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Abstract: We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of ran-
dom unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown
that their resulting asymptotic dynamics is described by a diagonalizable superoperator.We prove that this
asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the
probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors
of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for
possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an
example involving random controlled-not operations acting on two qubits.
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1. Introduction

In recent years the rapid advancement of quantum tech-nology with its capabilities of controlling individual quan-tum systems has given rise to impressive developmentsin the areas of quantum information science and high-precision quantum metrology [1]. In particular, currentexperiments on large ensembles of interacting quantumsystems open interesting perspectives to investigate indetail not only the transition from quantum to classicalbehavior but also to trace down those quantum phenom-ena or effects that still are observable on the mesoscopic
∗E-mail: novotny.jaroslav@seznam.cz

or macroscopic scale. A paradigm of such large physicalsystems are interacting networks whose dynamics is cur-rently investigated intensively in the classical domain [2].Such networks are capable of simulating the behavior ofreal world systems like the internet or social dynamics [3].Typically, in these systems a number of modes represent-ing physical objects are coupled to each other by randominteractions. A particularly interesting issue is to deter-mine the dynamics of the system. In view of these currentactivities the natural question arises which characteristicproperties govern the dynamics of such networks if eachclassical node is replaced by a quantum system and, cor-respondingly, the classical interactions by quantum oper-ations.In general, determining the time evolution of large quan-tum systems is difficult and analytic or closed-form solu-
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tions are possible in exceptional cases only. In particular,this applies to the dynamics of open quantum systems inwhich a large quantum system is in contact with an addi-tional physical system. The influence of such an externalsystem can be taken into account in various ways. Inspecial cases it may be described by randomly appliedunitary operations. Such a case is realized, for example,if the nodes of a large quantum network represent partic-ipants of a quantum communication network and if thesenodes establish node-to-node communication in a randomway by using quantum protocols which can be describedby unitary transformations. A natural question arising inthis context is what is the resulting quantum state of thenetwork after a large number of such communication steps.More generally, such a quantum network involving randomunitary transformations can characterize the dynamics ofany interacting quantum system in which the interactionsinvolved can be described by repeatedly applied randomunitary transformations.A natural approach to determine the dynamics of a quan-tum system involves diagonalization of the generator ofthe time evolution. This way the dynamics can be deter-mined in a convenient way even in the asymptotic limit ofarbitrarily long interaction times. The situation becomessignificantly more complicated for open quantum systemsbecause the relevant generators are often non-hermitianand not normal [4] so that they cannot be diagonalized.Nevertheless, in such cases it is still possible to use theJordan canonical form (see Appendix A) of these operatorsfor determining the dynamics for arbitrarily long interac-tion times. This leads to the highly nontrivial problem ofhandling generalized eigenvectors of the relevant gener-ators which are in general not orthogonal.Motivated by these aspects in this paper we addressthe problem of determining general properties of theasymptotic dynamics of quantum systems whose dynamicsis governed by repeated applications of random unitarytransformations. This large family of quantum stochas-tic dynamics is an example of so called quantum iteratedfunctional systems which were proposed and studied in[5, 6]. A main goal of this paper is to demonstrate that theJordan canonical form of the generators of random unitarytransformations have rather unexpected and useful specialproperties which allow to obtain even closed-form expres-sions for the asymptotic quantum state resulting from alarge number of iterations of random unitary transforma-tions. It will be proved that there is always a vector sub-space of so-called attractors on which the resulting super-operator governing the iterative time evolution of quantumstates can be diagonalized and in which the asymptoticquantum dynamics takes place. As a main result a struc-ture theorem is derived for this set of attractors which

allows to determine them in a convenient way. Further-more, it is shown how the asymptotic iterative dynamicsof arbitrary quantum states can be written in terms ofthese attractors. Based on these findings we show thatin general the asymptotic dynamics is non-monotonic. Fi-nally, aspects of these general properties are exemplifiedby studying in detail the dynamics of two qubits which arecoupled by randomly applied controlled-not operations. Itshould be mentioned that some of the results character-izing the asymptotic dynamics can also be obtained by adifferent approach which uses special properties of randomunitary transformations in order to construct a convenientLjapunov function [7].This paper is structured as follows. In Sec. 2 we sum-marize basic properties of random unitary transformationswhich are useful for our subsequent discussion. In Sec. 3we examine special properties of the Jordan canonical formof random unitary maps. The central statement of the pa-per, namely the structure theorem for attractors of ran-dom unitary operations, is derived in Sec. 4. Character-istic properties of attractors are investigated in Sec. 5.Sec. 6 is devoted to important implications resulting fromthe structure theorem. Finally, as an example the asymp-totic dynamics of two qubits which are coupled by randomcontrolled-not operations is discussed on the basis of ourgeneral results (Sec. 7).
2. Basic properties of random uni-
tary operations
A random unitary operation (RUO) Φ is a completely pos-itive trace-preserving map admitting a convex decomposi-tion of the form [8]

Φ(ρ) = m∑
i=1 piUiρU

†
i . (1)

Thereby, Ui denotes a unitary operator acting on a Hilbertspace H and this unitary operation is applied onto thequantum state ρ with probability pi > 0 so that ∑m
i=1 pi =1. These latter probabilities take into account classicaluncertainties in the realizations of the unitary quantumevolution involved. This uncertainty can be the result ofan unknown error mechanism or of an unknown unitaryevolution involving an additional ancillary system. In thefollowing we are interested in the asymptotic dynamicsresulting from many iterative applications of Φ. Start-ing with our quantum system in the initial state ρ(0), the(n+1)-st step of this iteration procedure changes the stateafter the n-th iteration ρ(n) to the state ρ(n+1) = Φ(ρ(n)).
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Our aim is to analyze the asymptotic behaviour of this it-eration procedure. The random unitary map Φ of Eq. (1)belongs to the class of bistochastic or doubly stochasticmaps [9–11] which leave the maximally mixed state invari-ant, i.e.

