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Abstract
The asymptotic dynamics of discrete quantum Markov chains generated by the
most general physically relevant quantum operations is investigated. It is shown
that it is confined to an attractor space in which the resulting quantum Markov
chain is diagonalizable. A construction procedure of a basis of this attractor
space and its associated dual basis of 1-forms is presented. It is applicable
whenever a strictly positive quantum state exists which is contracted or left
invariant by the generating quantum operation. Moreover, algebraic relations
between the attractor space and Kraus operators involved in the definition of a
quantum Markov chain are derived. This construction is not only expected to
offer significant computational advantages in cases in which the dimension of
the Hilbert space is large and the dimension of the attractor space is small, but
it also sheds new light onto the relation between the asymptotic dynamics of
discrete quantum Markov chains and fixed points of their generating quantum
operations. Finally, we show that without any restriction our construction
applies to all initial states whose support belongs to the so-called recurrent
subspace.

PACS numbers: 03.67.−a, 03.65.Yz, 02.30.Tb, 03.65.Ta

1. Introduction

Quantum operations, i.e. completely positive and trace non-increasing linear transformations
acting on a Hilbert space, play a central role in quantum theory. They describe the most general
dynamics of an open quantum system which can be induced by unitary transformations
and selective von Neumann measurements involving an additional initially uncorrelated
ancillary quantum system [1]. Quantum channels, i.e. trace preserving quantum operations,
can always be described by a unitary operation acting on both the system under consideration
and an appropriately chosen ancilla system, whereas general non-trace preserving quantum
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operations cannot be represented in this way. Also, they always involve a selective quantum
measurement performed on the ancilla system. Physical applications of quantum operations
range from quantum control theory and dissipation engineering [2] to quantum error correction
[3], quantum percolation [4] and quantum computation and quantum programming [5].
Furthermore, quantum operations are also an indispensable theoretical tool for exploring
the ultimate limits of quantum theory [6].

Recent quantum technological advances [7] have stimulated significant interest in the
dynamics of large open quantum systems formed by many indistinguishable or distinguishable
elementary quantum systems, such as Bose–Einstein condensates [8] or qubit-based quantum
networks [9]. These technological developments raise interesting theoretical questions
concerning the dynamics of large quantum systems under the action of iterated quantum
operations, the so-called quantum Markov chains [10]. This is due to the fact that in the area
of statistical physics many discrete models involving quantum Markov chains are employed
to explore fundamental physical phenomena such as the approach to thermal equilibrium or
the asymptotic dynamics and decoherence of macroscopic quantum systems.

For a general classification of quantum Markov chains an investigation of their asymptotic
dynamics resulting from large numbers of iterations of their generating quantum operations
constitutes a natural starting point. In this context the natural questions arise: which asymptotic
dynamics is possible for a quantum Markov chain and how it is related to spectral properties
of its generating quantum operation? It is the main intention of this paper to address these
questions for arbitrary quantum Markov chains.

Recently, some results addressing these questions have already been found for special
classes of quantum Markov chains. In particular, the asymptotic dynamics of Markov chains
resulting from iterated random unitary quantum operations has been investigated in detail.
These operations are contracting and two major results have been established [11, 12]. Firstly,
it has been demonstrated that the asymptotic dynamics of such a quantum Markov chain is
confined to an attractor space. This attractor space is spanned by all orthogonal eigenspaces
of the generating random unitary transformations which are associated with eigenvalues
of unit modulus. Based on an analysis of these particular spectral properties, convenient
representations for the asymptotic dynamics of this special class of quantum Markov chains can
be derived. Secondly, it has been shown how an orthogonal basis of such an asymptotic attractor
space is determined by a set of linear equations involving the Kraus operators specifying
the generating random unitary quantum operation. Taking advantage of the fundamental
contraction property of this special class of unital and trace preserving quantum operations
recently parts of these investigations have been generalized also to quantum Markov chains
which are generated either by trace preserving and unital [13] or by trace preserving and sub-
unital quantum operations [14]. Although these generalizations demonstrate that these quantum
operations can be diagonalized on their asymptotic attractor spaces, they still leave important
questions open concerning, for example, the explicit construction of bases of the attractor
spaces and of their associated dual bases.

Despite recent developments [13–15], it is still unclear to what extent similarly powerful
results apply to the most general and physically relevant quantum Markov chains. This is due
to the fact that general quantum operations are not contracting, so that the ideas underlying
the proofs of these previous results do not apply. The main purpose of this paper is to
close this gap and to generalize these previous results to quantum Markov chains which are
generated by arbitrary quantum operations. Our generalization reveals that the contraction
property is not essential for deriving analogous results applicable to general discrete quantum
Markov chains. The desired structural properties can be established from the fact that general
quantum operations are trace non-increasing and completely positive. These properties imply
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the validity of generalized Schwartz inequalities [16, 17]. Saturating these inequalities imposes
important structural constraints on the asymptotic attractor space. We show that the saturation
of these generalized Schwartz inequalities is possible whenever a strictly positive operator
exists which is contracted or left invariant by the generating the quantum operation of a
quantum Markov chain. Our results shed new light onto characteristic properties of fixed
points of quantum operations, thereby generalizing recent results on the theory of fixed points
of quantum operations and of noiseless subsystems in quantum systems with finite-dimensional
Hilbert spaces [18–20]. The main intention behind our subsequent investigation is a systematic
exploration of the general structure of the asymptotic dynamics and of the attractor space of
general quantum Markov chains. Thereby, questions concerning the convergence toward this
asymptotic dynamics are beyond the scope of this paper. Despite numerous recent efforts, a
systematic rigorous understanding of these convergence properties is still lacking.

