufficiently small relative to n (the
precise relation will be discussed in Sec. III A), so that the
map

k �→ {T ′copies of |�k(θn)〉} (3)

is a quantum one-way function by virtue of Holevo’s theorem
[10,18]. The one-way property of the map (3) is essential
for the definition of the public-key encryption in the present
framework.

Suppose now that Bob wants to communicate a binary plain
text m to Alice. The users have agreed in advance on two
encryption operators Ê0 and Ê1 for encryption of bit “0” and
“1,” respectively. The key point here is that the bits of the plain
text (message) are assumed to be encrypted independently
on public qubits that have been prepared at random and
independently (see discussion above). Hence, for the sake of
simplicity and without loss of generality, we can focus on the
encryption of a one-bit message m ∈ {0,1}. As discussed in
Refs. [10,18], in this case the protocol is not secure when
the bit is encrypted on the state of a single qubit. However,
it has been shown in the context of a forward-search attack
that the robustness of the protocol increases considerably if
m is encoded in a randomly chosen s-bit codeword w with
Hamming weight of parity m, which is subsequently encrypted
on s public qubits [20]. Correspondingly, the analysis of the
following section pertains to a one-bit message, which is
encrypted in the parity of an s-bit codeword with s playing
the role of a security parameter.

For the encryption of the one-bit message m ∈ {0,1}, Bob
chooses at random a codeword w ≡ (w1,w2, . . . ,ws) of parity
m, and obtains an authenticated copy [21] of Alice’s public
key (T ′ − 1 public keys still remain publicly available). The
codeword is encrypted by applying independent successive
encryption operations on the first s public qubits. The resulting
(quantum) cipher text is thus the s-qubit state

|Xk,m(θn)〉 =
s⊗

j=1

Êwj

∣∣ψkj
(θn)

〉 =
s⊗

j=1

∣∣χkj ,wj
(θn)

〉
, (4)

to be referred to hereafter as cipher state. In this spirit, the
encryption of an L-bit message requires a public key of length
N � Ls. The cipher state is sent to Alice, who can obtain the
message by means of a decryption procedure, the details of
which are not essential for our purposes in this work. We only
note here the crucial property that the encryption operations do
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not depend on Alice’s private key, but the decryption operators
do. Moreover, to allow for a simple decoding, we assume that

Êwj

∣∣ψkj
(θn)

〉 → ∣∣ψkj
(θn + wjπ )

〉
(5)

for wj ∈ {0,1} [22].
The primary objective of an eavesdropper (Eve) in the

context of QPKE is to recover the plain text from the cipher
state intended for Alice. On the other hand, there is always
a more ambitious objective pertaining to the recovery of
the private key from Alice’s public key. A cryptosystem is
considered to be broken with accomplishment of either of the
two objectives, but in the latter case, the adversary has access
to all of the messages sent to Alice (see also related discussion
in Ref. [10,12]). It is essential, therefore, to ensure secrecy of
the private key before we discuss the secrecy of a message. In
Sec. III A, we derive restrictions on the parameters n and T ′ so
that the map (3) is a quantum one-way function, and thus the
recovery of the private key from the public keys is prevented.

As far as the encryption of the message (or equivalently
the codeword) is concerned, we note that, in view of Eqs. (1b)
and (5), the two possible values of the j th bit of the codeword
wj ∈ {0,1} are essentially encrypted in orthogonal eigenstates
of a basis, which is rotated relative to the basis { |0z〉, |1z〉} by an
unknown angle kj θn. This means that the cipher-qubit state is
parallel (wj = 0) or antiparallel (wj = 1) to the corresponding
public-qubit state. Thus, in the following analysis, we consider
two different classes of eavesdropping strategies, which aim
at the encrypted message. The first class involves attacks that
explore the symmetry between the public-key state and the
cipher state to reveal the message. The other class pertains to
attacks that extract information on the public key (and thus
on the basis on which the message has been encoded), so
that the message can be recovered by means of a projective
measurement on the estimated basis. Clearly, for this second
class of attacks, the probability of successful decryption is
expected to increase with the information gained on the public-
key state.