Φ(I) = m∑
i=1 piUiU

†
i = I, (2)

and it acts on the Hilbert space B (H ) of all linear oper-ators defined on a d-dimensional Hilbert space H . Thedimension of the input and output system is the same. TheHilbert space B (H ) is equipped with the Hilbert-Schmidtinner product (A,B)HS = Tr(A†B) for all A,B ∈ B (H).With respect to this scalar product the adjoint operator ofΦ is given by
Φ† (A) = m∑

i=1 piU
†
i AUi. (3)

This can be shown directly or by using the matrix form ofthe map Φ (B6).In general, the RUO Φ is neither hermitian nor normaland consequently is not diagonalizable. Therefore, itsresulting iterated dynamics has to be analyzed with thehelp of Jordan normal forms [4] (see Appendix A). It isa main goal of our subsequent discussion to prove thatthe Jordan normal forms of RUOs have interesting specialproperties which are particularly useful for the descriptionof their asymptotic iterated dynamics. In particular, thereexists a Jordan base in the Hilbert space B (H ) in whichthe matrix of the map (1) has a block diagonal form (A1).Spectral properties of general quantum operations werestudied in [12]. In the following we formulate several sim-ple characteristic properties which are particularly usefulfor our subsequent considerations.
Proposition 2.1.
The random unitary map Φ defined by the relation (1)
fulfills the following properties:

1) The norm of the RUO Φ induced by the Hilbert-
Schmidt norm of the Hilbert space B (H ) equals
unity.

2) If λ is an eigenvalue of the map Φ, then |λ| ≤ 1.

3) Let Xλ ∈ B (H ) be a generalized eigenvector cor-
responding to the eigenvalue λ of the map Φ, then
λ = 1 or TrXλ = 0.

Proof. (1-2) First we prove that the Hilbert-Schmidtnorm is unitarily invariant. For this purpose consider anarbitrary operator A ∈ B (H ) and two unitary operators

U,V ∈ B (H ). As a trace of matrix products is invariantunder cyclic permutations we get
||UAV ||HS = {Tr [(UAV )† (UAV )]} 12

= {Tr(A†A)} 12 = ||A||HS . (4)
Therefore one can show that ||Φ|| =sup||A||HS≤1 ||Φ(A)||HS = 1. Let A ∈ B (H ), then theHilbert-Schmidt norm of the operator Φ(A) is bounded by
||Φ(A)||HS = ∣∣∣∣∣

∣∣∣∣∣∑
i
piUiAU†i

∣∣∣∣∣
∣∣∣∣∣
HS

≤
∑
i
pi
∣∣∣∣∣∣UiAU†i ∣∣∣∣∣∣HS = ||A||HS . (5)

Moreover, we have ||Φ(I)||HS = ||I||HS . Hence, ||Φ|| = 1and consequently |λ| ≤ 1.(3) If Xλ is a generalized eigenvector corresponding to aneigenvalue λ of the map Φ, then there is a n ∈ N suchthat (Φ−λI)n(Xλ) = 0 because a simple calculation yields
Tr {(Φ− λI)n(Xλ)} = (1− λ)n TrXλ = 0. (6)

This equation can be fulfilled only if λ = 1 or TrXλ = 0.
�

Thus, all Jordan blocks in the Jordan normal decompositionof the map Φ correspond to eigenvalues λ with |λ| ≤ 1. Forour subsequent discussion let us introduce the followingnotation. Suppose that λ is an eigenvalue of the map Φ.We denote the corresponding eigen-subspace by Ker(Φ−
λI), i.e.

Ker(Φ− λI) = {X ∈ B (H )|Φ(X ) = λX} , (7)
and the range of the map Φ− λI by Ran(Φ− λI), i.e.

Ran(Φ−λI) = {X ∈ B (H )|∃Y ∈ B (H ), X = Φ(Y )− λY} .(8)Furthermore, let us define dλ = dim(Ker(Φ− λI)) and σ|1|as the set of all eigenvalues of the linear map Φ satisfy-ing |λ| = 1. Finally, the vector subspace spanned by alleigenstates corresponding to eigenvalues λ with |λ| = 1we call the attractor space of the RUO Φ and denote itby Atr(Φ), i.e.

Atr(Φ) = ⊕
λ∈σ|1|

Ker(Φ− λI). (9)
We call elements of this subspace attractors of the dynam-ics because, as we will show later, the asymptotic iterateddynamics of the RUO is completely determined by theselinear operators.
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3. Jordan canonical form of random
unitary operations
In this section we prove that all Jordan blocks correspond-ing to eigenvalues λ with |λ| = 1 are one-dimensional.In other words, generalized eigenvectors corresponding toeigenvalues |λ| = 1 are all eigenvectors. This statementis equivalent to the following theorem (for details see Ap-pendix A).
Theorem 3.1.
Let Φ : B (H ) → B (H ) be a random unitary operation
defined by (1) and λ its eigenvalue satisfying |λ| = 1,
then we have

Ker(Φ− λI) ∩ Ran(Φ− λI) = {0}. (10)
Proof. We prove this theorem by contradiction. Sup-pose there is an operator 0 6= A ∈ B (H ) and A ∈Ker(Φ−λI)∩Ran(Φ−λI). This implies Φ(A) = λA and thereis an operator 0 6= B ∈ B (H ) such that Φ(B) = λB + A.By induction one can conclude

Φn(B) = λnB + nλn−1A (11)
and consequently
n ||A|| − ||B|| ≤

∣∣∣∣λnB + nλn−1A∣∣∣∣= ||Φn(B)|| ≤ ||Φ||n ||B|| = ||B|| . (12)
Because the resulting inequality

||A|| ≤ 2
n ||B|| (13)

has to be fulfilled for arbitrary n ∈ N the only alternativeleft is that A = 0. �

Let Yj,k (j ∈ p̂, k ∈ {1, 2, . . . , dim(Jj )}) (compare withAppendix A) be the Jordan basis of the RUO Φ. Jj isa Jordan block corresponding to an eigenvalue λj with abasis formed by the generalized eigenvectors Yj,k (k ∈{1, 2, . . . , dim(Jj )}). Let ρ(0) ∈ B (H ) be an input densityoperator. We denote by β(0)
j,k the parameters of the uniquedecomposition of the density operator ρ(0) ∈ B (H ) intothis basis, i.e.

