
Journal of Physics A: Mathematical and Theoretical

FAST TRACK COMMUNICATION

Random unitary dynamics of quantum networks
To cite this article: J Novotný et al 2009 J. Phys. A: Math. Theor. 42 282003

 

View the article online for updates and enhancements.

You may also like
Asymptotic properties of quantum Markov
chains
J Novotný, G Alber and I Jex

-

Fault tolerant controlled quantum dialogue
against collective noise
Li-Wei Chang,  , Yu-Qing Zhang et al.

-

Two-party LOCC convertibility of
quadpartite states and Kraus–Cirac
number of two-qubit unitaries
Akihito Soeda, Seiseki Akibue and Mio
Murao

-

This content was downloaded from IP address 130.83.36.132 on 15/02/2023 at 10:24

https://doi.org/10.1088/1751-8113/42/28/282003
/article/10.1088/1751-8113/45/48/485301
/article/10.1088/1751-8113/45/48/485301
/article/10.1088/1674-1056/ab5786
/article/10.1088/1674-1056/ab5786
/article/10.1088/1751-8113/47/42/424036
/article/10.1088/1751-8113/47/42/424036
/article/10.1088/1751-8113/47/42/424036


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 282003 (7pp) doi:10.1088/1751-8113/42/28/282003

FAST TRACK COMMUNICATION

Random unitary dynamics of quantum networks
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Abstract
We investigate the asymptotic dynamics of quantum networks under repeated
applications of random unitary operations. It is shown that in the asymptotic
limit of large numbers of iterations this dynamics is generally governed by a
typically low dimensional attractor space. This space is determined completely
by the unitary operations involved and it is independent of the probabilities
with which these unitary operations are applied. Based on this general feature
analytical results are presented for the asymptotic dynamics of arbitrarily large
cyclic qubit networks whose nodes are coupled by randomly applied controlled-
NOT operations.

PACS numbers: 03.65.Ud, 03.67.Bg, 03.67.−a, 03.65.Yz

In recent years specific features of classical networks have been investigated intensively [1]
because they exhibit generic organizing principles shared by rather different systems, such as
living cells or the Internet. In view of these developments and in view of recent significant
progress in the control and manipulation of quantum systems [2] it is natural to extend these
investigations into the quantum domain and to explore characteristic phenomena of quantum
networks.

In a natural generalization of its classical analog, the nodes of a typical quantum network
are formed by spatially localized distinguishable quantum systems, and couplings between
different nodes originating from interactions or communication are described in general by a
completely positive quantum operation [3]. Iterative applications of this quantum operation
give rise to a dynamical evolution of this quantum network. So, in general, contrary to
typical interacting many-body quantum systems [4] the couplings between different parts of
a quantum network cannot be described by infinitesimal generators, such as Hamiltonians or
Lindblad operators. Quantum networks can model rather different physical quantum systems,
such as interacting gases or in the context of quantum information processing a quantum-
communication-based internet. Contrary to their classical counterparts they are not only able
to manipulate classical correlations but also to distribute entanglement which is a characteristic
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quantum resource. As strong entanglement cannot be shared freely between several quantum
systems [5] the distribution of entanglement over a quantum network follows rules which are
fundamentally different from those governing the distribution of classical correlations.

In this paper we explore characteristic features of the intricate interplay between
entanglement and decoherence in quantum networks. Whereas unitary evolution can generate
entanglement, i.e. genuine quantum correlations, decoherence may destroy it again. Thus, the
competition between these two counteracting tendencies is expected to produce interesting
dynamical features. One of the simplest transformations which can be considered in this
context is a random unitary transformation which acts repeatedly on a quantum network.
Thereby, in the spirit of similar models studied in the context of random matrix theory [6] the
classical randomness involved models uncontrolled external degrees of freedom originating
from couplings to a reservoir. Furthermore, iterated random unitary transformations are
also useful for implementing various tasks relevant for quantum information processing. In
quantum state purification protocols, for example, they can provide reliable approximations
for twirling operations which are difficult to implement in other ways [7]. In large quantum
networks constituted by large numbers of coupled elementary quantum systems repeatedly
applied random unitary transformation typically give rise to complicated dynamical features.
In particular, in the asymptotic limit of large numbers of iterations interesting characteristic
dynamical features are expected to arise. The complications involved are already apparent in
simple paradigms, such as quantum networks whose nodes are formed by elementary two-level
quantum systems (qubits) coupled by randomly chosen unitary controlled-NOT operations.
Even for moderately large numbers of qubits, say between 10 and 30, a detailed description
of such quantum networks becomes computationally intractable. Therefore, alternative
theoretical methods have to be developed for exploring their characteristic dynamical features.