III. SYMMETRIC EAVESDROPPING STRATEGIES

In a single run of the protocol, the fixed quantities are
the secret key k (and thus the public key) as well as the
codeword w. In general, for a given eavesdropping strategy,
the probability of successful eavesdropping in a single run
of the protocol P (suc|k,w) differs from the corresponding
probability obtained by averaging over all possible values of
k, i.e.,

P̄ (suc|w) =
∑

k

P (k)P (suc|k,w) = 1

2nN

∑
k

P (suc|k,w),

(6)

where for the last equation we have used the fact that k
is uniformly distributed over {0,1}nN . The one-bit message
m is encoded at random on one of the 2s−1 possible s-bit
codewords with parity m (examples are given in Refs. [10,18]).
Hence, the conditional probability for the codeword w to
occur, given a particular value of m ∈ {0,1}, is P (w|m) =
2−(s−1). However, from the point of view of an adversary,
both values of m ∈ {0,1} are equally probable and thus

P (w) = ∑
m P (w|m)2−1 = 2−s , i.e., the codewords have a

uniform distribution over {0,1}s . Therefore, the eavesdropping
strategies we are going to discuss are symmetric with respect
to all possible codewords [23], and thus we also have P̄ (suc) ≡
2−s

∑
w P (suc|w) = P (suc|w).

A. Eve’s point of view

Our first task is to find out how much information Eve
may extract from τ available copies of the j th public qubit,
and investigate the conditions under which the security of the
private key is guaranteed. From Eve’s point of view, the state
of the j th public qubit is uniformly distributed over H(n), with
the corresponding a priori probability being 2−n. Hence, the
density operator describing the state of τ copies of the j th
public qubit is

ρ
(τ )
j,prior = 1

2n

2n−1∑
k′
j =0

[ ∣∣ψk′
j
(θn)

〉〈
ψk′

j
(θn)

∣∣]⊗τ

= 1

2n

2n−1∑
k′
j =0

∣∣
(τ )
k′
j

(θn)
〉〈



(τ )
k′
j

(θn)
∣∣, (7)

where |
(τ )
k′
j

(θn)〉 := |ψk′
j
(θn)〉⊗τ . In the space of τ -qubit

states, we have τ + 1 different subspaces each of which

is spanned by all B(τ,l) = ( τ
l

)
eigenstates with the same

Hamming weight l, i.e., the same number of qubits which are
in the state |1z〉. Within one of these subspaces, say Sl , we can
define the fully symmetric state

|l〉 =
B∑

i=1

|i〉l/
√
B(τ,l),

where the sum runs over all the τ -qubit eigenstates with the
same Hamming weight l. The problem can be formulated
entirely in terms of these (τ + 1)-symmetric states { |l〉 : l =
0,1, . . . ,τ } [24].

Using Eq. (1b), we have

∣∣
(τ )
k′
j

(θn)
〉 =

τ∑
l=0

√
B(τ,l)fτ,l(kj θn) |l〉, (8a)

with

fτ,l(kj θn) =
[

cos

(
kj θn

2

)]τ−l[
sin

(
kj θn

2

)]l

. (8b)

Thus, the density operator of Eq. (7) reads as

ρ
(τ )
j,prior =

τ∑
l,l′=0

Cl,l′ |l〉〈l′| (9a)

with

Cl,l′ = 1

2n

√
B(τ,l)B(τ,l′)

2n−1∑
k′
j =0

fτ,l(kj θn)f �
τ,l′ (kj θn). (9b)

In Appendix A, we provide additional information on the form
of the a priori density operator ρ

(τ )
j,prior as well as on some

observations regarding its rank and eigenvalues. What we have
so far, however, suffices to provide an upper bound on the von
Neumann entropy S[ρ(τ )

j,prior] for any values of τ and n. In

022342-3



U. SEYFARTH, G. M. NIKOLOPOULOS, AND G. ALBER PHYSICAL REVIEW A 85, 022342 (2012)

particular, instead of saying that τ copies of the j th public-key
qubit are distributed, we can say that one copy of a larger (τ +
1)-dimensional system becomes publicly available. Hence, we
have

