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Abstract:

We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of ran-
dom unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown
that their resulting asymptotic dynamics is described by a diagonalizable superoperator.We prove that this
asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the
probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors
of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for
possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an

example involving random controlled-not operations acting on two qubits.
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1. Introduction

In recent years the rapid advancement of quantum tech-
nology with its capabilities of controlling individual quan-
tum systems has given rise to impressive developments
in the areas of quantum information science and high-
precision quantum metrology [1]. In particular, current
experiments on large ensembles of interacting quantum
systems open interesting perspectives to investigate in
detail not only the transition from quantum to classical
behavior but also to trace down those quantum phenom-

ena or effects that still are observable on the mesoscopic

*E-mail: novotny.jaroslav@seznam.cz

or macroscopic scale. A paradigm of such large physical
systems are interacting networks whose dynamics is cur-
rently investigated intensively in the classical domain [2].
Such networks are capable of simulating the behavior of
real world systems like the internet or social dynamics [3].
Typically, in these systems a number of modes represent-
ing physical objects are coupled to each other by random
interactions. A particularly interesting issue is to deter-
mine the dynamics of the system. In view of these current
activities the natural question arises which characteristic
properties govern the dynamics of such networks if each
classical node is replaced by a quantum system and, cor-
respondingly, the classical interactions by quantum oper-
ations.

In general, determining the time evolution of large quan-
tum systems is difficult and analytic or closed-form solu-
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tions are possible in exceptional cases only. In particular,
this applies to the dynamics of open quantum systems in
which a large quantum system is in contact with an addi-
tional physical system. The influence of such an external
system can be taken into account in various ways. In
special cases it may be described by randomly applied
unitary operations. Such a case is realized, for example,
if the nodes of a large quantum network represent partic-
ipants of a quantum communication network and if these
nodes establish node-to-node communication in a random
way by using quantum protocols which can be described
by unitary transformations. A natural question arising in
this context is what is the resulting quantum state of the
network after a large number of such communication steps.
More generally, such a quantum network involving random
unitary transformations can characterize the dynamics of
any interacting quantum system in which the interactions
involved can be described by repeatedly applied random
unitary transformations.

A natural approach to determine the dynamics of a quan-
tum system involves diagonalization of the generator of
the time evolution. This way the dynamics can be deter-
mined in a convenient way even in the asymptotic limit of
arbitrarily long interaction times. The situation becomes
significantly more complicated for open quantum systems
because the relevant generators are often non-hermitian
and not normal [4] so that they cannot be diagonalized.
Nevertheless, in such cases it is still possible to use the
Jordan canonical form (see Appendix A) of these operators
for determining the dynamics for arbitrarily long interac-
tion times. This leads to the highly nontrivial problem of
handling generalized eigenvectors of the relevant gener-
ators which are in general not orthogonal.

Motivated by these aspects in this paper we address
the problem of determining general properties of the
asymptotic dynamics of quantum systems whose dynamics
is governed by repeated applications of random unitary
transformations. This large family of quantum stochas-
tic dynamics is an example of so called quantum iterated
functional systems which were proposed and studied in
[5, 6]. A main goal of this paper is to demonstrate that the
Jordan canonical form of the generators of random unitary
transformations have rather unexpected and useful special
properties which allow to obtain even closed-form expres-
sions for the asymptotic quantum state resulting from a
large number of iterations of random unitary transforma-
tions. It will be proved that there is always a vector sub-
space of so-called attractors on which the resulting super-
operator governing the iterative time evolution of quantum
states can be diagonalized and in which the asymptotic
quantum dynamics takes place. As a main result a struc-
ture theorem is derived for this set of attractors which

allows to determine them in a convenient way. Further-
more, it is shown how the asymptotic iterative dynamics
of arbitrary quantum states can be written in terms of
these attractors. Based on these findings we show that
in general the asymptotic dynamics is non-monotonic. Fi-
nally, aspects of these general properties are exemplified
by studying in detail the dynamics of two qubits which are
coupled by randomly applied controlled-not operations. It
should be mentioned that some of the results character-
izing the asymptotic dynamics can also be obtained by a
different approach which uses special properties of random
unitary transformations in order to construct a convenient
Ljapunov function [7].

This paper is structured as follows. In Sec. 2 we sum-
marize basic properties of random unitary transformations
which are useful for our subsequent discussion. In Sec. 3
we examine special properties of the Jordan canonical form
of random unitary maps. The central statement of the pa-
per, namely the structure theorem for attractors of ran-
dom unitary operations, is derived in Sec. 4. Character-
istic properties of attractors are investigated in Sec. 5.
Sec. 6 is devoted to important implications resulting from
the structure theorem. Finally, as an example the asymp-
totic dynamics of two qubits which are coupled by random
controlled-not operations is discussed on the basis of our
general results (Sec. 7).