ρ(0) = p∑
j=1

dim(Jj )∑
k=1 β

(0)
j,kYj,k . (14)

Consider now the density operator ρ(n) = Φn(ρ(0)) de-scribing the physical system after n iterations and denoteits decomposition coefficients (14) into the same basis by
β(n)
j,k . It is clear that the coefficients β(n)

j,k corresponding toeigenvectors of eigenvalues λj ∈ σ|1| evolve simply as
β(n)
j = λnj β

(0)
j . (15)

(We omit the second index k intentionally because in thiscase all the Jordan blocks are one dimensional.)Now we have to analyze the behavior of the remaining co-efficients. It is governed by the following theorem whichquantifies how the remaining coefficients β(n)
j,k , correspond-ing to Jordan vectors Yj,k with |λj | < 1, evolve.

Theorem 3.2.
Let Φ : B (H ) → B (H ) be a quantum random unitary
operation defined by (1) with its Jordan basis Yj,k (j ∈ p̂,
k ∈

{1, 2, . . . , dim(Jj )}) and ρ(0) ∈ B (H ) be an input
density operator. Furthermore, let β(n)

j,k be the decomposi-
tion coefficients of ρ(n) = Φn(ρ(0)) into this Jordan basis,
i.e.

ρ(n) = p∑
j=1

dim(Jj )∑
k=1 β

(n)
j,kYj,k . (16)

For any eigenvalue λs (|λs| < 1) of the map Φ with its
corresponding Jordan block Js and its Jordan chain Ys,k
(k ∈ {1, 2, . . . , dim(Js)}) the coefficients β(n)

s,k vanish in the
limit of large n

lim
n→+∞β(n)

s,k → 0, for ∀k ∈ {1, 2, . . . , dim(Js)} . (17)
Proof. This theorem follows directly from the fact thatthe Jordan block (Js)n of dimension dim(Js) with

Js =

λs 1

λs
. . .. . . 1

λs

 (18)

vanishes in the limit of large numbers of iterations n, i.e.

lim
n→∞

(Js)n = 0. (19)
One can check that the entry (Jns )ij (i ≤ j ≤ dimJs) of theupper triangular matrix (Js)n fulfills the inequality
|(Jns )ij | = |λs|n−(j−i)( n

n − (j − i)
)
≤ |λ|n−dimJsndimJs (20)
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so that we obtain the relation
lim
n→∞

(Jns )ij = 0, ∀i, j ∈ {1, . . . , dimJs}. (21)
�

In view of this theorem the asymptotic dynamics of thestate ρ(0) under iterations of the random unitary opera-tion Φ is given completely in terms of its attractors. Theremaining coefficients of the decomposition of the initialstate ρ(0) (16) become vanishingly small after sufficientlymany iterations of the map. An interesting question whichwill be addressed in the following is how to determine theset of attractors.
4. Structure theorem for attractors
Let us now study the structure of the attractors, i.e. ofall eigenspaces Ker(Φ − λI), with λ ∈ σ|1|. In the case ofrandom unitary operations the following powerful theoremcan be proved which allows us to specify the space ofattractors of the RUO Φ. In this context it should bealso mentioned that for the more general case of arbitraryunital quantum operations interesting general results havebeen derived by Kribs [13, 14] recently.

Theorem 4.1.
Let Φ : B (H )→ B (H ) be a random unitary map Φ (1) and
λ ∈ σ|1|. Then the eigenspace Ker(Φ − λI) corresponding
to this eigenvalue λ is equal to the set

Dλ := {X ∈ B (H )|UiX = λXUi for i = 1, . . . , m} . (22)
Proof. The map Φ is unital, that is Φ(I) = I. Therefore,every X ∈ Dλ fulfils Φ(X ) = λX and thus Dλ ⊂ Ker(Φ−λI).To prove the converse, let us consider X ∈ Ker(Φ−λI). If
X = 0, then X ∈ Dλ. So let us assume that X 6= 0. Usingthe unitary invariance of the Hilbert-Schmidt norm we get
||X|| = ||λX|| = ∣∣∣∣∣

∣∣∣∣∣ m∑
i=1 piUiXU

†
i

∣∣∣∣∣
∣∣∣∣∣

≤
m∑
i=1 pi

∣∣∣∣∣∣UiXU†i ∣∣∣∣∣∣ = ||X|| . (23)
Therefore, the inequality (23) is in fact an equality andcan be rewritten in the form

( m∑
i=1 pivi,

m∑
i=1 pivi

) = ( m∑
i=1 pi(vi, vi) 12

)2 (24)
with vi = UiXU†i . Hence we get

∑
i<j

2pipj (vi, vi) 12 (vj , vj ) 12 =∑
i<j

pipj
[(vi, vj ) + (vj , vi)] =∑

i<j
2pipjRe(vi, vj ) ≤∑

i<j
2pipj ∣∣Re(vi, vj )∣∣

≤
∑
i<j

2pipj ∣∣(vi, vj )∣∣ ≤∑
i<j

2pipj (vi, vi) 12 (vj , vj ) 12 . (25)

Because the left and right side of the relation (25) are thesame, all inequalities are actually equalities. In particu-lar, we have
Re(vi, vj ) = ∣∣(vi, vj )∣∣ = (vi, vi) 12 (vj , vj ) 12 6= 0for all i, j ∈ {1, . . . , m} (26)

which can be fulfilled if and only if vj = βijvi (for all i,j)with βij > 0. From the unitary invariance of the Hilbert-Schmidt norm
||X|| = ∣∣∣∣∣∣UiXU†i ∣∣∣∣∣∣ = βij

∣∣∣∣∣∣UjXU†j ∣∣∣∣∣∣ = ||X|| (27)

we conclude that βij = 1 for all i, j ∈ {1, ..., m} and hence
U1XU†1 = U2XU†2 = . . . = UmXU†m. (28)

Finally, using the equality Φ(X ) = λX we obtain
UiXU†i = λX , i.e. X ∈ Dλ. �

As a consequence of this structure Theorem 4.1 the fol-lowing corollary can be proved.
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Corollary 4.1.
The random unitary operation Φ defined by (1) fulfills the
following properties:

1) If λ is an eigenvalue of the operation Φ fulfilling
|λ| = 1, then

Ker(Φ− λI) ⊥ Ran(Φ− λI). (29)
2) If λ1,λ2 are two different eigenvalues of the opera-

tion Φ fulfilling |λ1| = |λ2| = 1, then

Ker(Φ− λ1I) ⊥ Ker(Φ− λ2I). (30)
Proof. First, from the Theorem (4.1) follows that ifΦ(X ) = λX and |λ| = 1, then Φ† (X ) = λ∗X and Φ† (X† ) =
λX† . In order to show that the set Ker(Φ−λI) is orthogo-nal to the set Ran(Φ−λI) we have to prove that (K,R) = 0is fulfilled for arbitrary elements K ∈ Ker(Φ−λI) and R ∈Ran(Φ − λI). Therefore, there is an operator Q ∈ B (H )with R = ∑

i piUiQU
†
i − λQ. Hence, using Theorem 4.1we have the orthogonality relation

(K,R) = Tr{K †R} =∑
i
pi Tr{K †UiQU†i }

− λTr{K †Q} = λ
∑
i
pi Tr{K †Q} − λTr{K †Q} = 0.