S
[
ρ

(τ )
j,prior

]
� log2(τ + 1). (10)

The state described in Eq. (7) is a convex “classical” mixture
of quantum states { |
(τ )

kj
(θn)〉}, which are distributed with

probabilities pj = 2−n. Albeit pure, the states |
(τ )
kj

(θn)〉 are
not mutually orthogonal. As a result, the von Neumann entropy
for the density operator ρ

(τ )
j,prior is strictly smaller than the

Shannon entropy of the corresponding probability distribution
H (pj ) = n [17]. The Holevo bound restricts Eve’s average
information gain Iav on the unknown state for τ copies. In
particular, the information gain is upper bounded by S[ρ(τ )

j,prior],
and in view of inequality (10), we obtain the result

Iav � log2(τ + 1). (11)

On the other hand, one still needs n bits of information to
characterize completely the state of the j th qubit (which of
course implies knowledge on the private key as well). So, as
long as

n � log2(τ + 1), (12)

the one-way property of the map (3) is guaranteed [25]. Thus,
one can be confident that no matter what strategy Eve may
choose, her information on each public-key qubit is very low.
Despite the fact that Eve has almost no knowledge about the
public key, she may be able to decrypt an encrypted message
successfully. This will be demonstrated in the next sections.

In closing, we would like to emphasize that in Refs. [10,18],
the symmetries underlying the particular encryption scheme
have not been taken into account and thus a larger upper
bound on Iav was obtained, suggesting that Eve can get up
to τ bits of information from τ copies of the public key.
However, this section demonstrates that the actual upper bound
turns out to scale logarithmically with τ so that secrecy of
the private key can be guaranteed already for significantly
smaller values of n. Intuitively, this originates from the
fact that the protocol restricts Eve by construction on the
(τ + 1)-dimensional subspace of symmetric states for the τ

copies of the j th public-key qubit. In Appendix A, we provide
a tighter upper bound on Eve’s information gain based on basic
properties of the eigenvalues of ρ

(τ )
j,prior.

B. Incoherent projective measurements

Eve knows that all of the qubit states lie on the x-z plane of
the Bloch sphere. Thus, she may try to deduce the message by
means of projective measurements on the cipher state as well as
on all of the remaining (T ′ − 1) copies of the public key [26].
In the following, we assume that each qubit of the public key or
of the cipher is measured independently. Indeed, given that the
random state of each public-key qubit is chosen independently
and that it is distributed uniformly over H(n), it is reasonable
to assume that there are no hidden patterns that Eve can take
advantage of by attacking many qubits collectively.

One possible strategy for Eve is to obtain an estimate of
the public-key state (1) by measuring half of the public keys

on the (eigen)basis { |0z〉, |1z〉} of the Pauli operator σ̂z and
the other half on the (eigen)basis { |0x〉, |1x〉} of the Pauli
operator σ̂x ≡ |0z〉〈1z| + |1z〉〈0z| . In this way, she can obtain
an estimation on the j th public-qubit state or equivalently on
its Bloch vector Rj . It should be emphasized that such an attack
essentially aims at the private key, which, by construction, is
in one-to-one correspondence with the public key. Although
condition (12) restricts Eve’s information gain on the private
key to negligible values, it can not guarantee secrecy of the
encrypted message. Hence, in an attempt to reveal the message,
she can measure the cipher state on a basis defined by her guess
on the corresponding public-qubit state. The main purpose of
this section is to analyze this attack.