2. Basic properties of random uni-
tary operations

A random unitary operation (RUO) ¢ is a completely pos-
itive trace-preserving map admitting a convex decomposi-
tion of the form [8]

d(p) =Y piUipU/. (1)

i=1

Thereby, U; denotes a unitary operator acting on a Hilbert
space % and this unitary operation is applied onto the
quantum state p with probability p; > 0 so that} |, p; =
1. These latter probabilities take into account classical
uncertainties in the realizations of the unitary quantum
evolution involved. This uncertainty can be the result of
an unknown error mechanism or of an unknown unitary
evolution involving an additional ancillary system. In the
following we are interested in the asymptotic dynamics
resulting from many iterative applications of ®. Start-
ing with our quantum system in the initial state p(0), the
(n+1)-st step of this iteration procedure changes the state
after the n-th iteration p(n) to the state p(n+1) = ®(p(n)).
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Our aim is to analyze the asymptotic behaviour of this it-
eration procedure. The random unitary map ¢ of Eq. (1)
belongs to the class of bistochastic or doubly stochastic
maps [9-11] which leave the maximally mixed state invari-
ant, ie.

o) =) plUf =1, @
i=1

and it acts on the Hilbert space B(57) of all linear oper-
ators defined on a d-dimensional Hilbert space J#. The
dimension of the input and output system is the same. The
Hilbert space B(7) is equipped with the Hilbert-Schmidt
inner product (A, B)ys = Tr(ATB) for all A, B € B(H).
With respect to this scalar product the adjoint operator of
® is given by

oT(A) =) piUl AU (3)
i=1

This can be shown directly or by using the matrix form of
the map ¢ (B6).

In general, the RUO & is neither hermitian nor normal
and consequently is not diagonalizable. Therefore, its
resulting iterated dynamics has to be analyzed with the
help of Jordan normal forms [4] (see Appendix A). It is
a main goal of our subsequent discussion to prove that
the Jordan normal forms of RUOs have interesting special
properties which are particularly useful for the description
of their asymptotic iterated dynamics. In particular, there
exists a Jordan base in the Hilbert space B(s7°) in which
the matrix of the map (1) has a block diagonal form (A1).
Spectral properties of general quantum operations were
studied in [12]. In the following we formulate several sim-
ple characteristic properties which are particularly useful
for our subsequent considerations.

Proposition 2.1.
The random unitary map & defined by the relation (1)
fulfills the following properties:

1) The norm of the RUO ¢ induced by the Hilbert-
Schmidt norm of the Hilbert space B(7) equals
unity.

2) If A is an eigenvalue of the map ®, then |A| < 1.

3) Let X, € B() be a generalized eigenvector cor-
responding to the eigenvalue A of the map ®, then
A=1orTrX,=0.

Proof. (1-2) First we prove that the Hilbert-Schmidt
norm is unitarily invariant. For this purpose consider an
arbitrary operator A € B(.%) and two unitary operators

U,V € B(J). As a trace of matrix products is invariant
under cyclic permutations we get

1
lUAV||us = {Tr [(UAV)F(UAV)]}*
;
= {Tr(ATA)}? = [|Allus. (4)
Therefore  one  can show  that [|P]]| =

supa et [[PA)ls = 1. Let A € B(#), then the
Hilbert-Schmidt norm of the operator ®(A) is bounded by

[|D(A)|[1s = HDMAUZ‘

HS
<Y pi||juad]], . = 1Alus- )

Moreover, we have ||®(/)||us = ||/||ns. Hence,
and consequently [A| < 1.

(3) If X, is a generalized eigenvector corresponding to an
eigenvalue A of the map ®, then there is a n € N such

o] =1

that (¢ —A/)"(X)) = 0 because a simple calculation yields
Tr{(®—AN"(X)}=(1=A"TrX, =0. (6)

This equation can be fulfilled only if A =1 or Tr X, = 0.
]

Thus, all Jordan blocks in the Jordan normal decomposition
of the map ® correspond to eigenvalues A with [A] < 1. For
our subsequent discussion let us introduce the following
notation. Suppose that A is an eigenvalue of the map ®.
We denote the corresponding eigen-subspace by Ker($ —
Al), ie.

Ker(® — Al) = {X € B(&)|d(X) = AX}, (7

and the range of the map ® — A/ by Ran(® — Al), ie.

Ran(®—Al) = {X € B()[3Y € B(#), X = d(Y) — AY}.

(8)
Furthermore, let us define d, = dim(Ker(® — A/)) and gy,
as the set of all eigenvalues of the linear map & satisfy-
ing |[A| = 1. Finally, the vector subspace spanned by all
eigenstates corresponding to eigenvalues A with |A] = 1
we call the attractor space of the RUO & and denote it
by Atr(®), i.e.

Atr(®) = (P Ker(® — Al). 9)

A€y

We call elements of this subspace attractors of the dynam-
ics because, as we will show later, the asymptotic iterated
dynamics of the RUO is completely determined by these
linear operators.
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3. Jordan canonical form of random
unitary operations

In this section we prove that all Jordan blocks correspond-
ing to eigenvalues A with |A] = 1 are one-dimensional.
In other words, generalized eigenvectors corresponding to
eigenvalues |A| = 1 are all eigenvectors. This statement
is equivalent to the following theorem (for details see Ap-
pendix A).

Theorem 3.1.

Let & : B(s#) — B(s) be a random unitary operation
defined by (1) and A its eigenvalue satisfying |A| = 1,
then we have

Ker(® — Al) N Ran(® — Al) = {0}. (10)

Proof. We prove this theorem by contradiction. Sup-
pose there is an operator 0 # A € B(%) and A €
Ker(®—Al)NRan(®—Al). This implies ®(A) = AA and there
is an operator 0 # B € B(4¢) such that ®(B) = AB + A.
By induction one can conclude

O"(B) = A"B+ n\""A (11)
and consequently

n||All = 1IB|| < ||A"B + nA"'Al|
= [[e"(B)I| < l|®l" 1Bl = [|B]]. (12)

Because the resulting inequality
2
Al < 18]l (13)

has to be fulfilled for arbitrary n € N the only alternative
left isthat A=0. W

Let Yix (j € p, k € {1,2,...,dim(J;)}) (compare with
Appendix A) be the Jordan basis of the RUO ®. J; is
a Jordan block corresponding to an eigenvalue A; with a
basis formed by the generalized eigenvectors Y, (k €
{1,2,...,dim(J;)}). Let p(0) € B(#) be an input density
operator. We denote by B/(-,O,z the parameters of the unique
decomposition of the density operator p(0) € B(4#) into
this basis, i.e.