(31)
The second property is a consequence of the identity

(X1, X2) = 1
λ2 (X1,Φ(X2)) = 1

λ2
(Φ† (X1), X2)

= λ1
λ2 (X1, X2) , (32)

which is valid for X1 ∈ Ker(Φ−λ1I) and X2 ∈ Ker(Φ−λ2I)and for any mutually different non-zero eigenvalues λ1 and
λ2. Therefore, the last equality can be satisfied only if(X1, X2) = 0. �

This corollary together with theorem 3.1 has the followingimportant consequence.
Theorem 4.2.
Let Φ : B (H ) → B (H ) be a quantum random unitary
operation defined by (1) and ρ(0) ∈ B (H ) be an input
density operator, then the asymptotic iterative dynamics
of the state ρ(0) under the evolution map Φ is given by

ρ∞(n) = dλ∑
λ∈σ|1|,i=1 λ

n Tr{ρ(0)X†λ,i}Xλ,i (33)

and satisfies the relation

lim
n→∞
||ρ(n)− ρ∞(n)|| = 0 (34)

with ρ(n) = Φn(ρ(0)) and with the complete set of or-
thonormal basis elements Xλ,i (i ∈ {1, 2, . . . , dλ}) of the
space Ker(Φ− λI).
Proof. In order to prove this theorem we have to showthat the mutually orthogonal subspaces
I0 = ⊕

λ∈σ|1|
Ker(Φ−λI) and I1 = ⋂

λ∈σ|1|
Ran(Φ−λI) (35)

are invariant under the map Φ and that they satisfy therelation I0 ⊕ I1 = B (H ). The second claim is a directconsequence of corollary 4.1. The first claim follows fromthe fact that all subspaces Ker(Φ − λI) and Ran(Φ − λI)are invariant under the map Φ; that is, Φ(Ker(Φ − λI)) ⊂Ker(Φ − λI) and Φ(Ran(Φ − λI)) ⊂ Ran(Φ − λI). Nowwe can choose some orthogonal basis vectors Xλ,i in thesubspaces Ker(Φ − λI) with |λ| = 1 and the Jordan basis
Yj,k of the map Φ restricted to the subspace I1. Thesevectors form a basis of the Hilbert space B (H ). Now weconsider a decomposition of ρ(0) into these basis vectors.As was shown in Theorem 3.2, the part corresponding tothe subspace I1 vanishes for n → +∞ and the dynamicsof the state ρ(0) on the subspace I0 is given by (15). �

5. Basic properties of attractors
In this section we discuss some basic properties of RUOswhich are useful for obtaining the complete set of attrac-tors. A basic property arises straightforwardly from theTheorem 4.1.
Proposition 5.1. 1) Let Xλ1 and Xλ2 be attractors

of the RUO (1) corresponding to eigenvalue λ1 and
λ2, respectively, then the product of these attrac-
tors Xλ1Xλ2 is either an attractor corresponding to
eigenvalue λ1λ2 or it is the zero operator.

2) Let Xλ be an attractor of the RUO (1) corresponding
to the eigenvalue λ, then X†λ is also an attractor of
the RUO (1) corresponding to the eigenvalue λ∗.

Proof. This proposition follows from the identities
UiXλ1Xλ2 = λ1Xλ1UiXλ2 = λ1λ2Xλ1Xλ2Ui (36)
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and
UiX†λ = (XλU†i )† = (λU†i Xλ)† = λ∗X†λ Ui, (37)

which are valid for all i ∈ m̂ := {1, . . . , m}. �

Based on our preceding analysis a single step of theasymptotic dynamics is described by the superoperator
Φass(.) = dλ∑

λ∈σ|1|,i=1 λTr (X†λ,i(.))Xλ,i, (38)
which fulfils the property

lim
n→∞
||Φn − Φn

ass|| = 0. (39)
The superoperator (38) is a unital quantum operation. Inorder to prove this statement, let us define the projector

P(.) = dλ∑
λ∈σ|1|,i=1 Tr (X†λ,i(.))Xλ,i, (40)

which projects all elements of the vector space B (H ) ontothe attractor space Atr(Φ). The structure Theorem 4.1 and

the orthogonality of all elements of the attractor space en-sure that [Φ, P] = 0 and [Φass, P] = 0. These commutationproperties imply that for any integer n the action of thesuperoperator Φn
ass on an arbitrary operator A ∈ B (H ) isgiven by

Φn
ass(A) = Φn

ass (P(A)) = Un
i0P(A)U†ni0 (41)

for an arbitrary i0 ∈ m̂. Thus, for any integer n the actionof the map Φn
ass on the Hilbert space B (H ) is a sequenceof a projection onto the attractor space and a unitary op-eration. As a consequence it is a completely positive mapand in view of Eq. (39) it describes the dynamics of theiterated random unitary operation in the asymptotic limitof large numbers n of iterations.

It is instructive to analyze this property of complete pos-itivity also from another perspective by using the conceptof dynamical matrices (compare with Appendix B) [10]. Inorder to obtain the dynamical matrix of the asymptoticmap Φass we first calculate its matrix elements in an or-thonormal basis, i.e.