Since all public-key qubits are equivalent and independent,
let us start by focusing on one of them, i.e., the j th qubit, which
is measured in the basis b ∈ {z,x} with b = z(x) referring
to the eigenbasis of the operator σ̂z(σ̂x). The two possible
outcomes of these measurements are 0 and 1 and they occur
with probabilities

p
(b)
j,0(kj ) = cos2

(
β

π

4
− kj θn

2

)
, p

(b)
j,1 = 1 − p

(b)
j,0. (13)

In this equation, β ∈ {0,1} with the correspondences b = z →
β = 0 and b = x → β = 1. Without loss of generality, let us
also assume that T ′ − 1 = 2T [26], so that T measurements
are performed on the basis b. Let T

(b)
0 denote the number of

outcomes 0 from measurements in the b basis. In a single
run of the protocol, Eve obtains a particular set of outcomes
{T (z)

0 ,T
(x)

0 } out of T 2 different possible combinations. We will
first discuss how much information she can obtain about the
public-qubit state (or equivalently the private key).

1. Information gain on the public-qubit state

The a posteriori probability for the j th qubit state is given
by Bayes law

pj

(
k′
j |T (z)

0 ,T
(x)

0

) = qj

(
T

(z)
0 ,T

(x)
0 |k′

j

)
2nq

(
T

(z)
0 ,T

(x)
0

) . (14a)

The probability for the outcome {T (z)
0 ,T

(x)
0 } to occur given the

input state |ψk′
j
(θn)〉 is

qj

(
T

(z)
0 ,T

(x)
0 |k′

j

) =
(

T

T
(z)

0

)(
T

T
(x)

0

)

×
∏
b

[
p

(b)
j,0(k′

j )
]T

(b)
0

[
p

(b)
j,1(k′

j )
]T −T

(b)
0 (14b)

and

q
(
T

(z)
0 ,T

(x)
0

) = 1

2n

2n−1∑
k′
j =0

qj

(
T

(z)
0 ,T

(x)
0 |k′

j

)
. (14c)

A sample of a posteriori probability distributions is depicted
in Fig. 1 for T = 8, 9, and various events {T (z)

0 ,T
(x)

0 }. Different
public-qubit states may give rise to a certain combination
{T (z)

0 ,T
(x)

0 } albeit with different probabilities. Hence, given
a particular combination of 0 outcomes in the two bases,
the conditional a posteriori probability distribution exhibits
peaks for public-qubit states (as determined by kj θn), which
are consistent with the particular event under consideration.
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FIG. 1. A posteriori probability distributions [given by Eqs. (14)] for T = 8 [(a)–(e)], T = 9 [(f)–(h)], and various events {T (z)
0 ,T

(x)
0 }:

(a) T
(z)

0 = 0; (b), (f) T
(z)

0 = 2; (c), (g) T
(z)

0 = 4; (d), (h) T
(z)

0 = 6; (e) T
(z)

0 = 8.

Eve’s information gain is given by the difference of the
Shannon entropies of the distributions before and after the
measurements, i.e.,

Iav = Hprior − 〈Hpost〉

= n +
∑
T

(z)
0

∑
T

(x)
0

q
(
T

(z)
0 ,T

(x)
0

) 2n−1∑
k′
j =0

pj

(
k′
j |T (z)

0 ,T
(x)

0

)

× log2

[
pj

(
k′
j

∣∣T (z)
0 ,T

(x)
0

)]
, (15)

where we have summed over all possible outcomes for a
given state. The entropy of the a priori uniform probability
distribution is equal to the entropy of the private-key bit kj . As
depicted in Fig. 2, this information gain is slightly below the
Holevo bound of Eq. (A2) for τ = 2T , which is tighter than
the bound of Eq. (10). It is worth mentioning that although
the information gain depends weakly on n, the Holevo bound
does not. In the subsequent discussion, the choices of n and T

are such that the inequality (A2) and thus also inequality (10)
are satisfied for τ = 2T .

022342-5



U. SEYFARTH, G. M. NIKOLOPOULOS, AND G. ALBER PHYSICAL REVIEW A 85, 022342 (2012)

8 16 24 32 40

0.56

0.6

0.64

0.68

4 8 12 16 20 24 28 32 36 40
0

2

4

6

8

10

12 Entropy of private key
Information gain
Holevo bound

B
it

s

2T

FIG. 2. (Color online) Entropy of a priori probability distribution
(=entropy of private key), Holevo bound, and information gain
as functions of the number of public-key copies 2T that become
available. The value of n affects considerably the a priori probability
distribution. The inset shows the difference between the Holevo bound
and the information gain.