In the following it is shown that despite these complications the asymptotic dynamics
of arbitrary quantum systems originating from iterated random unitary quantum operations
exhibits very regular patterns. It turns out that it is governed by a typically low dimensional
attractor space which is determined completely by the unitary transformations involved
and its structure is independent of the probability distributions with which these unitary
transformations are selected. This basic property of random unitary quantum operations allows
us to investigate systematically the asymptotic dynamics even of arbitrarily large quantum
networks. As a particular example we present first results exploring the characteristic features
of cyclic qubit networks whose dynamics is determined by random unitary controlled-NOT
operations. The motivation for this particular choice is the fact that the controlled NOT is the
most striking example of an entanglement generating quantum gate and we find the question
whether the randomness in its application will lead ultimately to a complete elimination of
entanglement in the system particularly interesting.

In order to put the problem into perspective consider an arbitrary quantum system whose
dynamics is described by the iterated application of a random unitary operation

�(ρ̂) =
∑

i∈I

piÛi ρ̂Û
†
i . (1)

Thus, a single application of this quantum operation consists of selecting a unitary linear
operator Ûi ∈ U = {Ûl|l ∈ I } randomly according to the normalized probability distribution
{0 < pl � 1, i ∈ I } and of applying it onto an initially prepared quantum state ρ̂ ∈ B(H).
(B(H) denotes the Hilbert space of linear operators over the d-dimensional Hilbert space H
describing the quantum system under consideration.) Correspondingly, after n iterations of this
random unitary operation the quantum system is in the state �(n)(ρ̂) ≡ �(�(�(· · · (�(ρ̂))))).
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The dynamics of (1) can model various physical situations. For example, if the quantum
system consists of a large number of distinguishable few-level systems it can model colliding
distinguishable low-dimensional systems whose collisions are well separated in time. In this
case each Ûi ∈ U describes the unitary evolution of a completed collision which occurs
with probability pi . Alternatively the iterated dynamics of (1) can also describe a quantum
walk [8] whose ideal unitary dynamics is perturbed by random imperfections. In the context
of quantum information processing this dynamics may model the probabilistic exchange of
quantum information between different nodes within a quantum internet in which different
nodes entangle each other by unitary operations selected randomly by its users.

Random unitary operations have a number of characteristic properties. Obviously
they belong to the class of unital quantum operations [3, 9] which leave the maximally
mixed quantum state ρ̂ = 1/d2 invariant. Defining the Hilbert–Schmidt scalar product
(Â, B̂) = Tr(Â†B) in the Hilbert space of linear operators B(H) the adjoint of � of (1) is
given by

�†(ρ̂) =
∑

i∈I

piÛ
†
i ρ̂Ûi . (2)

Thus, in general � is not normal, i.e. [�†,�] �= 0, so that it cannot be diagonalized.
Nevertheless, its properties can still be analyzed systematically with the help of Jordan
normal forms [10]. We show in the following that despite the resulting complications the
asymptotic dynamics of iterated random unitary operations �(n) is governed by surprisingly
regular patterns which considerably simplify their description especially in the large-n limit.
In special cases this asymptotic dynamics can even be determined analytically.

For a discussion of this asymptotic dynamics we use the fact that � (1) cannot decrease
the von Neuman entropy S, i.e.,

S(�(ρ̂)) �
∑

i∈I

piS
(
Ûi ρ̂Û

†
i

) = S(ρ̂). (3)

The resulting monotony of S(�(n)(ρ̂)) and its boundedness for the finite-dimensional quantum
systems at hand imply that in the limit of large numbers of iterations �(n)(ρ̂) leads to a constant
von Neuman entropy. Thus, the relations [11]

lim
n→∞

∥∥Ûi ρ̂nÛ
†
i − Ûi ′ ρ̂nÛ

†
i ′
∥∥ = 0 (4)

have to be fulfilled for ρ̂n = �(n)(ρ̂) and for all unitary operations with i, i ′ ∈ I . For
sufficiently large values of n therefore the asymptotic quantum states ρ̂n are restricted by the
requirements

Ûi ρ̂nÛ
†
i = Ûi ′ ρ̂nÛ

†
i ′ . (5)

From (5) we note that for a given set of unitary transformations U the set of all its solutions
forms a linear space, the attractor space A ⊂ B and that � (1) acts on this attractor space
unitarily. As unitary transformations are normal the restriction of � onto the attractor space
A can be diagonalized with the help of a complete set of orthonormal eigenvectors X̂λ ∈ A.
These eigenvectors fulfil the eigenvalue equations and orthonormality constraints

ÛiX̂λÛ
†
i = λX̂λ, Tr

(
X

†
λXλ′

) = δλλ′ (6)

for all i ∈ I . From (6) it is apparent that the linear operators of the attractor space A also form
a C∗-algebra. This property implies a number of useful relations, such as

|λ| = 1, X̂
†
λ = X̂λ∗ , λnλ′m �= 1 −→ Tr

(
X̂n

λX̂
m
λ′
) = 0.
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Thus, the attractor space A is defined by all linear operators X̂λ fulfilling (6) with the additional
requirement |λ| = 1. Furthermore, all asymptotically accessible quantum states ρ̂n = �(n)(ρ̂)

are contained in this attractor space, i.e. limn→∞ ρ̂n ∈ A. Let us now introduce the (continuous)
projection operator

P(.) =
∑

|λ|=1

Tr
(
X̂

†
λ(.)