(Φass)mµnν = 〈mµ|Φass|nν〉 = dλ∑
λ∈σ|1|,i=1 λTr {(|n〉〈ν|)X†λ,i}Tr {(|m〉〈µ|)† Xλ,i} = dλ∑

λ∈σ|1|,i=1 λ
(
Xλ,i
)∗
nν

(
Xλ,i
)
mµ . (42)

The elements of the dynamical matrix DΦass are defined by
(DΦass )mµnν = (Φass)mnµν = dλ∑

λ∈σ|1|,i=1 λ
(
Xλ,i
)∗
µν

(
Xλ,i
)
mn , (43)

so that one obtains the relation
DΦass = ∑

m,n,µ,ν
(DΦass )mµnν |mµ〉〈nν| = ∑

m,n,µ,ν

dλ∑
λ∈σ|1|,i=1 λ

(
Xλ,i
)∗
µν

(
Xλ,i
)
mn |mµ〉〈nν|

= ∑
m,n,µ,ν

dλ∑
λ∈σ|1|,i=1 λ

[(
Xλ,i
)
mn |m〉〈n|

]
⊗
[(
Xλ,i
)∗
µν |µ〉〈ν|

] = dλ∑
λ∈σ|1|,i=1 λXλ,i ⊗ X

∗
λ,i. (44)

Using the identity (B5) one can rewrite the d2 × d2 dy-namical matrix as an operator acting on d × d matrices according to
DΦass (A) = dλ∑

λ∈σ|1|,i=1 λXλ,iAX
†
λ,i, (45)
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where A is an arbitrary d × d matrix. Expressions (44)and (45) describe the same dynamical matrix. The firstrelation describes it as a map acting on reshaped vectorsof length d2 and the second one as a map acting on d×dmatrices (for details see Appendix B). Both expressionsare useful to determine the properties of attractors.According to Eq. (B9) the dynamical matrix (44) is alwayshermitian. Due to proposition 5.1 this property is fulfilled.Furthermore, the partial trace of the dynamical matrix (44)over each subsystem yields the identity operator. For aRUO of the form of Eq. (1) both properties lead to thecondition
d1∑
i=1 Tr{X†1,i}X1,i = I. (46)

so that the dynamical matrix is positive. With the help ofEqs (45) and (B2) we find that this positivity is equivalentto the relation
dλ∑

λ∈σ|1|,i=1 λTr {A†Xλ,iAX†λ,i} ≥ 0, (47)
which has to be fulfilled for an arbitrary d × d matrix A.In view of Theorem 4.1 we can thus conclude that the map

Φn
ass(.) = dλ∑

λ∈σ|1|,i=1 λ
n Tr{(.)X†λ,i}Xλ,i, (48)

is a trace-preserving and completely positive unital mapfor an arbitrary n ∈ Z.
6. Discussion and implications
Let us summarize and comment the results obtained so farfor the asymptotic behaviour of a quantum system undera RUO.First of all, the asymptotic iterative dynamics is deter-mined completely by the attractor set Atr(Φ) of a RUO.The Hilbert space B (H ) can be decomposed as B (H ) =Atr(Φ) ⊕ (Atr(Φ))⊥ with ⊥ denoting the orthogonal com-plement with respect to B (H ). Both mutually orthogonalsubspaces, i.e. Atr(Φ) and I1 = (Atr(Φ))⊥ are invariantunder the RUO (1) and we proved that the component ofany initial quantum state in the subspace I1 vanishes af-ter sufficiently large numbers of iterations. Furthermore,we proved that the vector space of attractors Atr(Φ) isspanned by all elements X of the set B (H ) which fulfilthe generalized commutation relations UiX = λXUi for allunitary operators Ui of the decomposition (1) and for alleigenvalue λ with |λ| = 1.The calculation of the asymptotic iterated dynamics of therandom unitary map (1) can be divided into four steps:

• One determines the set σ|1|. Usually, this step ishighly nontrivial and depends significantly on theparticular unitary Kraus operators involved. Anyadditional properties concerning the structure ofthe unitary operators Ui involved, for example, sim-plify this task considerably. In particular, the ex-ploitation of symmetries may be useful in this re-spect.
• One identifies the set of attractors of the RUOAtr(Φ). This step involves the calculation of alleigenspaces using the generalized commutation re-lations Ker(Φ− λI) = Dλ for all λ ∈ σ|1|.
• One chooses an orthonormal basis Xλ,i in each sub-space Ker(Φ− λI) for λ ∈ σ|1|.
• One calculates the asymptotic iterated dynamicsaccording to the relation

ρ(n) = Φn(ρ(0))(n � 1) = dλ∑
λ∈σ|1|,i=1 λ

n Tr{ρ(0)X†λ,i}Xλ,i,
(49)which is valid asymptotically for n � 1.

These general features imply some important conse-quences. Firstly, the set of attractors Atr(Φ) and its corre-sponding spectrum is independent of the nonzero proba-bilities pi defining the convex decomposition of the RUO inEq. (1). Thus, two RUOs with the same unitary operatorsin their convex decompositions (1) have the same attrac-tors space Atr(Φ). The nonzero probabilities pi determineonly how fast an input state converges to the asymptoticattractor space.Another simple consequence arises if the ensemble of ran-dom unitary operators defining the RUO Φ contains theidentity operator I (apart from a global phase). Theo-rem 4.1 implies that the only possible eigenvalue of themap Φ is λ = 1. Hence from the set of attractors onlyfixed points can be formed and the resulting asymptoticdynamics is stationary. Moreover, assume that the uni-tary operators Ui are generators of a finite multiplicativegroup. As any group contains a unit element all possibleeigenvalues of the RUO Φ fulfil the relation λnλ = 1 forsome integer nλ ∈ N. As a consequence the resultingasymptotic dynamics is periodic. Such a periodic asymp-totic dynamics is also obtained obtained if the unitaryoperators Ui form an irreducible set of operators, i.e. theyhave no common nontrivial invariant subspace. This can beproven as follows. Consider an eigenvalue λ of the randomunitary operation (1) with |λ| = 1 and its correspondingeigenvector Xλ 6= 0. Using Theorem 4.1 it can be checkedthat Ui(Ker(Xλ)) ⊂ Ker(Xλ) and Ui(Ran(Xλ)) ⊂ Ran(Xλ) is
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fulfilled for all i ∈ m̂. Thus, Xλ 6= 0 is an invertible oper-ator. Let α 6= 0 be an eigenvalue of the operator Xλ and
uα its corresponding eigenvector. From the equation

XλUiuα = λUiXλuα = αλUiuα (50)
follows that also αλ is the eigenvalue of Xλ and Uiuα areits corresponding eigenvectors. Therefore also αλ2, αλ3, ...are eigenvalues of Xλ. Eigenvectors corresponding to dif-ferent eigenvalues are linearly independent. Thereforethere is n ∈ N such that λn = 1. Moreover, the directsum of all eigensubspaces corresponding to eigenvalues
λjα (j ∈ {0, 1, ..., n−1}) is invariant under all unitary op-erators Ui and thus has to be equal to the whole Hilbertspace H , i.e.