2. Probability of correctly guessing the message

As we have seen in the previous section, a particular
outcome {T (z)

0 ,T
(x)

0 } of a single run of the protocol allows
Eve to update her knowledge on the public-qubit state she
may have been given. From her point of view, the a posteriori
state pertaining to τ public-key copies is given by

ρ
(τ )
j,post

(
T

(z)
0 ,T

(x)
0

) =
2n−1∑
k′
j =0

p
(
k′
j

∣∣T (z)
0 ,T

(x)
0

) ∣∣
(τ )
k′
j

(θn)
〉〈



(τ )
k′
j

(θn)
∣∣.

(16)

Tracing out τ − 1 copies, we obtain for the single-copy
density operator the expression

ρ
(1)
j,post =

∑
k′
j

p
(
k′
j

∣∣T (z)
0 ,T

(x)
0

) ∣∣ψk′
j
(θn)

〉〈
ψk′

j
(θn)

∣∣ (17)

and the corresponding (estimated) Bloch vector

R̃j =
∑
k′
j

p
(
k′
j

∣∣T (z)
0 ,T

(x)
0

)
[cos(k′

j θn)ẑ + sin(k′
j θn)x̂] (18)

with ||R̃j || �= 1.
Recall now that the one-bit message m is encoded in the

parity of an s-bit codeword w, which is subsequently encrypted
on s public qubits. Let us calculate first Eve’s probability
to recover the bit wj in a single run of the protocol by
measuring the corresponding cipher qubit in the basis defined
by R̃j . For the particular encryption under consideration (see
Sec. II), her probability of success is P (suc|wj,kj ,T

(z)
0 ,T

(x)
0 ) =

cos2(j/2) with j denoting the angle between the ac-
tual Bloch vector Rj and its estimation R̃j . Hence, we
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FIG. 3. (Color online) Conditional probability P (suc|wj ,kj ) for
n = 10 and various values of T .

obtain

P
(
suc

∣∣wj,kj ,T
(z)

0 ,T
(x)

0

)
= 1

2
+ R̃j · Rj

2||R̃j ||
= 1

2
+ 1

2||R̃j ||
∑
k′
j

p
(
k′
j

∣∣T (z)
0 ,T

(x)
0

)
cos[(k′

j − kj )θn] (19)

with Rj defined in Sec. II. For a given public-qubit state,
various outcomes may occur albeit with different probabilities:

P (suc|wj,kj )

=
∑
T

(z)
0

∑
T

(x)
0

P
(
suc

∣∣wj,kj ,T
(z)

0 ,T
(x)

0

)
q
(
T

(z)
0 ,T

(x)
0

∣∣kj

)
. (20)

The typical behavior of P (suc|wj,kj ) with kj (or equiva-
lently kj θn) is depicted in Fig. 3 where we have an oscillation
around the mean value

P̄ (suc|wj ) = 1

2n

∑
kj

P (suc|wj,kj ). (21)

As we increase the number of public-key copies, the amplitude
of the oscillations becomes smaller and the mean value
increases. In particular, we find that, for T > 1,

P̄ (suc|wj ) � 1 − 1

6T
:= U (T ). (22)

As depicted in Fig. 4, this performance is very close to the
optimal probability of successful state estimation by means of
collective measurements [27]

P̄opt(suc|wj ) = 1

2
+ 1

22T +1

2T −1∑
i=0

√(
2T

i

)(
2T

i + 1

)
, (23)

which scales like

P̄opt(suc|wj ) ∼ 1 − 1

8T
. (24)

Bagan et al. [28] have demonstrated that this upper bound
can be saturated by means of individual measurements, and
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FIG. 4. (Color online) Conditional probability P (suc|wj ) for n =
10 and various values of T .

our attack has similarities to their approach. Finally, for
our subsequent discussion, it is worth keeping in mind that
P (suc|wj ) does not depend on the actual value of the bit wj ,
i.e., P (suc|wj = 0) = P (suc|wj = 1).