This paper is organized as follows. Known basic notions and properties of completely
positive quantum maps and of their iterations are summarized in section 2. Based on these
results, it is demonstrated that the asymptotic dynamics of a quantum Markov chain resulting
from iterations of a general trace non-increasing quantum operation is confined to an attractor
space. This attractor space is spanned by, in general, non-orthogonal (simple) eigenvectors of
generating quantum operation. Thus, in this attractor space also these most general physically
relevant quantum Markov chains are diagonalizable. The determination of the asymptotic
dynamics requires the projection of an arbitrary initially prepared quantum state onto this
attractor space. For this purpose one has to construct a dual basis of 1-forms. In general, this is
a complicated task already for underlying Hilbert spaces of moderate dimension, even though
the dimension of the attractor space is small. The construction of these dual bases of 1-forms is
addressed in section 3. It is shown that whenever a strictly positive linear operator exists which
is contracted or left invariant by the generating quantum operation, it is possible to construct
this dual basis in a straightforward way from a knowledge of the basis of the attractor space.
In section 4, the relation between the basis of the attractor space and Kraus operators defining
the generating quantum operation of a quantum Markov chain is found. Finally, in section 5,
it is demonstrated that to some extent the theoretical treatment of sections 3 and 4 can also be
applied to cases in which the quantum state which is contracted or left invariant by a quantum
operation is not strictly positive.

2. Basic properties of quantum Markov chains and their asymptotic dynamics

In this section, previously known basic properties of completely positive trace non-increasing
quantum operations are summarized in order to introduce our notation. With the help of
these properties the asymptotic dynamics of quantum Markov chains is determined which are
generated by iterations of such operations.

2.1. General trace non-increasing quantum operations

In the following we consider an N-dimensional Hilbert space H equipped with a scalar
product (., .). Let B(H ) be the associated Hilbert space of all linear operators acting on H
with the Hilbert–Schmidt scalar product 〈A, B〉HS = Tr{A†B}. The corresponding Hilbert–
Schmidt norm is given by ‖ A ‖:= √〈A, A〉HS for all A ∈ B(H ). Consequently, the induced
norm of a linear operator S : B(H ) → B(H ) acting on the space B(H ) can be defined by

‖ S ‖= sup
‖A‖=1

‖ S(A) ‖ . (1)

3



J. Phys. A: Math. Theor. 45 (2012) 485301 J Novotný et al

This latter norm fulfils the important relation (see e.g. [16])

‖ S ‖=‖ S† ‖ (2)

characterizing a Banach∗ algebra [23]. Thereby, S† denotes the adjoint map of S with respect
to the Hilbert–Schmidt scalar product. If a linear map satisfies the relation ‖ S ‖� 1, then it
is called a contraction.

An arbitrary completely positive linear mapP : B(H ) → B(H ) admits a decomposition
into Kraus operators {Aj}k

i=1 ⊆ B(H ) [1, 24], i.e.

P(.) =
k∑

j=1

Aj(.)A
†
j . (3)

Its adjoint map P† is also a completely positive map with the Kraus operators
{
A†

j

}k

i=1, i.e.

P†(.) =
k∑

j=1

A†
j (.)Aj. (4)

In our subsequent discussion we call a completely positive map P which is also trace
non-increasing, i.e. P†(I) = ∑

j A†
jA j � I, a quantum operation. In the special case

P†(I) = ∑
j A†

jA j = I such a map is called a quantum channel or a trace preserving quantum
operation. A quantum operation which leaves maximally mixed states undisturbed is called
unital and satisfies the relation P(I) = ∑

j A jA
†
j = I. Prominent examples of unital quantum

channels are random unitary operations (or random external fields) [11, 12]. In less restrictive
cases in which P(I) = ∑

j A jA
†
j � I quantum operations are called sub-unital.

In the subsequent sections the dynamics of a quantum system with Hilbert space H is
discussed which is governed by the iterated application of a quantum operation P as described
by (3). This dynamics constitutes a quantum Markov chain with a generator P in analogy to
the corresponding classical case (compare e.g. with [10, 25]). Thus, starting with an initial
quantum state 0 � ρ(0) ∈ B(H ), after n iterations this state is transformed into the quantum
state ρ(n) = Pn(ρ(0)). Our main purpose is to analyze characteristic features of the resulting
asymptotic behavior of Pn and its relation to the spectral properties of its generating quantum
operation P . In general, the commutation relation

[
P,P†

] = 0 need not hold so that in general
a diagonalization of the generator P is not possible. Therefore, in such cases the determination
of the resulting asymptotic dynamics of Pn is complicated as this n-fold iteration may involve
high powers of non-trivial Jordan normal forms of the generator P .

Despite these possible complications the following useful theorems hold. The first one
captures some basic spectral properties of the special class of quantum channels, i.e. of
trace preserving completely positive quantum operations [26, 25]. The second one restricts
the eigenvalues and eigenspaces of any trace non-increasing general quantum operation.

Theorem 2.1. If P is a trace preserving quantum operation of the form (3) and if σ denotes
the set of all its eigenvalues, then the following statements are equivalent:

• If λ ∈ σ, then |λ| � 1.
• 1 ∈ σ .
• For every quantum state 0 � ρ ∈ B(H ) the limit

ρ = lim
n→∞

1

n

n−1∑
k=0

Pk(ρ) (5)

exists and the quantum state 0 � ρ ∈ B(H ) is a fixed point and the eigenvector of P with
eigenvalue λ = 1.
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In our subsequent discussion two concepts for analyzing characteristic properties of
quantum operations P play an important role, namely eigenspaces and their ranges. Suppose
λ is an eigenvalue of the map P . Its corresponding eigenspace is denoted by

Ker(P − λI) = {X ∈ B(H )|P(X ) = λX} , (6)

and the associated range of the map P − λI is denoted by

Ran(P − λI) = {X ∈ B(H )|∃Y ∈ B(H ), X = P(Y ) − λY } . (7)

The possible eigenvalues and the structure of the corresponding eigenspaces of general trace
non-increasing quantum operations are restricted considerably by the following properties.