BYY, . (14)

Consider now the density operator p(n) = ®"(p(0)) de-
scribing the physical system after n iterations and denote
its decomposition coefficients (14) into the same basis by
Bj("k) It is clear that the coefficients B]("k) corresponding to
eigenvectors of eigenvalues A; € g}y evolve simply as

B" = X8 (15)

(We omit the second index k intentionally because in this
case all the Jordan blocks are one dimensional.)

Now we have to analyze the behavior of the remaining co-
efficients. It is governed by the following theorem which
quantifies how the remaining coefficients B]("k) correspond-
ing to Jordan vectors Yj, with |A;] < 1, evolve.

Theorem 3.2.

Let & : B(s) — B(s) be a quantum random unitary
operation defined by (1) with its Jordan basis Y, (j € p,
k € {1,2,....dim(J})}) and p(0) € B(+#) be an input
density operator. Furthermore, let B/(”k) be the decomposi-
tion coefficients of p(n) = ®"(p(0)) into this Jordan basis,

ie.
dim(J;)

pln)=)_ ) B

j=1 1

=

Vi (16)

x~
Il

For any eigenvalue s (|As| < 1) of the map & with its
corresponding Jordan block Js and its Jordan chain Y
(k € {1,2,...,dim(Js)}) the coefficients Bi”k) vanish in the
limit of large n

lim B -0, for

n—+o00

Yk e {1,2,...,dim())}. (17)

Proof. This theorem follows directly from the fact that
the Jordan block (/)" of dimension dim(Js) with

vanishes in the limit of large numbers of iterations n, i.e.
lim (J5)" = 0. (19)

One can check that the entry (J7); (i < j < dim/,) of the
upper triangular matrix (Js)" fulfills the inequality

n

Ul = () < s
0l = o0 ( 0] <
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so that we obtain the relation

lim (J7);; = 0,

n—o0

Vi,je{1,....dimk}. (21)

In view of this theorem the asymptotic dynamics of the
state p(0) under iterations of the random unitary opera-
tion ® is given completely in terms of its attractors. The
remaining coefficients of the decomposition of the initial
state p(0) (16) become vanishingly small after sufficiently
many iterations of the map. An interesting question which
will be addressed in the following is how to determine the
set of attractors.

4. Structure theorem for attractors

Let us now study the structure of the attractors, ie. of
all eigenspaces Ker(® — A/), with A € 0j3). In the case of
random unitary operations the following powerful theorem
can be proved which allows us to specify the space of
attractors of the RUO . In this context it should be
also mentioned that for the more general case of arbitrary
unital quantum operations interesting general results have
been derived by Kribs [13, 14] recently.

Theorem 4.1.

Let ® : B(s) — B(A) be a random unitary map ¢ (1) and
A € op|. Then the eigenspace Ker(® — Al) corresponding
to this eigenvalue A is equal to the set

D, :={X € B(#)|UX = AXU; for i=1,...,m}. (22)

Proof. The map @ is unital, that is ®(/) = /. Therefore,
every X € D, fulfils ®(X) = AX and thus D, C Ker(®—Al).
To prove the converse, let us consider X € Ker(® —A/). If
X =0, then X € D,. So let us assume that X # 0. Using
the unitary invariance of the Hilbert-Schmidt norm we get

ip,-uixuf

i=1

< ZP:‘ ‘
i=1

IXI = {lAX]] =

U[XU,TH =IXIl. (23)

Therefore, the inequality (23) is in fact an equality and
can be rewritten in the form

m m 2
(ZP(VI',ZP(V:') = (ZP{(\G,V{)%) (24)
i=1 i=1 i

with v; = U,—XUiT. Hence we get

ZZp[pj(v,», vi)%(vj, vj)% = ZP:‘,D;‘ [(v[, vi) + (vj, v[)] = ZZpiije(vi, vj) < Z 2pipj |Re(v[, vj)|

i<j i<j

Because the left and right side of the relation (25) are the
same, all inequalities are actually equalities. In particu-
lar, we have

1 1
Re(vi,vj) = |(viovj)| = (viovi) 2 (v, v)? #0
for all i,j € {1,...,m} (26)

which can be fulfilled if and only if v; = B;v; (for all i,j)
with B;; > 0. From the unitary invariance of the Hilbert-
Schmidt norm

Ix1] = [[uxuf |

=By HU,XUJ?‘H —IIXIl @)

i<j
< ZZPiP/ |(vi, vj)| < ZZPiP/(Vh v,-)%(v/-, V/)%- (25)

i<j i<y

(

we conclude that B; = 1 foralli,j € {1,..., m} and hence
UiXU] = U, XU = ... = UpXUL. (28)

Finally, using the equality ®(X) = AX we obtain
UXUI =X, ie. X €D, 1

As a consequence of this structure Theorem 4.1 the fol-
lowing corollary can be proved.