Up to now, our results are referring to one bit of the
codeword only and our task is to obtain the probability of
success in guessing correctly the bit-message m from the
s-bit codeword w. Since the message is encoded on the parity
of the codeword, Eve succeeds even if she fails to predict
correctly α out of s bits with α even. Instead of considering her
probability of success in a single run of the protocol, which is a
rather complicated task, we concentrate in the following on her
probability of success averaged over all possible public-qubit
states (or equivalently private keys k). As depicted in Fig. 3,
for large T , the amplitude of the oscillations is at least an order
of magnitude smaller than the mean. Hence, any conclusions
based on the average probability of success are also expected
to apply with good accuracy to a single run of the protocol.
Since each bit of the codeword is encrypted separately in
independently prepared public qubits, the averaging over all
possible values k is straightforward. Thus, one obtains for the
average probability of successful eavesdropping for a given
message m and codeword w

P̄s(suc|m,w) =
s∑

α = 0
even

(
s

α

)
[1 − P̄ (suc|wj )]α[P̄ (suc|wj )]s−α.

(25a)
Averaging over all possible equally probable codewords and
messages, we finally find

P̄s(suc) = P̄s(suc|m,w). (25b)

In Fig. 5, P̄s(suc) is depicted as a function of the codeword
length s for various numbers of public-key copies (solid lines).
Clearly, the average probability of success decreases with
increasing s, whereas this drop becomes slower and slower
as we increase the number of public-key copies. For T > 1, a
rather tight upper bound for P̄s(suc) is given by the expression

1

2
+ 1

2

(
1 − 1

3T

)s

, (26)
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FIG. 5. (Color online) Average probability of success P̄s(suc) as
a function of codeword length s for n = 10 and various values of T .
The solid lines are numerical results obtained from Eqs. (25), whereas
the dashed lines are for the upper bound defined in Eq. (26).

which is also plotted in Fig. 5 with dashed lines. A sketch of
the proof of this upper bound is provided in Appendix B.

Now, let us assume that the users participating in the
protocol have agreed in advance on a security parameter ε  1
so that Eve’s probability of success P̄s(suc) has to fulfill the
relation P̄s(suc) � 1/2 + ε. This implies that the message bit
m has to be encrypted in

s �
∣∣∣∣ 1 + log2(ε)

log2

(
3T −1

3T

) ∣∣∣∣ (27)

qubits, which is always fulfilled if

s � 3T |1 + log2(ε)|. (28)

C. Comparison to the forward-search attack

The robustness of the present public-key encryption scheme
against a forward-search attack based on a symmetry test
in which Eve compares the cipher state with the public-key
state is discussed in Refs. [10,18]. The symmetry test of
Refs. [10,18] takes into account all the copies of the public
keys, but in contrast to the attacks discussed here, it requires
rather complicated quantum operations and gates, such as
Fourier transformations and permutations on large numbers
of qubits. Due to the nature of the attack, the probability for
successful eavesdropping does not vary from run to run and
the probability for an eavesdropper to deduce the parity of the
s-bit codeword and hence the message from the cipher state is
given by [18]

P̄s(suc) = 1

2
+ 1

2

(
1 − 1

2T

)s

. (29)

It is rather surprising how close this exact expression is to
the upper bound (26), which is slightly below the optimal
probability of success. For a given security threshold ε, the
length of the codeword has to satisfy

s � T |1 + log2(ε)|, (30)

which differs from Eq. (28) by a factor of 3 only.
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D. A symmetry-test attack with projective measurements

In contrast to the previous attack, we will consider here
an attack which aims directly at the message rather than the
private key and makes use of one copy of the public-key state
and the cipher state only. Eve pairs up the corresponding
qubits of the public key and the cipher state, i.e., the j th
pair pertains to the j th qubits. The qubits of the j th pair
are projected independently onto the same randomly chosen
eigenbasis { |0ϕj