H = n−1⊕
j=0 Ker(Xλ − λjαI). (51)

Therefore, Xλ is diagonalizable and can be written in theform
Xλ = n−1∑

j=0 λ
jα(Ui)jP(U†i )j , (52)

where P is the projection on the eigensubspace corre-sponding to the eigenvalue α of Xλ and is determined byrelations of the form
U i
gP(U i

g)† = U i
hP(U i

h)† , Un
hP(Un

h )† = P 6= 0. (53)
Eq. (53) applies to an arbitrary pair of unitary operators
Ug and Uh in the decomposition of the random unitaryoperation (1) and their arbitrary i-th power, i ∈ n̂.Assume now the opposite situation. Let P be a projectionsatisfying Eqs. (53) for some n ∈ N and consider λ =exp (i2π/n). Then one can make sure that the operator(52) fulfills the equations of Theorem 4.1 and thus it is anattractor of the RUO Φ corresponding to the eigenvalue λ.This brings us to the following interesting issue. Underwhich conditions does the attractor spectrum σ|1| of a RUOcontain only the non-degenerate eigenvalue λ = 1 so thatthe resulting asymptotic dynamics always moves towardsthe maximally mixed state? We can formulate the answerto this question in the following corollary.
Corollary 6.1.
Let Φ : B (H ) → B (H ) be a random unitary map Φ (1).
Then its attractor spectrum σ|1| contains only the non-
degenerate eigenvalue λ = 1 if and only if the set of uni-
tary operators Ui is irreducible and there is no projection
P satisfying the set of Eqs. (53).

The second condition is necessary because irreducibilityof the unitary operators Ui only ensures that the eigen-value λ = 1 in the attractor spectrum σ|1| is not degenerate.This was also shown in [5]. To elucidate this fact let usshow an example of a RUO whose attractor spectrum isgiven by σ|1| = {1, λ, λ} with λ = exp (i2π/3). Based onour foregoing discussion we can construct the following setof irreducible unitary operators in a 6-dimensional Hilbertspace with the orthonormal basis states |j〉 (1 ≤ j ≤ 6)

U1 = 1√2


0 0 0 0 1 10 0 0 0 1 −11 1 0 0 0 01 −1 0 0 0 00 0 1 1 0 00 0 1 −1 0 0

 ,

U2 = 1√2


0 0 0 0 1 10 0 0 0 −1 11 1 0 0 0 01 −1 0 0 0 00 0 1 1 0 00 0 1 −1 0 0

 .

(54)

This set is chosen in such a way that P = |1〉〈1|+ |2〉〈2| isthe only projection operator satisfying the set of Eqs. (53)with n = 3.Finally, it can also be shown that all attractors of RUOsgenerated by an irreducible set of unitary operators areproportional to unitary operators. If we multiply the equa-tions for attractors with their adjoint forms we obtain
Ui[XλX†λ ] = [XλX†λ ]Ui. (55)

This inevitably leads us to the fact that
XλX†λ = αI, (56)

with α > 0.The question remains what happens if the set of unitaryoperators Ui is not irreducible. It is shown in the follow-ing section that in special cases it may still be possibleto decompose the Hilbert space into so-called minimal in-variant subspaces for which the condition of irreducibilityof unitary operators Ui still holds.
7. Asymptotic dynamics of a two-
qubit CNOT-system
In this section we discuss the asymptotic dynamics of theRUO Φ(ρ) = p1C1ρC1 + (1− p1)C2ρC2, (57)
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which involves two controlled-not (CNOT) operationsacting on two qubits. In the computational basis
{|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉} of the two-qubit Hilbert space
H2 the action of these CNOTs is defined by

C1|i, j〉 = |i, i ⊕ j〉, C2|i, j〉 = |i ⊕ j, j〉, (58)
with ⊕ denoting addition modulo 2. This special RUOof Eq. (57) is a hermitian operator and therefore its onlypossible eigenvalue lying within σ|1| are 1 and −1. Let usfirst find a decomposition of the two-qubit Hilbert space
H2 into subspaces Vx , i.e.

H2 =⊕
x

Vx , (59)
within each of which the set of unitary operators C1, C2acts irreducibly. Constructing such a decomposition isequivalent to constructing a decomposition of the finitemultiplicative unitary group C generated by C1 and C2.The unitary group C is naturally a unitary representation
IC of itself. Therefore, the following considerations areimmediate consequences of the standard theory of repre-sentations of finite groups [16].The unitary group C contains six elements divided intothree conjugated classes: K1 ≡ {identity element I}, K2 ≡
{C1C2, C2C1}, K3 ≡ {C1, C2, C1C2C1}. The characters ofthe representation IC corresponding to these classes are
χ1 = 4, χ2 = 1 and χ3 = 2. Thus, there are only threeinequivalent irreducible representations of the group C,say Dµ (µ = {1, 2, 3}), with dimensions nµ satisfying therelation 3∑

µ=1 n
2
µ = 6. (60)

Hence, there are two one-dimensional and one two-dimensional inequivalent irreducible representations ofthe group C. The reducible representation IC can be ex-pressed in terms of irreducible representations as
IC (g) = 3∑