1005



Asymptotic evolution of random unitary operations

1006

Corollary 4.1.
The random unitary operation ® defined by (1) fulfills the
following properties:

1) If X is an eigenvalue of the operation ¢ fulfilling
|A| =1, then

Ker(® — Al) L Ran(® — Al). (29)

2) If A1,A; are two different eigenvalues of the opera-
tion ® fulfilling (M| = |A2| =1, then

Ker(® — A1) L Ker(d — A). (30)

Proof. First, from the Theorem (4.1) follows that if
d(X) = AX and |A| = 1, then ®T(X) = A*X and T (XT) =
AXT. In order to show that the set Ker(® — A/) is orthogo-
nal to the set Ran(®—A/) we have to prove that (K, R) =0
is fulfilled for arbitrary elements K € Ker(®¢—Al)and R €
Ran(® — Al). Therefore, there is an operator Q € B(.%)
with R = Zl.p,-U,-QUiT — AQ. Hence, using Theorem 4.1
we have the orthogonality relation

(K.R)=Tr{K'R} =) p,Tr{K"U,QU}

—ATH{KTQ} =AY p;Tr{KTQ} — ATr{KTQ} =0.

(31

The second property is a consequence of the identity

(X0, X)) = j—z(x1,¢(xz>) - Alz (®7(Xi), Xa)

A
=T 6.X), (32)
2

which is valid for X; € Ker(®—A1/) and X; € Ker(® —A;/)
and for any mutually different non-zero eigenvalues A; and
A2. Therefore, the last equality can be satisfied only if
(X1, X2)=0. 1

This corollary together with theorem 3.1 has the following
important consequence.

Theorem 4.2.

Let ® : B(s) — B(s¢) be a quantum random unitary
operation defined by (1) and p(0) € B() be an input
density operator, then the asymptotic iterative dynamics
of the state p(0) under the evolution map ® is given by

dy
Pooln) = > A" Tr{p(0)X] }X.: (33)

Aeq”J=1

and satisfies the relation
lim [|p(n) — pao()]| = 0 (34)

with p(n) = ®"(p(0)) and with the complete set of or-
thonormal basis elements X,; (i € {1,2,...,d,}) of the
space Ker(® — Al).

Proof.
that the mutually orthogonal subspaces

In order to prove this theorem we have to show

Jo= P Ker(®—Al) and 3y = () Ran(®—A)) (35)

A€a) A€y

are invariant under the map ¢ and that they satisfy the
relation Jo @ J1 = B(J2).
consequence of corollary 4.1. The first claim follows from
the fact that all subspaces Ker(® — A/) and Ran(® — A/)
are invariant under the map ®; that is, ®(Ker(® — Al)) C
Ker(® — Al) and ®(Ran(® — Al)) C Ran(® — Al). Now
we can choose some orthogonal basis vectors X, ; in the
subspaces Ker(® — Al) with [A| = 1 and the Jordan basis
Y« of the map & restricted to the subspace J;. These
vectors form a basis of the Hilbert space B(77°). Now we
consider a decomposition of p(0) into these basis vectors.

The second claim is a direct

As was shown in Theorem 3.2, the part corresponding to
the subspace J; vanishes for n — +o00 and the dynamics
of the state p(0) on the subspace Jj is given by (15). W

5. Basic properties of attractors

In this section we discuss some basic properties of RUOs
which are useful for obtaining the complete set of attrac-
tors. A basic property arises straightforwardly from the
Theorem 4.1.

Proposition 5.1. 1) Let X,, and X,, be attractors
of the RUO (1) corresponding to eigenvalue Ay and
Ay, respectively, then the product of these attrac-
tors X),X), is either an attractor corresponding to
eigenvalue AA; or it is the zero operator.

2) Let X, be an attractor of the RUO (1) corresponding
to the eigenvalue A, then XI is also an attractor of
the RUO (1) corresponding to the eigenvalue A*.

Proof. This proposition follows from the identities

UXo, X, = MXo, UiXo, = MAaXo, XU (36)
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and

UXx! = xquht = aUix)t = xxfu, (37

which are valid for all i € i :={1,...,m}. A

Based on our preceding analysis a single step of the
asymptotic dynamics is described by the superoperator

o= Y ATe(XE0) X 08)

A€a)),i=1
which fulfils the property

lim [|®" — &"_|| = 0. (39)

uss
n—00

The superoperator (38) is a unital quantum operation. In
order to prove this statement, let us define the projector

> (X7:0) X (40)

A€a)),i=1

which projects all elements of the vector space B(.7) onto
the attractor space Atr(®). The structure Theorem 4.1 and

|

d)

> AT {(m)v)

A€ajy),i=1

(Pass)my = (mp|Pyss|nv) =

The elements of the dynamical matrix Dy, . are defined by

(Doyes)ny =

so that one obtains the relation

Dq)GSS = Z (D¢D55 nv |mp nvl

m,n,p,v

S5 A, el 8 [0, ] =

m,n,u,v )\€0|1|,i=1

Using the identity (B5) one can rewrite the d? x d? dy-
namical matrix as an operator acting on d x d matrices

ass llV -

the orthogonality of all elements of the attractor space en-
sure that [®,P] = 0 and [®ss, P] =
properties imply that for any integer n the action of the
superoperator ®7_. on an arbitrary operator A € B(J¢) is
given by

0. These commutation

®he0(A) = i, (PIA) = U PAUL (41)

for an arbitrary iy € m. Thus, for any integer n the action
of the map ®J_, on the Hilbert space B(.%7) is a sequence
of a projection onto the attractor space and a unitary op-
eration. As a consequence it is a completely positive map
and in view of Eq. (39) it describes the dynamics of the
iterated random unitary operation in the asymptotic limit
of large numbers n of iterations.