〉}, |1ϕj
〉}, where

|ζϕj
〉 = (−1)ζ cos

(
ϕj

2

)
|0z〉 + sin

(
ϕj

2

)
|1z〉 (31)

and ϕj is uniformly distributed over [0,2π ). The probability
of correct guessing either of the qubits is given by

F (kj θn,ϕj ) ≡ ∣∣〈ψkj
(θn)

∣∣ζϕj

〉∣∣2 = cos2

(
kj θn − ϕj

2

)
. (32)

However, since for a fixed value of kj the angle ϕj is chosen
at random, we can introduce a new random variable ωj,n ≡
kj θn − ϕj uniformly distributed over the interval [0,2π ). For
later convenience, let us also denote the number of wrong
outcomes for the j th pair by ej with 0 � ej � 2. As discussed
in the last paragraph of Sec. II, the question that Eve has
to answer is whether the states of the qubits in the j th pair
are parallel or antiparallel. She obtains the correct answer if
the outcomes of the measurements on the corresponding two
qubits are either both correct (ej = 0) or both wrong (ej = 2).
Thus, the probability of success in a single run of this protocol
is given by

P (suc|wj,kj ) = [F (ωj,n)]2 + [1 − F (ωj,n)]2. (33)

If the one-bit message is encoded in the parity of an s-bit
codeword, which is subsequently encrypted on s qubits, Eve’s
strategy succeeds provided the total number of incorrect
outcomes e = ∑s

j=1 ej is an even integer (e.g., see Table I
for s = 2). The total probability of success in a single run can
be obtained by means of an iteration of the form (B3), where
Q(s) is a multivariable function, i.e., Q(s)(ω1,n, . . . ωs,n) ≡
Ps(suc|k,w). Hence, Eve’s probability of success in getting
the correct parity and thus the correct message consists of two
parts pertaining to possible combinations of outcomes from a
single pair and the remaining s − 1 pairs. More precisely, the
first term refers to the case where the overall result on s − 1
pairs as well as the result on the single pair are correct, whereas
for the second term Eve has failed in both cases.

Given that the probability Ps(suc|k,w) is a function of
s uncorrelated random variables ωj,n, its analysis for s > 2
is rather cumbersome. Nevertheless, it is straightforward to
obtain an analytic expression for the average probability
of success P̄s(suc) by averaging over all possible keys and

TABLE I. Encryption of a single bit, on the state of two qubits
(s = 2). Possible combinations of true (t) and false (f) outcomes that
lead to correct estimation of the message.

Public key t,t t,f t,t t,f f,t f,f f,t f,f
Cipher state t,t t,f f,f f,t t,f t,t f,t f,f
e1,e2 0,0 0,2 1,1 1,1 1,1 1,1 2,0 2,2
e 0 2 2 2 2 2 2 4

codewords, which is equivalent to averaging over all possible
combinations of {ωs,j }. Along the lines of Appendix B, it can
be proven that

P̄s(suc) = 1

2
+ 1

2s+1
. (34)

Again, the average probability of success drops exponentially
with increasing values of s. In contrast to Eqs. (26) and (29),
this expression does not depend on T since the attack under
consideration uses only one copy of the public key. It is,
however, equivalent to the corresponding expression for the
forward-search attack, i.e., Eq. (29) for T = 1. Hence, for a
given security threshold ε, the length of the codeword has to
satisfy inequality (30) for T = 1.

IV. CONCLUSIONS

We have analyzed the security of a quantum-public-key
encryption (QPKE) scheme that relies on single-qubit ro-
tations. For a given number of public keys, the symmetry
underlying the protocol has been shown to restrict considerably
the information gain that an eavesdropper might gain on
the private key. This result suggests that new, more efficient
QPKE schemes could rely on quantum one-way functions,
which explore symmetries in the involved quantum states. It
is also worth recalling here the pivotal role of symmetries
in quantum-key-distribution protocols, as a result of which
qudit-based protocols can tolerate higher error rates than
qubit-based ones [29].