Theorem 2.2. For any quantum operation P : B(H ) → B(H ) as defined by (3), i.e. for any
trace non-increasing and completely positive map, the following relations hold.

• Any eigenvalue λ of P fulfils the relation | λ |� 1.
• The kernel Ker (P − λI) and the range Ran (P − λI) of any eigenvalue λ with | λ |= 1

fulfil the relation

Ker (P − λI) ∩ Ran (P − λI) = {0} . (8)

Different versions of this theorem and of special cases thereof are known [21, 22, 5]. For
the sake of completeness, we present a proof involving different methods in appendix A.

2.2. Asymptotic dynamics of iterated trace non-increasing quantum operations

Recently, the asymptotic behavior of quantum Markov chains which are generated by random
unitary transformations has been investigated in detail [11, 12]. As a major result, it has been
shown that all Jordan blocks corresponding to eigenvalues λ with |λ| = 1 are one-dimensional
and that the asymptotic dynamics of Pn can be diagonalized on the associated attractor space

Attr(P ) :=
⊕
|λ|=1

Ker(P − λI) (9)

formed by the direct sum of all eigenspaces of P with eigenvalues |λ| = 1. The original idea of
the proof of this asymptotic structure as presented in [12] relies on the fact that random unitary
transformations are contractions. Recently, this result has been generalized to Markov chains
generated by unital quantum channels [13] or by sub-unital quantum operations [14]. Although
these investigations address a large class of iterated quantum operations, the extension of
these results to quantum Markov chains generated by arbitrary trace non-increasing quantum
operations, which are generally non-contracting, is unclear as the previously applied arguments
do no longer apply. However, based on theorem 2.2 it can be shown that for quantum operations,
i.e. trace non-increasing completely positive quantum maps P : B(H ) → B(H ) (compare
with equation (3)) with P†(I) � I, in the limit n → ∞ the dynamics of the iterated map Pn

is confined to an attractor space Attr(P ). This latter space is spanned by all eigenvectors of P
with eigenvalues λ of unit modulus, i.e. |λ| = 1. According to theorem 2.2, these eigenvectors
are simple but non-orthogonal, in general. Thus, on this asymptotically relevant subspace
Attr(P ) the iterated quantum operation Pn can be diagonalized. This fact is summarized by
the following theorem.

Theorem 2.3. Asymptotically the iterative dynamics of any quantum operation P : B(H ) →
B(H ) is given by

X∞(n) =
dλ∑

λ∈σ1,i=1

λnXλ,iTr(Xλ,i†X (0)) (10)
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with

lim
n→∞ ‖ X∞(n) − Pn(X (0)) ‖= 0. (11)

Thereby, the eigenvectors Xλ,i are determined by the relation P(Xλ,i) = λXλ,i(i = 1 . . . dλ)

with λ ∈ σ1 := {λ||λ| = 1}. Their dual vectors Xλ,i ∈ B(H )(i = 1 . . . dλ) with respect to
the Hilbert–Schmidt scalar product are defined by the property Tr(Xλ,i†Xλ′,i′ ) = δλλ′δii′ for
all λ, λ′ ∈ σ1 and by the property that for λ ∈ σ1 each Xλ,i is orthogonal to all eigenspaces
Ker(P − λ′I) with |λ′| < 1.

The proof of this theorem involves a straightforward application of theorem 2.2 and of
an upper bound restricting the influence of non-trivial Jordan blocks [12]. For the sake of
completeness, a proof of this theorem is presented in appendix B.

Theorem 2.3 generalizes previous results on the asymptotic dynamics of quantum Markov
chains which apply only to subunital channels and unital quantum operations or even to more
restrictive cases, such as unital channels, i.e.P(I) = I,P†(I) � I or random unitary operations
[11, 12]. It implies considerable simplifications as far as the determination of the asymptotic
dynamics is concerned because only eigenspaces corresponding to eigenvalues of unit modulus
contribute and these eigenspaces are associated with trivial one-dimensional Jordan blocks.
However, in general these eigenspaces spanning the asymptotic attractor space Attr(P ) may
still be non-orthogonal. This complicates the construction of the relevant dual vectors which
project onto the attractor space because for this purpose typically the knowledge of the
complete Jordan basis of generalized eigenvectors of the quantum operation P is required.
This fact is summarized in the following corollary.

Corollary 2.4. Let {Xλ,i} with |λ| � 1 and i = 1 . . . , dλ be a complete Jordan basis of the
quantum operation P . The corresponding non-singular Hermitian matrix

gλi,λ′i′ = Tr
(
X†

λ,iXλ′,i′
)

(12)

with |λ|, |λ′| � 1, i = 1 . . . , dλ, i′ = 1 . . . , dλ′ contains all relevant information about the
non-orthogonality of this Jordan basis. The corresponding dual basis {Xλ,i} with |λ| � 1 and
i = 1 . . . , dλ is then given by

Xλ,i =
dλ′∑

|λ′|�1,i′=1

(g−1)λi,λ′i′Xλ′i′ . (13)

In terms of this Jordan basis and its dual, the projection operator � onto the attractor space
Attr(P ) is given by

�. =
dλ∑

λ∈σ1,i=1

Xλ,iTr(Xλ,i†.). (14)

Thus, despite the simplifications resulting from theorem 2.3, in general the determination
of the required dual vectors of the asymptotic attractor space Attr(P ) still constitutes a
formidable task in particular in cases in which the dimension of the Hilbert space is large.
Nevertheless, in the subsequent sections it is demonstrated that under additional restrictions
on the generating quantum operations P of a quantum Markov chain both tasks, namely the
construction of a basis for the asymptotic attractor space Attr(P ) and the construction of its
associated dual basis, can be simplified considerably.
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3. Construction of the dual asymptotic basis

A major open problem which has not been addressed in the previous section is whether
there exist convenient methods which simplify the construction of the dual vectors Xλ,i(i =
1 . . . , dλ) for all possible eigenvalues λ ∈ σ1. The knowledge of these dual vectors is crucial
for projecting any linear operator X (0) or any initially prepared quantum state ρ(0) onto the
attractor space Attr(P ) according to (10).