It is instructive to analyze this property of complete pos-
itivity also from another perspective by using the concept
of dynamical matrices (compare with Appendix B) [10]. In
order to obtain the dynamical matrix of the asymptotic
map $,.; we first calculate its matrix elements in an or-
thonormal basis, i.e.

d)

XEFT{Umuh X} = 3 A, (X, (42)

A€a)y),i=1

-y A oo (Xai) (43)
A€ay,i=1
Z Z (Xui)) (X)\,i)mn [mu)(nv|
mnpv Aoy ,i=1
d,
Y AXu®X;. (44)
)\eum,iz‘l
(
according to
d,
Do,,(A) =Y AXAX], (45)
A€a)y),i=1
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where A is an arbitrary d x d matrix. Expressions (44)
and (45) describe the same dynamical matrix. The first
relation describes it as a map acting on reshaped vectors
of length d? and the second one as a map acting on d x d
matrices (for details see Appendix B). Both expressions
are useful to determine the properties of attractors.
According to Eq. (B9) the dynamical matrix (44) is always
hermitian. Due to proposition 5.1 this property is fulfilled.
Furthermore, the partial trace of the dynamical matrix (44)
over each subsystem yields the identity operator. For a
RUO of the form of Eq. (1) both properties lead to the
condition

dy

S Te{X] X =1 (46)

i=1
so that the dynamical matrix is positive. With the help of
Eqgs (45) and (B2) we find that this positivity is equivalent
to the relation

d
i )\Tr{ATXMAXI l.} >0, (47)

A€a)y),i=1

which has to be fulfilled for an arbitrary d x d matrix A.
In view of Theorem 4.1 we can thus conclude that the map

d,
or()= > A T{OX X (48)

A€0)),i=1

is a trace-preserving and completely positive unital map
for an arbitrary n € Z.

6. Discussion and implications

Let us summarize and comment the results obtained so far
for the asymptotic behaviour of a quantum system under
a RUO.

First of all, the asymptotic iterative dynamics is deter-
mined completely by the attractor set Atr(®) of a RUO.
The Hilbert space B(5#) can be decomposed as B(%) =
Atr(®) @ (Atr(®)) with L denoting the orthogonal com-
plement with respect to 3(.7’). Both mutually orthogonal
subspaces, i.e. Atr(®) and J; = (Atr($))" are invariant
under the RUO (1) and we proved that the component of
any initial quantum state in the subspace J; vanishes af-
ter sufficiently large numbers of iterations. Furthermore,
we proved that the vector space of attractors Atr(®) is
spanned by all elements X of the set B(.7) which fulfil
the generalized commutation relations U X = AXU; for all
unitary operators U; of the decomposition (1) and for all
eigenvalue A with |A] = 1.

The calculation of the asymptotic iterated dynamics of the
random unitary map (1) can be divided into four steps:

e One determines the set gj;. Usually, this step is
highly nontrivial and depends significantly on the
particular unitary Kraus operators involved. Any
additional properties concerning the structure of
the unitary operators U; involved, for example, sim-
plify this task considerably. In particular, the ex-
ploitation of symmetries may be useful in this re-
spect.

e One identifies the set of attractors of the RUO
Atr(P).
eigenspaces using the generalized commutation re-
lations Ker(® — Al) = D, for all A € op).

This step involves the calculation of all

e One chooses an orthonormal basis X ; in each sub-
space Ker(® — Al) for A € oj).

e One calculates the asymptotic iterated dynamics
according to the relation

dy
p(n) = o"(pO)(n > 1) =Y A" Tr{p(O)X] } X,

AEa),i=1
(49)
which is valid asymptotically for n > 1.

These general features imply some important conse-
quences. Firstly, the set of attractors Atr(®) and its corre-
sponding spectrum is independent of the nonzero proba-
bilities p; defining the convex decomposition of the RUO in
Eq. (1). Thus, two RUOs with the same unitary operators
in their convex decompositions (1) have the same attrac-
tors space Atr(®). The nonzero probabilities p; determine
only how fast an input state converges to the asymptotic
attractor space.

Another simple consequence arises if the ensemble of ran-
dom unitary operators defining the RUO & contains the
identity operator / (apart from a global phase). Theo-
rem 4.1 implies that the only possible eigenvalue of the
map ® is A = 1. Hence from the set of attractors only
fixed points can be formed and the resulting asymptotic
dynamics is stationary. Moreover, assume that the uni-
tary operators U; are generators of a finite multiplicative
group. As any group contains a unit element all possible
eigenvalues of the RUO & fulfil the relation A" = 1 for
some integer n, € N. As a consequence the resulting
asymptotic dynamics is periodic. Such a periodic asymp-
totic dynamics is also obtained obtained if the unitary
operators U; form an irreducible set of operators, i.e. they
have no common nontrivial invariant subspace. This can be
proven as follows. Consider an eigenvalue A of the random
unitary operation (1) with |[A| = 1 and its corresponding
eigenvector X, # 0. Using Theorem 4.1 it can be checked
that U;(Ker(X))) C Ker(X}) and U;(Ran(X})) C Ran(X}) is
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fulfilled for all i € M. Thus, X, # 0 is an invertible oper-
ator. Let a # 0 be an eigenvalue of the operator X, and
u, its corresponding eigenvector. From the equation