µ=1 aµD
µ(g), (61)

where aµ are positive or zero integers and fulfil the rela-tion 3∑
µ=1 a

2
µ = 1

g

3∑
i=1 gi = |χi|2 = 5 (62)

with g and gi denoting the number group elements andthe number of elements of the conjugated class Ki, respec-tively. The only possibility to satisfy the dimensionalityof the representation IC and Eq. (62) is the solution:

a1 = 1 for the two-dimensional irreducible representation,
a2 = 2 for the one-dimensional irreducible representation,the second one-dimensional irreducible representationcannot be involved in the decomposition, i.e. a3 = 0.Two one-dimensional representations contained in theirreducible decompositions (61) mean that there arejust two common eigenvectors for the unitary group Cand thus common eigenvectors of operators C1 and C2.¿From the definition (58) it is clear that these eigen-vectors are e1 = |00〉 and e4 = (|01〉 + |10〉 + |11〉)/√3.Subsequently, we know that the minimal invariant sub-spaces of operators C1 and C2 are: V1 = span(e1), V2 =span(e2 = 1√2 (|01〉 − |10〉), e3 = 1√6 (|01〉+ |10〉 − 2|11〉))and V3 = span(e4). If we denote the restriction of theoperator Ci to the subspace Vx as C (x)

i , in the orthonormalbasis system {ei}4i=1 the operators C1 and C2 correspondto the matrices
C1 =

 C (1)1 0 00 C (2)1 00 0 C (3)1

 =


1 0 0 00 12 √32 00 √32 − 12 00 0 0 1
 ,

C2 =
 C (1)2 0 00 C (2)2 00 0 C (3)2

 =


1 0 0 00 12 −
√32 00 −√32 − 12 00 0 0 1

 .

(63)
Writing the general commutation relations (4.1) in theblock structure form we obtain for i ∈ {1, 2}

C (m)
i X (mn) = λX (mn)C (n)

i (64)
with the 1 × 1- matrices X (11), X (13), X (31), X (33), with the2× 2 matrix X (22), with the 1× 2-matrices X (12) and X (32),and with the 2×1 matrices X (21) and X (23). Using Eqs. (64)one can check

C (n)
i
(Ker (X (mn))) ⊂ Ker (X (mn)) ,

C (m)
i
(Ran (X (mn))) ⊂ Ran (X (mn)) (65)

and thus X (mn) is either the zero operator or an invertibleoperator. Hence, X (12), X (32), X (21), X (23) are inevitably zeromatrices.Now, assume the case λ = 1. A simple evaluation ofEq. (64) leads to the relations X (11) = a, X (33) = b,
X (13) = c, and X (31) = d (a, b, c, d ∈ C). The remain-ing matrix block X (22) has to commute with the irreducibleset of 2× 2 matrices C (2)

i (i ∈ {1, 2}) and has to be equalto a multiple of the identity matrix X (22) = eI (e ∈ C).
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The eigenspace of the random unitary operation (57) cor-responding to eigenvalue 1 is five-dimensional and themost general eigenvector reads
X1 =


a 0 0 c0 e 0 00 0 e 0
d 0 0 b

 . (66)

The solution of Eq. (64) with λ = −1 yields X (11) = X (13) =
X (31) = X (33) = 0. The last matrix block X (22) is determinedby anticommutation relations with the irreducible set ofoperators C (2)

i (i ∈ {1, 2}), i.e.

C (2)
i X (22) = −X (22)C (2)

i X (22). (67)
From the discussion in Sec. 6 and the Eq. (52) followsthat X (22) is either the zero operator or

X (22) = f
(
P − C (2)

i PC
(2)
i

)
, f ∈ C, (68)

with the projection P being determined by the equation
C (2)1 C (2)2 P = PC (2)1 C (2)2 . (69)

Hence, the projection operator P is diagonal in the eigen-basis of the operator C (2)1 C (2)2 . Using Eq. (68) the mostgeneral form of the matrix block X (22) corresponding toeigenvalue −1 reads

X (22) = ( 0 f
−f 0

)
, f ∈ C. (70)

Thus, the eigenspace of the random unitary operation (57)corresponding to eigenvalue −1 is one-dimensional andthe general eigenvector reads

X−1 =


0 0 0 00 0 f 00 −f 0 00 0 0 0
 . (71)

Therefore, in the computational basis the attractor spaceis spanned by the matrices

X1,1 =


1 0 0 00 0 0 00 0 0 00 0 0 0
 , X1,2 = 1√6


0 0 0 00 0 1 10 1 0 10 1 1 0

 ,

X1,3 = 1√3


0 1 1 10 0 0 00 0 0 00 0 0 0
 , X1,4 = 1√3


0 0 0 01 0 0 01 0 0 01 0 0 0

 , (72)

X1,5 = 1√3


0 0 0 00 1 0 00 0 1 00 0 0 1
 , X−1,1 = 1√6


0 0 0 00 0 −1 10 1 0 −10 −1 1 0

 .

In this notation the first index refers to the eigenvaluesof the RUO (57) and the second index runs through thebasis states of the corresponding eigenspaces.
Finally, consider the most general two-qubit input density
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matrix
ρ(0) =


a11 a12 a13 a14
a∗12 a22 a23 a24
a∗13 a∗23 a33 a34
a∗14 a∗24 a∗34 a44

 .

Thus, theorem 4.2 implies that the asymptotic dynamicsunder the RUO (57) is periodic with period two and isdetermined by the relations

lim
n→+∞ρ(2n) =


a c c c
c∗ b d d∗
c∗ d∗ b d
c∗ d d∗ b

 ,

lim
n→+∞ρ(2n+ 1) =


a c c c
c∗ b d∗ d
c∗ d b d∗
c∗ d∗ d b


(73)

with a = a11, b = 13 (a22+a33+a44), c = 13 (a12+a13+a14),
d = 13 (a23 + a34 + a∗24). This two-qubit CNOT network isone of the simplest examples of a network allowing foroscillatory asymptotic dynamics.
8. Conclusions and outlook
We studied general properties of random unitary opera-tions and presented several theorems allowing to deter-mine the asymptotic long time dynamics. Thereby, a cen-tral result is the structure theorem which states that theasymptotic states are located completely inside the vectorspace spanned by a typically small set of attractors. Theform of these asymptotic quantum states depends on thisattractor space and on the choice of the initial state butis independent of the actual values of the probabilitieswith which the unitary transformations are applied. How-ever, these probabilities affect the rate of the convergencetowards the asymptotic quantum state.It should be stressed that the asymptotic dynamics neednot result in a stationary state. Thus, in contrast to ther-malization the asymptotic dynamics might also be periodicas illustrated by the example of two qubits interactingby random C-NOT operations. Even an aperiodic non-stationary asymptotic dynamics is possible.The obtained results rise several additional questions.First of all, it is not yet clear what determines the conver-gence rate of a quantum system towards its asymptotic dy-namics. Numerical studies suggest that in many cases thisconvergence has an exponential character which dependson the probabilities with which the unitary operations areapplied. Preliminary results also suggest that at least in