In this section, it is shown that under the additional assumption, that the generating
quantum operation P of a quantum Markov chain supports the existence of a strictly positive
quantum state 0 < ρ ∈ B(H ) which is contracted or left invariant, i.e. P(ρ) � ρ, a
straightforward construction of these dual basis vectors is possible from the knowledge of all
eigenvectors with eigenvalues λ ∈ σ1. For a quantum channel, i.e. a trace preserving quantum
operation, a quantum state ρ withP(ρ) < ρ cannot exist. Therefore, for quantum channels this
property reduces to the existence of a not necessarily uniquely determined full rank stationary
state. For the construction of the required dual basis vectors, we exploit the basic property
that the generating quantum operation P of a quantum Markov chain is trace non-increasing
and thus fulfils characteristic generalized Schwartz inequalities [16, 17]. Saturating these
inequalities we arrive at the following theorem.

Theorem 3.1. If P : B(H ) → B(H ) is a quantum operation with the additional property
that there exists a quantum state 0 < ρ ∈ B(H ) fulfilling the inequality P(ρ) � ρ, then for
all kernels of eigenvalues λ ∈ σ1 the following equivalences hold:

• X ∈ Ker(P − λI) ⇔ Xρ−1 ∈ Ker(P† − (1/λ)I)
• X ∈ Ker(P − λI) ⇔ ρ−1X ∈ Ker(P† − (1/λ)I)
• X ∈ Ker(P − λI) ⇔ ρ−1Xρ ∈ Ker(P − λI).

Note that λ ∈ σ1 implies the relation λ = 1/λ with λ denoting the complex conjugate
of λ.

Proof. For the proof of the first statement (1) we investigate the following linear map:

V(X ) = P†(Xρ− 1
2 )ρ

1
2 (15)

with its adjoint map

V†(X ) = P(Xρ
1
2 )ρ− 1

2 . (16)

First of all we demonstrate that both maps are contractions. Because P† is subunital, i.e.
P†(I) � I, the Schwartz operator inequality P†(X )P†(X†) � P†(XX†) applies [16, 17].
Thus, for a density operator 0 < ρ ∈ B(H ) which fulfils the relation P(ρ) � ρ, we obtain
the inequality

‖ V(X ) ‖2= Tr{(V(X ))†V(X )} = Tr{P†(ρ− 1
2 X†)P†(Xρ− 1

2 )ρ}
� Tr{P†(ρ− 1

2 X†Xρ− 1
2 )ρ} = Tr{ρ− 1

2 X†Xρ− 1
2 P(ρ)}

� Tr{ρ− 1
2 X†Xρ− 1

2 ρ} =‖ X ‖2 . (17)

Consequently, ‖ V ‖=‖ V† ‖� 1, and both V and V† are contracting linear maps.
If X ∈ Ker(P − λI), then a simple calculation reveals that

‖ V†(Xρ− 1
2 ) ‖ = ‖ P(X )ρ− 1

2 ‖=| λ |‖ Xρ− 1
2 ‖ . (18)

7
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Furthermore, Schwartz’s inequality and the contracting properties of V and V† imply the
inequalities

‖ V†(Xρ−1/2) ‖2= Tr((V†(Xρ−1/2))†V†(Xρ−1/2)) = Tr((Xρ−1/2)†VV†(Xρ−1/2))

�‖VV†(Xρ−1/2)‖‖Xρ−1/2 ‖�‖V ‖‖V† ‖‖ (Xρ−1/2)‖2�‖ (Xρ−1/2)‖2 .

(19)

For λ ∈ σ1, the very left hand side of these inequalities equals the very right hand side, so that
we can conclude

VV†(Xρ− 1
2 ) = P†(P(X )ρ−1)

√
ρ = Xρ− 1

2 (20)

for λ ∈ σ1. Thus, using P(X ) = λX we finally arrive at the relation

P†(Xρ−1) = 1

λ
Xρ−1 = λXρ−1 (21)

in view of |λ| = 1. Analogously, it can be demonstrated that

V†V(Xρ− 1
2 ) = P(P†(Xρ−1)ρ)ρ−1/2 = Xρ− 1

2 (22)

for λ ∈ σ1, so that we can conclude P(X ) = λX provided P†(Xρ−1) = λ−1Xρ−1.
Statement (2) can be proven by applying the same reasoning to the linear map

W(X ) = ρ1/2P†(ρ−1/2X ) and to its adjoint map W†(X ) = ρ−1/2P(ρ1/2X ).
Statement (3) is a simple consequence of statements (1) and (2). Assuming that X

is an eigenvector of P with eigenvalue λ ∈ σ1, i.e. P(X ) = λX , statement (2) implies
P†(ρ−1X ) = 1

λ
ρ−1X and statement (1) implies P(ρ−1Xρ) = λρ−1Xρ. �

On the basis of this theorem a new scalar product can be defined in the space B(H ).
This scalar product is determined via any strictly positive operator 0 < ρ ∈ B(H ) by
〈A, B〉ρ ≡ 〈A, Bρ−1〉HS. It allows us to define the concept of ρ-orthogonality by the requirement
that two operators, say A, B ∈ B(H ), are ρ-orthogonal, i.e. A⊥ρB, iff 〈A, B〉ρ = 0. Based on
this concept, the following important ρ-orthogonality relations can be proved.