X, Uity = AU X u, = aAUiug (50)

follows that also aA is the eigenvalue of X, and Uu, are
its corresponding eigenvectors. Therefore also a2, a3, ...
are eigenvalues of X,. Eigenvectors corresponding to dif-
ferent eigenvalues are linearly independent. Therefore
there is n € N such that A” = 1. Moreover, the direct
sum of all eigensubspaces corresponding to eigenvalues
Na (j €{0,1,...,n—1}) is invariant under all unitary op-
erators U; and thus has to be equal to the whole Hilbert
space S, ie.

n—1
H =P Ker(X; — Nal). (51)

j=0

Therefore, X is diagonalizable and can be written in the

form
n—1

Xy =) Na(U)PUY, (52)

j=0

where P is the projection on the eigensubspace corre-
sponding to the eigenvalue a of X and is determined by
relations of the form

Ui P(U)T = ULP(U,)T, UrP(UNT =P #+0. (53)
Eq. (53) applies to an arbitrary pair of unitary operators
U, and U, in the decomposition of the random unitary
operation (1) and their arbitrary i-th power, i € A.
Assume now the opposite situation. Let P be a projection
satisfying Egs. (53) for some n € N and consider A =
exp (i2m/n). Then one can make sure that the operator
(52) fulfills the equations of Theorem 4.1 and thus it is an
attractor of the RUO & corresponding to the eigenvalue A.
This brings us to the following interesting issue. Under
which conditions does the attractor spectrum oj;; of a RUO
contain only the non-degenerate eigenvalue A = 1 so that
the resulting asymptotic dynamics always moves towards
the maximally mixed state? We can formulate the answer
to this question in the following corollary.

Corollary 6.1.

Let & : B(s#) — B() be a random unitary map & (1).
Then its attractor spectrum op contains only the non-
degenerate eigenvalue A =1 if and only if the set of uni-
tary operators U; is irreducible and there is no projection
P satisfying the set of Egs. (53).

The second condition is necessary because irreducibility
of the unitary operators U; only ensures that the eigen-
value A = 1 in the attractor spectrum ojy| is not degenerate.
This was also shown in [5]. To elucidate this fact let us
show an example of a RUO whose attractor spectrum is
given by oy = {1,A,A} with A = exp (i2n/3). Based on
our foregoing discussion we can construct the following set
of irreducible unitary operators in a 6-dimensional Hilbert
space with the orthonormal basis states |j) (1 < j < 6)

0000 11
0000 1 —1
17111000 0
U= — :
V21 =100 0 0
001100
00 1-100

(54)
0000 1 1
0000 —11
-1 100 00
T2l 1100 00
0011 00
00 1-1100

This set is chosen in such a way that P = |1)(1]+2)(2]| is
the only projection operator satisfying the set of Egs. (53)
with n = 3.

Finally, it can also be shown that all attractors of RUOs
generated by an irreducible set of unitary operators are
proportional to unitary operators. If we multiply the equa-
tions for attractors with their adjoint forms we obtain

UXXT] = [XXT U (55)
This inevitably leads us to the fact that
XX = al, (56)

with a > 0.

The question remains what happens if the set of unitary
operators U; is not irreducible. It is shown in the follow-
ing section that in special cases it may still be possible
to decompose the Hilbert space into so-called minimal in-
variant subspaces for which the condition of irreducibility
of unitary operators U; still holds.

7. Asymptotic dynamics of a two-
qubit CNOT-system

In this section we discuss the asymptotic dynamics of the
RUO

®(p) = p1GipCr + (1 = p1)CopCy, 67)
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which involves two controlled-not (CNOT) operations
acting on two qubits. In the computational basis
{]0,0),]0,1),]1,0),]1,1)} of the two-qubit Hilbert space
7 the action of these CNOTs is defined by

Glij)y=li.i®j) G

Lj)y=li®j.j).  (58)

with @ denoting addition modulo 2. This special RUO
of Eq. (57) is a hermitian operator and therefore its only
possible eigenvalue lying within g}y are 1 and —1. Let us
first find a decomposition of the two-qubit Hilbert space
4% into subspaces %, i.e.

7 =P (59)

within each of which the set of unitary operators G, G,
acts irreducibly. Constructing such a decomposition is
equivalent to constructing a decomposition of the finite
multiplicative unitary group C generated by C; and G,.
The unitary group C is naturally a unitary representation
Ic of itself. Therefore, the following considerations are
immediate consequences of the standard theory of repre-
sentations of finite groups [16].

The unitary group C contains six elements divided into
three conjugated classes: K; = {identity element /}, K; =
{CiG, GGY, K = {G, G, GGG Y. The characters of
the representation /¢ corresponding to these classes are
x1 =4 x2 =1 and xy3 = 2. Thus, there are only three
inequivalent irreducible representations of the group C,
say DV (u = {1,2,3}), with dimensions n, satisfying the

relation
3
> ni=6. (60)
u=1

Hence, there are two one-dimensional and one two-
dimensional inequivalent irreducible representations of
the group C. The reducible representation /c can be ex-
pressed in terms of irreducible representations as

3
le(g) =) _a,D"(g), (61)

p=1

where a, are positive or zero integers and fulfil the rela-
tion
3 13
Y ay=—) gi=xl=5 (62)
p=1 g i=1
with g and g; denoting the number group elements and
the number of elements of the conjugated class K;, respec-

tively. The only possibility to satisfy the dimensionality
of the representation Ic and Egq. (62) is the solution:

a, = 1 for the two-dimensional irreducible representation,
a; = 2 for the one-dimensional irreducible representation,
the second one-dimensional irreducible representation
as = 0.
Two one-dimensional representations contained in the

cannot be involved in the decomposition, ie.