The robustness of the protocol under consideration was
mainly analyzed in the framework of an attack which takes into
account all the public-key copies and is based on projective
measurements on single qubits. As a main result, it has been
shown that the performance of this attack is comparable to
the performance of optimal collective measurements [27] as
well as to the forward-search attack of [18], which involves
rather complicated quantum operations. Variants of the attack
are expected to be applicable to other types of QPKE schemes
as well.
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APPENDIX A: PROPERTIES OF THE DENSITY
OPERATOR (9)

As for the matrix elements of the density operator of
Eq. (9), we can distinguish two different cases:

Case 1: If l + l′ is an even number, the function
fτ,l(kj θn)f �

τ,l′ (kj θn) has even parity and does not change sign
as we sum over all possible values of kj ∈ Z2n . Hence, we
expect a nonzero contribution of Cl,l′ in this case.

Case 2: If l + l′ is an odd number, the element Cl,l′ vanishes
since the parity of the overall trigonometric function in the sum
is odd.

Another important property of the density operator (9) is
that for fixed value of τ there seems to exist a critical value of
n, let us say nc, for which it is n independent for all n � nc.
Furthermore, we have studied the rank of the density operator
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as well as the form of its eigenvalues for various values of n and
τ . Our simulations show that for fixed τ , rank[ρ(τ )

j,prior] < τ + 1
for all n < nc and thus the density operator is singular, whereas
for n � nc, rank[ρ(τ )

j,prior] = τ + 1.
The von Neumann entropy of a quantum state is bounded

from above by log2(D) with D denoting the dimension of
the support of the relevant density operator. In view of the
Hermiticity of ρ

(τ )
j,prior, we have D = rank[ρ(τ )

j,prior] and thus for
a given pair of (τ,n), the entropy of the density operator is
bounded from above by the corresponding entropy for (τ,nc).
Hence, we arrive again at the upper bound for the entropy
provided in Eq. (10).

In order to obtain a tighter bound, we can investigate
eigenvalues of the density operator for (τ,nc). Our simulations
suggest that in this case the eigenvalues of (9) are given
by

λi = 1

2τ

(
τ

i

)
. (A1)

So, S[ρ(τ )
j,prior] can be calculated as the entropy of the binomial

distribution with mean τ/2 and variance τ/4. This entropy
is bounded from above by the entropy of the the normal
(Gaussian) distribution with the same mean and variance [30].
Thus, we obtain the result

S
[
ρ

(τ )
j,prior

]
� 1

2 log2(τ ) + 1
2 log2(πe/2) (A2)

and this bound is below the one of (10). Accordingly, the
information gain is upper bounded by

Iav � 1
2 log2(τ ) + 1

2 log2(πe/2). (A3)

APPENDIX B: PROOF OF THE UPPER BOUND (26)

The quantity we want to bound from above, i.e., P̄s(suc),
is a monotonously increasing function of P̄ (suc|wj ) for
P̄ (suc|wj ) > 1/2. Thus, in view of (22), we have

P̄s(suc) =
s∑

α = 0
even

(
s

α

)
[1 − P̄ (suc|wj )]α[P̄ (suc|wj )]s−α (B1)

�
s∑

α = 0
even

(
s

α

)
[1 − U (T )]α[U (T )]s−α. (B2)

Let us denote the right-hand side of inequality (B2) by Q(s)(T ).
It can be shown by induction that Q(s) is equal to Eq. (26). To
this end, we note that Q(s) can be written alternatively in the
form of an iteration, i.e.,

Q(s) = Q(1)Q(s−1) + [1 − Q(1)][1 − Q(s−1)]. (B3)

For s = 1, the equality we want to show holds, i.e., we have

Q(1) = U (T ) = 1

2
− 1

2

(
1 − 1

3T

)
:= 1

2
+ λ

2
. (B4)

Assuming that it holds for s, i.e.,

Q(s) = 1

2
+ λs

2
, (B5)

we can prove also that it holds for s + 1 because

Q(s+1) =
(

1

2
+ λ

2

)(
1

2
+ λs

2

)
+

(
1

2
− λ

2

)(
1

2
− λs

2

)
(B6)

= 1

2
+ λs+1

2
. (B7)
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