Theorem 3.2. Let P : B(H ) → B(H ) be a quantum operation and let there be a strictly
positive operator 0 < ρ ∈ B(H ) such that P(ρ) � ρ, then the following statements are
fulfilled.

• For any eigenvalue λ of P with |λ| = 1 kernel and range are orthogonal, i.e.

Ker(P − λI) ⊥ρ Ran(P − λI) (23)

and

Ker (P − λI) ∩ Ran (P − λI) = {0} . (24)

• For any two different eigenvalues λ1 and λ2 of P with |λ1| = |λ2| = 1 the associated
eigenspaces are orthogonal, i.e.

Ker(P − λ1I) ⊥ρ Ker(P − λ2I). (25)

Proof. Let us consider X ∈ B(H ) with X ∈ Ker(P − λI) and λ ∈ σ1, so that we obtain the
relations (P(X ))† = P(X†) = λX† and P†(Xρ−1) = 1

λ
Xρ−1 from theorem 3.1. Furthermore,

let us consider Y ∈ B(H ) with Y ∈ Ran(P − λI), i.e. there exists a 0 �= Z ∈ B(H ) with
P(Z) − λZ = Y . This implies the relation

〈X,Y 〉ρ = Tr(X†Yρ−1) = Tr(X†P(Z)ρ−1) − λTr(X†Zρ−1)

= Tr([P†(Xρ−1)]†Z) − λTr(ρ−1X†Z) = 0 (26)

for λ ∈ σ1.

8



J. Phys. A: Math. Theor. 45 (2012) 485301 J Novotný et al

In order to prove statement (2) let us consider X1 ∈ Ker(P − λ1I) and X2 ∈ Ker(P − λ2I)
with λ1 �= λ2 and λ1, λ2 ∈ σ1. This implies the relation

〈X1, X2〉ρ = Tr
(
X†

1 X2ρ
−1

) = 1

λ1
Tr

(
P

(
X†

1

)
X2ρ

−1
) = 1

λ1
Tr

(
X†

1 P
†(X2ρ

−1)
)

= 1

λ2λ1
Tr

(
X†

1 X2ρ
−1

)) = 1

λ2λ1
〈X1, X2〉ρ. (27)

Because λ1, λ2 ∈ σ1, the relation λ2λ1 = λ2/λ1 applies, so that 〈X1, X2〉ρ = 0 for λ1 �= λ2. �

Based on these characteristic properties the dual asymptotic basis can be constructed in a
simple way from the knowledge of all eigenspaces Ker(P − λI) for all λ ∈ σ1. This central
result of this section is summarized in the following theorem.

Theorem 3.3. Let P : B(H ) → B(H ) be a quantum operation with the additional property
that there exists a strictly positive quantum state 0 < ρ ∈ B(H ) with P(ρ) � ρ. Under these
conditions the dual vectors Xλ,i of the eigenvectors Xλ,i with λ ∈ σ1 and i = 1 . . . , dλ which
span the asymptotic attractor space Attr(P ) are given by

Xλ,i = Xλ,iρ
−1

[
Tr

(
X†

λ,iXλ,iρ
−1

)]−1
. (28)

Proof. The dimensions of the kernel and the range of the eigenspace of an arbitrary eigenvalue
λ fulfil the general relation

Dim(Ker(P − λI)) + Dim(Ran(P − λI)) � Dim(B(H )).

According to theorem 3.2, the linear map P fulfils the relation Ker(P − λI) ⊥ρ Ran(P − λI)
so that we can conclude

Ker(P − λI)) ⊕ Ran(P − λI) = B(H ) (29)

for all λ ∈ σ1. In addition, theorem 3.2 also implies that Ker(P − λ1I) ⊥ρ Ker(P − λ2I) for
all λ1 �= λ2 and λ1, λ2 ∈ σ1 which implies the relation⊕

λ∈σ1

Ker(P − λI) ⊕
⋂
λ∈σ1

Ran(P − λI) = B(H ),

with
⋂

λ∈σ1
Ran(P − λI) being orthogonal to the asymptotic attractor space Attr(P ) and

simultaneously containing all contributions of eigenspaces Ker(P − λI) with |λ| < 1.
According to theorem 2.3, this latter subspace does not contribute to the dynamics of the
iterated quantum operation Pn in the limit n → ∞. Therefore, Attr(P ) is spanned by the
ρ-orthogonal eigenspaces Ker(P − λI) with λ ∈ σ1, i.e.

Attr(P ) =
⊕
λ∈σ1

Ker(P − λI) (30)

and the ρ-orthogonal projection onto this attractor space is achieved by the dual vectors of
(28) and by the projection operator

� (.) =
∑
λ∈σ1

Xλ,iTr(Xλ,i†.). (31)

Thereby, it is assumed that in the case of degeneracy of eigenspaces with λ ∈ σ1, the
corresponding eigenstates Xλ,i are ρ-orthogonalized. �

9



J. Phys. A: Math. Theor. 45 (2012) 485301 J Novotný et al

4. Construction of the asymptotic attractor space

In this section, we address the final question how the relevant eigenvectors Xλ,i i = 1 . . . , dλ

with λ ∈ σ1 which define the asymptotic attractor space Attr(P ) are related to the Kraus
operators which define the generating quantum operation of a quantum Markov chain.

For this purpose, we use the following property which holds for arbitrary completely
positive maps (3) even if they not trace non-increasing.

Theorem 4.1. Let P : B(H ) → B(H ) be a completely positive map defined by (3) and let
there be a strictly positive operator 0 < ρ1 ∈ B(H ) satisfying P(ρ1) � ρ1 and a positive
operator ρ2 � 0 satisfying P†(ρ2) � ρ2, then any X ∈ Ker(P − λI) with λ ∈ σ1 fulfils the set
of equations

ρ2AjXρ−1
1 = λρ2Xρ−1

1 Aj (32)

for all j ∈ {1, . . . , k}.