irreducible decompositions (61) mean that there are
just two common eigenvectors for the unitary group C
and thus common eigenvectors of operators C; and C..
(From the definition (58) it is clear that these eigen-
vectors are e; = |00) and e; = (|01) + [10) + [11))/V/3.
Subsequently, we know that the minimal invariant sub-
spaces of operators C; and G, are: V; = span(eq), Vo =
span (e, = 5(|01) — [10), e5 = £:(01) +[10) — 2/11)))
and V5 = span(e4). If we denote the restriction of the
operator C; to the subspace V, as C,-(X), in the orthonormal
basis system {e;}?_, the operators C; and G, correspond
to the matrices

KT W (A
01 Lo

G=| 0 ¢? o |= 5 2 :
0 (1)6‘3) 0% 10

! 00 0 1

G=| 0 ¢ o |= Oiﬁ_?o
o o W 0 -5 —2 0

2 0 0 0 1

(63)

Writing the general commutation relations (4.1) in the
block structure form we obtain for i € {1,2}

Cj('")x(mn) _ )\X(mn)ci(") (64)

with the 1 x 1- matrices X", X3 XGY xB3) with the
2 x 2 matrix X2, with the 1 x 2-matrices X" and X©?,
and with the 2 x 1 matrices X®V and X®. Using Eqgs. (64)
one can check

C[(") (Ker (X(’”"))) C Ker (X(’"”)) ,

(65)
ctm (Ran (X)) c Ran (X))

and thus X(™ {s either the zero operator or an invertible
operator. Hence, X(12, X2 X1 X2 are inevitably zero
matrices.

Now, assume the case A = 1. A simple evaluation of
Eq. (64) leads to the relations X" = @, XB3 = p,
XM = ¢, and X®Y = d (a,b,c,d € C). The remain-
ing matrix block X2 has to commute with the irreducible
set of 2 x 2 matrices C? (i € {1,2}) and has to be equal
to a multiple of the identity matrix X® = e/ (e € C).
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The eigenspace of the random unitary operation (57) cor-
responding to eigenvalue 1 is five-dimensional and the
most general eigenvector reads

Xi = (66)

Q O O Q
o o o O
o o O O
o O O o

The solution of Eq. (64) with A = —1 yields X" = X(13) =
XBY = XB3) = 0. The last matrix block X©?? is determined
by anticommutation relations with the irreducible set of
operators C? (i € {1,2}), ie.

Ci(z)X(zz) — _x) Ci(2)X(22)‘ (67)

From the discussion in Sec. 6 and the Eq. (52) follows
that X?? is either the zero operator or

X2 _ ¢ (P - C,-‘Z’PC,-(Z)) . feC (68

with the projection P being determined by the equation

c?c?p=pPc?cy. (69)

n
1000
0000
Xi=l9000 |
0000
0111
v _ 1 loooo0
B3l 0000 |
0000
0000
110100
Xis=—= ,
YT 310010
0001

In this notation the first index refers to the eigenvalues
of the RUO (57) and the second index runs through the
basis states of the corresponding eigenspaces.

Hence, the projection operator P is diagonal in the eigen-
basis of the operator C1(2)C2(2). Using Eq. (68) the most
general form of the matrix block X® corresponding to
eigenvalue —1 reads

x<22)=(_0f 6) fec. (70)

Thus, the eigenspace of the random unitary operation (57)
corresponding to eigenvalue —1 is one-dimensional and
the general eigenvector reads

0000
00 fO

=10 ro00 7
0000

Therefore, in the computational basis the attractor space
is spanned by the matrices

0000
1 10011
X“_% 0101 ]|’
0110
0000
111000
Xyg = — 72
WAl 1000 | (72)
1000
00 0 O
110 0 -1 1
X, [
TR0 1 0 -1
0-1 1 0

Finally, consider the most general two-qubit input density
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matrix
an aq 413 dq4
0) = GTZ a3 a3 dy
p( )_ * *
Gi3 033 033 03
aly Oy 0y Gy

Thus, theorem 4.2 implies that the asymptotic dynamics
under the RUO (57) is periodic with period two and is
determined by the relations

Q
3}
o
o

. ¢ b d d*
e e A K

¢t d d° b

(73)
a C C C
, & b d d
nEToo p(2l’l + 1) - C* d b d*
¢t d*d b

witha = a4, b = %(0224-0334-044), c= %(U12+013+014),
d= %(023 + a3 + a3,). This two-qubit CNOT network is
one of the simplest examples of a network allowing for
oscillatory asymptotic dynamics.

8. Conclusions and outlook

We studied general properties of random unitary opera-
tions and presented several theorems allowing to deter-
mine the asymptotic long time dynamics. Thereby, a cen-
tral result is the structure theorem which states that the
asymptotic states are located completely inside the vector
space spanned by a typically small set of attractors. The
form of these asymptotic quantum states depends on this
attractor space and on the choice of the initial state but
is independent of the actual values of the probabilities
with which the unitary transformations are applied. How-
ever, these probabilities affect the rate of the convergence
towards the asymptotic quantum state.

It should be stressed that the asymptotic dynamics need
not result in a stationary state. Thus, in contrast to ther-
malization the asymptotic dynamics might also be periodic
as illustrated by the example of two qubits interacting
by random C-NOT operations. Even an aperiodic non-
stationary asymptotic dynamics is possible.