the case of many-qubit networks involving controlled-notoperations the topology of the network is related to theset of attractors.Finally, it should also be mentioned that our results mighthave applications for quantum operations which involve anaveraging procedure over a group, such as twirling oper-ations. Our results might allow to choose efficiently theminimal set of unitary transforms leading to a particularasymptotic state. In addition, we expect that the theorypresented might also contribute to other related problemsconcerning the determination of eigenvectors of randomunitary maps [17] or their application in purification pro-tocols [18].
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Appendix A: Jordan canonical form
Let us recall the definition and properties of the Jordancanonical form of square matrices. Consider a complexsquare matrix A = (Aij )ni,j=1 of size n× n (A ∈ Cn×n). It issimilar to a block diagonal matrix

A =

J1

J2 . . .
Jp

 , (A1)

in which each Jordan block Ji (i ∈ p̂ := {1, ..., p}) is givenby
Ji =


λi 1

λi
. . .. . . 1

λi

 . (A2)
Thus, there is an invertible matrix P ∈ Cn×n such that
A = PJP−1 or equivalently there is a Jordan basis xi,α ∈
Cn (i ∈ p̂, α ∈ {1, 2, . . . , dim(Ji)}) in which the linear mapcorresponding to the matrix A has the diagonal form (A1).In general, this basis is non-orthogonal and the vectors xi,α(α ∈ {1, 2, . . . , dim(Ji)}) form the basis of the Jordan block
Ji which corresponds to the eigenvalue λi of the matrix A.The geometric multiplicity of the eigenvalue λi is the num-ber of Jordan blocks corresponding to λi and the sum of
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the sizes of all Jordan blocks corresponding to an eigen-value λi is its algebraic multiplicity. Therefore, the matrix
A is diagonalizable if and only if all Jordan blocks are onedimensional. In all other cases any Jordan block, say Ji,with dimension s > 1 gives rise to a Jordan chain. Thismeans that there is a so-called lead vector or genera-tor, say xi,dim(Ji), which is a generalized eigenvector, i.e.(A − λiI)sxi,dim(Ji) = 0. The vector xi,1 = (A − λiI)s−1xi,dim(Ji)is an eigenvector corresponding to the eigenvalue λi. Ingeneral, the vector xi,j is the image of the vector xi,j+1 un-der the linear map A − λiI. In this sense all vectors xi,α(α ∈ {2, 3, . . . , dim(Ji)}) are generalized eigenvectors ofthe matrix A.Therefore, for every square matrix A there exists a basisconsisting only of eigenvectors and generalized eigenvec-tors of the matrix A in which the matrix A can be put inJordan normal form (A1).
Appendix B: Dynamical matrices
Let us summarize the concept of dynamical matrices whichis useful to understand problems related to complete pos-itivity of maps. We just recall its definition and present ashort summary of characteristic properties needed in themain body of our text. Detailed proofs are given in Ref.[7], for example.Assume that A is an operator acting on a d-dimensionalHilbert space Hd. Hence Aij (i, j ∈ d̂ := {1, ..., d}) areits matrix elements with respect to a given orthonormalbasis. It is convenient to interpret a d× d-matrix (A)ij asa vector A = (Amµ) ∈Hd2 of the length d2

A = (A11, A12, . . . , A1d, A21, A22,
. . . , A2d, . . . , Ad1, Ad2, . . . , Add). (B1)

One can check that two d × d matrices A and B fulfil
〈A, B〉 ≡ Tr{A†B} = A∗B = 〈A,B〉. (B2)

The vector A of the length d2 may be linearly trans-formed into the vector A′ = CA by a matrix C of size
d2 × d2 whose matrix elements may be denoted by Ckk ′with k, k ′ = 1, . . . , d2. In addition, it is also convenient touse a four index notation Cmµ

nν with respect to a two indexnotation of vectors (B1) with m,n, µ, ν = 1, . . . , d2. Thematrix C may represent an operator acting in a compositeHilbert space H = Hd ⊗Hd. The tensor product of anytwo orthonormal basis systems in both factors provides abasis in H so that we obtain
Cmµ
nν = 〈em ⊗ fµ|C|en ⊗ fν〉 (B3)

with Latin indices referring to the first subsystem, HA =
Hd, and Greek indices to the second subsystem, HB =
Hd. The operation of partial trace over the second or firstsubsystem produces the d × d matrices CA ≡ TrB C or
CB ≡ TrA C , respectively, i.e.

CA
mn = d2∑

µ=1 Cmµ
nµ , and CB

µν = d2∑
m=1 C

mµ
mν . (B4)

If C = A ⊗ B, then Cmµ
nν = AmnBµν . The standard productof three matrices can be rewritten in the following usefulform

ABC = ΦB with Φ = A ⊗ CT . (B5)
With the help of identity (B5) we can rewrite the RUO (1)in the form Φ = m∑

i=1 piUi ⊗U
∗
i . (B6)

Here, the RUO Φ is not understood as a map acting onthe d × d-dimensional matrix space but as a map actingon the vector space of the dimension d2.Let Φ be a completely positive trace-preserving map map-ping an arbitrary d × d density matrix ρ ∈ B (Hd) ofa d-dimensional Hilbert space Hd on a density matrix
ρ′ ∈ B (Hd), i.e.

ρ′ = Φρ or ρ′mµ = d2∑
n,ν=1 Φmµ

nν ρnν . (B7)
The meaning of complete positivity becomes rather trans-parent if we reshuffle Φ and define the dynamical matrix
DΦ (DΦ)mnµν = Φmµ

nν . (B8)
The dynamical matrix DΦ uniquely determines the map Φand has the following properties

(i) ρ′ = (ρ′ )† ⇔ DΦ = D†Φ(ii) Tr ρ′ = 1 ⇔ TrADΦ = I(iii) Φ(I) = I (unital) ⇔ TrB DΦ = I(iv) Φ is CP map ⇔ DΦ is positive.(B9)
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