Proof. In order to prove this theorem we investigate the linear map

Vj(X ) = λ
√

ρ2Xρ−1
1 Aj

√
ρ1 − √

ρ2AjXρ
−1/2
1 (33)

with X ∈ Ker(P − λI) and evaluate the following sum of non-negative terms:
k∑

j=1

Tr{Vj(X )[Vj(X )]†} = Tr
{
Xρ−1

1 X†P†(ρ2)
} + |λ|2Tr

{
Xρ−1

1 P(ρ1)ρ
−1
1 X†ρ2

}

− λTr
{
Xρ−1

1 P(X†)ρ2
} − λTr

{
P(X )ρ−1

1 X†ρ2
}

� (1 − |λ|2)Tr
{
Xρ−1

1 X†ρ2
}
. (34)

Thereby, the relations P(X ) = λX and P(X†) = λX† together with the assumptions
P(ρ1) � ρ1 and P†(ρ2) � ρ2 have been taken into account. For λ ∈ σ1, this leads to
the conclusion Vj(X ) = 0 for X ∈ Ker(P − λI) and for each j ∈ {1, . . . , k}. �

Applying this theorem to a trace non-increasing quantum operation P and to its adjoint
P† (which is generally not trace non-increasing) we obtain the following theorem.

Theorem 4.2. Let P : B(H ) → B(H ) be a quantum operation and let there be a strictly
positive operator 0 < ρ ∈ B(H ) satisfying P(ρ) � ρ, then any X ∈ Ker(P − λI) with
λ ∈ σ1 fulfils the set of equations

AjXρ−1 = λXρ−1Aj, A†
jXρ−1 = (1/λ)Xρ−1A†

j ,

Ajρ
−1X = λρ−1XAj, A†

jρ
−1X = (1/λ)ρ−1XA†

j (35)

for all j ∈ {1, . . . , k}.

Proof. The first equation is a simple application of theorem 4.1 with ρ1 = ρ and ρ2 = I. The
second equation is a consequence of theorem 3.1, namely P†(Xρ−1) = (1/λ)Xρ−1, and of
theorem 4.1 applied to P† with ρ1 = I and ρ2 = ρ. The third and fourth equations are also
consequences of these two theorems. �

This theorem states that for each eigenvalue λ ∈ σ1 the set

Dλ,ρ ≡ {
X | AjXρ−1 = λXρ−1Aj, A†

jXρ−1 = λXρ−1A†
j ,

Ajρ
−1X = λρ−1XAj, A†

jρ
−1X = λρ−1XA†

j for j ∈ {1, . . . , k}} (36)

10
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includes the eigenspace Ker(P −λI), i.e. Ker(P−λI) ⊆ Dλ,ρ . In order to address the question
under which conditions we can achieve equality, i.e. Ker(P−λI) = Dλ,ρ , we add the following
two corollaries of theorem 4.2 which state that either the conditions P†(I) � I and P(ρ) = ρ

or the conditions P†(I) = I and P(ρ) = ρ are sufficient for this purpose.

Corollary 4.3. Let P : B(H ) → B(H ) be a quantum operation defined by (3) and let
there be a strictly positive operator 0 < ρ ∈ B(H ) satisfying P(ρ) = ρ, then the following
relations hold.

• Ker(P − λI) = Dλ,ρ for all λ ∈ σ1.
• If X1 ∈ Ker(P − λ1I), X2 ∈ Ker(P − λ2I) then X1X2ρ

−1 ∈ Ker(P − λ1λ2I).

Proof. For the proof of (1) we have to show that Dλ,ρ ⊆ Ker(P − λI). For this purpose,
let us assume that X ∈ Dλ,ρ and therefore satisfies the relations AjXρ−1 = λXρ−1Aj for
j ∈ {1 . . . , k}. Multiplying both sides of these equations by ρA†

j and summing over all values
of j = 1 . . . , k we obtain the result P(X ) = λXρ−1P(ρ) = λX , i.e. X ∈ Ker(P − λI).

If X1 ∈ Ker(P − λ1I) and X2 ∈ Ker(P − λ2I), then statement (1) ensures that X1 ∈ Dλ1,ρ

and X2 ∈ Dλ2,ρ . Thus, from theorem 3.1 we can conclude that ρX2ρ
−1 ∈ Dλ2,ρ . Consequently,

the following two identities are fulfilled:

AjX1X2(ρ
−1)2 = λ1X1ρ

−1AjρX2ρ
−1ρ−1 = λ1λ2X1X2(ρ

−1)2Aj,

Ajρ
−1X1X2ρ

−1 = λ1ρ
−1X1AjX2ρ

−1 = λ1λ2ρ
−1X1X2ρ

−1 (37)

and analogous equalities for the adjoint linear operators A†
j , so that we can conclude that

X1X2ρ
−1 ∈ Dλ1λ2,ρ = Ker(P − λ1λ2I). �

Unital quantum operations are examples of quantum operations fulfilling the assumptions
of this theorem.

This corollary generalizes previous work on the theory of fixed points and noiseless
subsystems of unital channels in Hilbert spaces of finite dimensions [18–20]. Firstly, these
results generalize previously developed procedures for evaluating asymptotically relevant
eigenspaces of quantum Markov chains, which apply to the special eigenvalue λ = 1 only, to
all asymptotically relevant eigenvalues λ ∈ σ1. Secondly, this result applies not only to unital
channels. Indeed, according to 4.3 only one restriction is required for obtaining not only a
necessary but also a sufficient condition for the construction of Ker(λ − I) for all λ ∈ σ1,
namely P(ρ) = ρ for some strictly positive 0 < ρ ∈ B(H ).