The obtained results rise several additional questions.
First of all, it is not yet clear what determines the conver-
gence rate of a quantum system towards its asymptotic dy-
namics. Numerical studies suggest that in many cases this
convergence has an exponential character which depends
on the probabilities with which the unitary operations are
applied. Preliminary results also suggest that at least in

the case of many-qubit networks involving controlled-not
operations the topology of the network is related to the
set of attractors.

Finally, it should also be mentioned that our results might
have applications for quantum operations which involve an
averaging procedure over a group, such as twirling oper-
ations. Our results might allow to choose efficiently the
minimal set of unitary transforms leading to a particular
asymptotic state. In addition, we expect that the theory
presented might also contribute to other related problems
concerning the determination of eigenvectors of random
unitary maps [17] or their application in purification pro-
tocols [18].
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Appendix A: Jordan canonical form

Let us recall the definition and properties of the Jordan
canonical form of square matrices. Consider a complex
square matrix A = (Ay)],_; of size n x n (A € C™"). It is
similar to a block diagonal matrix

A= § , (A1)

by

Ji = R (A2)

Thus, there is an invertible matrix P € C"*" such that
A = PJP~" or equivalently there is a Jordan basis x;, €
C"(iep,ae{1,2,...,dim{J;)}) in which the linear map
corresponding to the matrix A has the diagonal form (A1).
In general, this basis is non-orthogonal and the vectors x; o
(a € {1,2,...,dim(J;)}) form the basis of the Jordan block
J; which corresponds to the eigenvalue A; of the matrix A.
The geometric multiplicity of the eigenvalue A; is the num-
ber of Jordan blocks corresponding to A; and the sum of
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the sizes of all Jordan blocks corresponding to an eigen-
value A; is its algebraic multiplicity. Therefore, the matrix
A is diagonalizable if and only if all Jordan blocks are one
dimensional. In all other cases any Jordan block, say J;,
with dimension s > 1 gives rise to a Jordan chain. This
means that there is a so-called lead vector or genera-
tor, say X;dim(;), Which is a generalized eigenvector, ie.
(A — /\i/)sxi,dim(li) = 0. The vector Xi1 = (A — /\il)s_1X[,dim(ji)
is an eigenvector corresponding to the eigenvalue A;. In
general, the vector x;; is the image of the vector x; j;1 un-
der the linear map A — A;/. In this sense all vectors x; .
(a € {2,3,...,dim({J;)}) are generalized eigenvectors of
the matrix A.

Therefore, for every square matrix A there exists a basis
consisting only of eigenvectors and generalized eigenvec-
tors of the matrix A in which the matrix A can be put in
Jordan normal form (A1).

Appendix B: Dynamical matrices

Let us summarize the concept of dynamical matrices which
is useful to understand problems related to complete pos-
itivity of maps. We just recall its definition and present a
short summary of characteristic properties needed in the
main body of our text. Detailed proofs are given in Ref.
[7], for example.

Assume that A is an operator acting on a d-dimensional
Hilbert space J#;. Hence A;; (i,j € d:={1,....d}) are
its matrix elements with respect to a given orthonormal
basis. It is convenient to interpret a d x d-matrix (A); as
a vector A = (An,) € #p of the length d?

A= (A11:A12: cee :A1d:A21:A22,

o Asds e At Ader - Ada). (B)

One can check that two d x d matrices A and B fulfil
(A B) = Tr{ATB} =A'B = (A, B). (B2)

The vector A of the length d? may be linearly trans-
formed into the vector A = CA by a matrix C of size
d? x d* whose matrix elements may be denoted by C,,/
with k, K = 1,...,d? In addition, it is also convenient to
use a four index notation C* with respect to a two index
notation of vectors (B1) with m,n,u,v = 1,...,d> The
matrix C may represent an operator acting in a composite
Hilbert space J¢ = 74 ® ;. The tensor product of any
two orthonormal basis systems in both factors provides a
basis in 7 so that we obtain

Gt =(en®f,|Cle, ®f,) (B3)

with Latin indices referring to the first subsystem, 7% =
4, and Greek indices to the second subsystem, 73 =
4. The operation of partial trace over the second or first
subsystem produces the d x d matrices C* = Trg C or
CB =Trs C, respectively, i.e.

d? d?
Con=)_ Gt and Ch=) Cu. (B4
p=1 m=1
If C =A® B, then () = A, B,y. The standard product
of three matrices can be rewritten in the following useful
form

ABC = B with  ¢=A®C’. (B5)
With the help of identity (B5) we can rewrite the RUO (1)
in the form

=) plioU;. (B6)

i=1

Here, the RUO @ is not understood as a map acting on
the d x d-dimensional matrix space but as a map acting
on the vector space of the dimension d?.
Let ® be a completely positive trace-preserving map map-
ping an arbitrary d x d density matrix p € B(J%) of
a d-dimensional Hilbert space J#; on a density matrix
p € B(A), ie.

&
or p;np = Z oy P (B7)

n,v=1

p =%p

The meaning of complete positivity becomes rather trans-
parent if we reshuffle ¢ and define the dynamical matrix
Do

(Do) = @Y. (B8)

Hv

The dynamical matrix D¢ uniquely determines the map ®
and has the following properties

(i p =) & Dy=D]
(i) Trp =1 & TraDe =1
(iit) ®()=1 (unital) & TrgDy =1
(iv) ¢ is CP map & Doy is positive.
(B9)
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