5. A generalization

In our previous considerations, we required the existence of a strictly positive quantum state
such that P(ρ) � ρ. However, there are quantum operations which do not fulfil this condition.
Therefore, the natural question arises whether our previous results also apply to such situations.
In the following, we show that our theory applies to all initial states whose support belong to
the so-called recurrent Hilbert subspace [29]. It is a subspace of all pure states orthogonal to
decaying states [15].

According to theorem 2.1 a quantum channelP , i.e. a trace preserving completely positive
map, is always equipped with a state ρ such that P(ρ) = ρ. Although this state satisfies the
condition P(ρ) � ρ, it need not be strictly positive. Let

ρ =
∑

i

αi|ψi〉〈ψi| (38)

11
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be its diagonal form with the orthonormal pure states |ψi〉 and αi > 0. The orthogonal
projection Pρ = ∑

i |ψi〉〈ψi| onto the support (or range) of this state ρ satisfies the inequality

P(Pρ ) � 1

αmin
P(ρ) � 1

αminαmax
P(Pρ ) (39)

with αmin (resp. αmax) denoting the minimal (resp. maximal) nonzero eigenvalue of the state
ρ. According to work [29], the projection Pρ always reduces a quantum operation P , i.e.
P(PρXPρ ) = PρP(PρXPρ )Pρ . Hence the corresponding reduced map P : B(PρH ) →
B(PρH ) constitutes a well-defined quantum operation. Indeed, complete positivity is apparent
and if the original map P is trace non-increasing (resp. trace preserving) then also its reduction
is trace non-increasing (resp. trace preserving). Moreover, the fixed state ρ is strictly positive
on PρH . Hence, all requirements for the applicability of our theorems from sections 3 and 4
are met for the restriction of a quantum channel P onto the subalgebra B(PρH ).

This construction is feasible for an arbitrary not necessarily strictly positive state ρ

satisfying P(ρ) � ρ. Furthermore, there is always a maximal state ρ̃ satisfying this property.
‘Maximal’ means that Pσ � Pρ̃ for an arbitrary state σ satisfying P(σ ) � σ . In this sense, the
orthonormal projection Pρ̃ on the support of ρ̃ defines the so-called recurrent subspace Pρ̃H
[29], the maximal Hilbert space for which our theory applies.

6. Summary and conclusions

We have investigated the asymptotic dynamics of quantum Markov chains generated by general
quantum operations, i.e. by completely positive and trace non-increasing linear maps acting
in a Hilbert space. It has been shown that their resulting asymptotic dynamics is confined to
attractor spaces spanned by typically non-orthogonal eigenspaces of the generating quantum
operations associated with eigenvalues of unit modulus. These eigenvalues have trivial Jordan
blocks, so that asymptotically also these most general and physically relevant quantum Markov
chains are diagonalizable on their attractor spaces. Furthermore, provided a strictly positive
operator can be found, which is contracted or left invariant by the generating quantum operation
of such a quantum Markov chain, an explicit construction of a basis of the attractor space and
of its associated dual basis has been presented. The basis vectors of the attractor space are
determined by linear equations which depend in a simple way on the Kraus operators defining
the generating quantum operation. Each of these basis vectors is related to its dual one by
a linear transformation. This linear transformation is defined by the inverse of the positive
operator which is contracted or left invariant by the generating quantum operation. This explicit
construction of the asymptotic dynamics of an arbitrary iterated quantum operation is expected
to offer significant advantages whenever the dimension of the Hilbert space is large and at the
same time the dimension of the attractor space is small. Thus, the theoretical description of
the asymptotic dynamics described here may be particularly useful for applications in large
quantum systems.

Apart from possible practical advantages, our discussion also explicitly demonstrates the
close connection between the existence of a quantum state which is contracted or even left
invariant by the generating quantum operation of a quantum Markov chain and the resulting
asymptotic dynamics. It generalizes recent results on the theory of fixed points of quantum
operations and of noiseless subsystems in quantum systems with finite-dimensional Hilbert
spaces [18–20].

Finally, we want to emphasize again that the results presented here are restricted to
finite-dimensional Hilbert spaces. This is mainly due to arguments involved in the proof of
theorem 2.2. They make use of a general theorem due to Choi [27] and Jamiołkowski [28] which

12
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applies to finite-dimensional Hilbert spaces only and which relates the complete positivity of
a linear map to the positivity of an extended map. As most arguments involved in the proofs of
our subsequent theorems also apply to infinite-dimensional Hilbert spaces, it is expected that
at least parts of the construction methods for attractor spaces presented here can be extended
to certain physically relevant situations described by infinite-dimensional Hilbert spaces.
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Appendix A. Proof of theorem 2.2

According to a general theorem [27, 28] a linear map P : B(H ) → B(H ) is
completely positive iff the quantum state I ⊗ P(|	〉〈	|) resulting from the extended map
I ⊗ P : B(H ) ⊗ B(H ) → B(H ) ⊗ B(H ) by acting on the entangled pure state
|	〉 = 1/

√
N

∑N
i=1 |i〉|i〉 ∈ H ⊗ H is positive, i.e. I ⊗ P(|	〉〈	|) � 0. The positivity

of this quantum state implies

| 〈i|〈l|I ⊗ P(|	〉〈	|)| j〉|k〉 |2=
∣∣∣∣ 1

N
〈l|P(|i〉〈 j|)|k〉

∣∣∣∣
2

� 1

N
〈l|P(|i〉〈i|)|l〉 1

N
〈k|P(| j〉〈 j|)|k〉 (A.1)

with |i〉|l〉, | j〉|k〉 denoting arbitrary elements of an orthonormal basis in the extended Hilbert
space H ⊗ H . As a consequence, the relations

N∑
l,k=1

| 〈l|P(|i〉〈 j|)|k〉 |2 � 1 (A.2)

are fulfilled for all possible values of i, j if, in addition, the linear mapP is trace non-increasing.
Assuming that λ is an eigenvalue of a completely positive and trace non-increasing

quantum operation P with its corresponding eigenvector X , we can conclude

‖ P(X ) ‖2=| λ |2‖ X ‖2=‖
N∑

i, j=1

N∑
l,k=1

|k〉〈l|〈k|P(|i〉〈 j|)|l〉〈i|X | j〉 ‖2

=
N∑

l,k=1

|
N∑

i, j=1

〈i|X | j〉〈k|P(|i〉〈 j|)|l〉 |2

�
N∑

i, j=1

| 〈i|X | j〉 |2
N∑

l,k=1

| 〈k|P(|i〉〈 j|)|l〉 |2

︸ ︷︷ ︸
�1

�‖ X ‖2 (A.3)

with ‖ A ‖=
√∑N

l,k=1 | 〈l|A|k〉 |2 denoting the Hilbert–Schmidt norm of a linear operator
A ∈ B(H ). Thus, we finally arrive at the first part (1) of this theorem, i.e. |λ |� 1.

For the second part of this theorem, let us assume that this statement is false. Thus, there is
an operator 0 �= A ∈ B(H ) with A ∈ Ker (P − λI)∩ Ran (P − λI). This implies P(A) = λA
and there is an operator 0 �= B ∈ B(H ) such that P(B) = λB + A. By induction it can be

13
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verified that

λn−1A = 1

n
Pn(B) − 1

n
λnB (A.4)

for all numbers of iterations n � 1. As n increases, the second term on the right-hand side
of (A.4) becomes arbitrarily small in comparison with the term on the left-hand side of (A.4)
for |λ| = 1. Due to complete positivity of the map P , this is also true for the first term on
the right-hand side of (A.4). In order to demonstrate this, let us consider an orthonormal basis
{|i〉} of the Hilbert space H , so that the linear operators {|i〉〈 j|} form an orthonormal basis of
the space B(H ). This implies the relation

Pn(B) =
N∑

i, j=1

Bi, jPn(|i〉〈 j|) (A.5)

with Bi, j = 〈i|B| j〉. As the quantum operation Pn is completely positive and trace non-
increasing, we can conclude from (A.1) that

0 � |[〈l|Pn(|i〉〈 j|)]|k〉| � 1 (A.6)

for all n � 0 and for all 1 � k, l � N. So, in view of (A.5) and (A.6) also all matrix elements
of the first term on the right-hand side of (A.4) tend to zero for |λ| = 1 as n tends to infinity.
Thus, we finally arrive at the contradiction A = 0 to the initial assumption A �= 0.

Appendix B. Proof of theorem 2.3

Any linear map P : B(H ) → B(H ) can be brought into the Jordan normal form by an
appropriate basis transformation T , i.e.

P = T JT −1 (B.1)

with the (non-singular) linear operator T ∈ B(H ) defining the basis transformation and
with J ∈ B(H ) denoting the Jordan normal form of P . Thus, J is given by a direct sum of
Jordan blocks Jk of dimensions dk, i.e. J = ∑

k ⊕Jk. The matrix representation of any of these
dk × dk-dimensional Jordan blocks Jk is given by

(Jk)i j =

⎛
⎜⎜⎜⎜⎝

λk 1 0 0 · · · 0 0
0 λk 1 0 · · · 0 0

· · ·
0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 λk

⎞
⎟⎟⎟⎟⎠ . (B.2)

Consequently, also the iterated map P can be transformed to the Jordan normal form, i.e.
Pn = T −1JnT . It is straightforward to demonstrate [12] that the modulus of the (i, j)th matrix
element of a Jordan block (Jk)

n is given by∣∣(Jk)
n
i j

∣∣ = | λk |n−( j−i)

(
n

n − ( j − i)

)
�| λk |n−dk ndk .

Therefore, in the limit of large numbers of iterations n the contributions of all Jordan blocks
with eigenvalues | λk |< 1 become vanishingly small, so that in this limit only the Jordan
blocks with eigenvalues | λk |= 1 contribute to the iterated map Pn.

Let us now concentrate on these asymptotically contributing Jordan blocks Jk with
eigenvalues | λk |= 1. From theorem 2.2, we can draw the conclusion that all these Jordan
blocks are one dimensional, so that the map Pn can be diagonalized within the asymptotic
subspace Attr(P ) which is spanned by all eigenvectors Xλ,i, i = 1 . . . , dλ with possibly dλ-fold
degenerate eigenvalues | λ |= 1. These eigenvectors Xλ,i fulfil the relations P(Xλ,i) = λXλ,i
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for i = 1 . . . , dλ and λ ∈ σ1 := {λ | |λ| = 1} and in general they are not orthogonal (with
respect to the Hilbert–Schmidt scalar product). Consequently, in the limit of large numbers
of iterations n, it is sufficient to expand any initial linear operator X (0) ∈ B(H ) in terms of
these eigenvectors, i.e.

X (0) =
∑
λ∈σ1

dλ∑
i=1

xλ,iXλ,i + Y (0) (B.3)

with Y (0) denoting the part of X (0) which is contained in eigenspaces of eigenvalues | λ |< 1.
The coefficients xλ,i are given by

xλ,i = Tr(Xλ,i†X (0)) (B.4)

with Xλ,i ∈ B(H ) denoting the dual basis vector of Xλ,i which fulfils the relations
Tr(Xλ,iXλ′,i′ ) = δλλ′δii′ for all generalized eigenvectors of a Jordan basis, i.e. |λ|, |λ′| � 1
and i = 1 . . . , dλ, i′ = 1 . . . , dλ′ . As Pn(Y (0)) tends to zero in the limit n → ∞, we finally
obtain the result of theorem 2.3.
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