)
X̂λ, (7)

which projects the linear space B onto the attractor space A. In view of the relation 1/λ∗ = λ

for |λ| = 1 it commutes with the random unitary operations of the random unitary channel
(1), i.e. [P,�] = 0, so that we can conclude with the help of (6) and (7)

lim
n→∞ �(n)(ρ̂) = P( lim

n→∞ �(n)(ρ̂)) = lim
n→∞ �(n) (ρ̂out)

= lim
n→∞ Û

(n)
l0

ρ̂outÛ
(n)†
l0

= lim
n→∞

∑

|λ|=1

λn Tr
(
X̂

†
λ(ρ̂)

)
X̂λ (8)

with l0 ∈ I arbitrary and with the projected initially prepared quantum state ρ̂out = P(ρ̂).
Equation (8) is a main result of our work. It shows explicitly how the asymptotic dynamics of
� (1) is determined by the structure of the attractor space A. Of course, (8) could also have
been derived in a direct but more cumbersome way with the help of a Jordan normal form
decomposition of � [12].

According to (8) the determination of the asymptotic dynamics of �(n) can be divided into
two main steps. In the first step one determines the set of eigenvalues λ of unit modulus and the
associated orthonormal basis {X̂λ} of the linear space A using (6). Typically, this is a difficult
task which may be facilitated by symmetries. In the second step one evaluates the unitary
asymptotic action of �(n) onto the projected quantum state ρ̂out according to (8). Typically, the
attractor space is expected to be of sufficiently low dimensions so that (8) implies significant
simplifications.

Equation (8) hints at some remarkable general features of the asymptotic dynamics of �(n).
First of all, the space of attractors A is determined completely by the set of unitary operators
U . In particular, this implies that the asymptotic dynamics is independent of the classical
probability distribution characterizing �. Nevertheless, in general this probability distribution
still influences the rate of convergence. Furthermore, if one of the unitary operations from
the set U is the unit operation (apart from a global phase) the only possible eigenvalue is
given by λ = 1. The resulting asymptotic dynamics is thus stationary. Another general
consequence can be derived for unitary operations U which generate a ray representation of a
finite group. Because the unit-element of this group is a product of the generators contained
in U , for each eigenvalue λ there is a natural number nλ with λnλ = 1. Thus, the resulting
asymptotic dynamics is periodic. However, (8) also applies to the most general non-stationary
and non-periodic cases of asymptotic dynamics.

Let us now apply the general results (8) to the description of the asymptotic dynamics of
a particular class of quantum networks consisting of qubits which are coupled by randomly
selected controlled-NOT operations. A controlled-NOT operation between qubits i and j

is defined by Ci,j |a〉i ⊗ |b〉j = |a〉i ⊗ |b ⊕ a〉j . It is known to entangle qubits effectively
because it produces pure maximally entangled Bell states from separable states of the form
(|0〉i + |1〉i )/

√
2 ⊗ |b〉j , for example. Here, the pure states |a〉 with a ∈ {0, 1} denote

orthonormal basis states of the computational basis of a qubit and a ⊕ b with b ∈ {0, 1}
denotes addition modulo 2. Let us further assume that our network has a one-dimensional
cyclic topology so that nodes i and i + 1 with i = 1, . . . , N are coupled by controlled-NOT
operations Ci,i+1 and that in view of the cyclic topology qubits N + 1 and 1 are identical (see
figure 1).
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Figure 1. Network with one-dimensional cyclic topology. Vertices correspond to nodes (qubits),
oriented edges visualize which nodes are coupled by controlled-NOT operations.

In order to determine the asymptotic limit of the corresponding random unitary operation
one has to solve the eigenvalue problem (6). The possible eigenvalues can be determined
easily by noting that controlled-NOT operations have the property C2

i,i+1 = 1. Therefore, the
only possible eigenvalues (6) are given by λ = ±1. The determination of all eigenvectors
with eigenvalue λ = 1 is facilitated by the observation that the pure quantum states |0〉
and |�〉 = ∑2N −1

z=1 |z〉/√2N − 1 (with |z〉 ≡ |jN 〉|jN−1〉 · · · |j2〉|j1〉, z = ∑N
i=1 2i−1ji , and

ji ∈ {0, 1}) are invariant under all controlled-NOT operations of the cyclic network. Using
the additional fact that the unit operator is a solution of (6) with eigenvalue λ = 1 we find the
following orthonormal eigenvectors for λ = 1

X̂1 = |0〉〈0|, X̂2 = |0〉〈�|, X̂3 = |�〉〈0|,
(9)

X̂4 = |�〉〈�|, X̂5 = (1 − |0〉〈0| − |�〉〈�|)/
√

2N − 2.

By a somewhat lengthy calculation one can prove from (6) by induction that there are no
additional eigenvectors. Thus, for any number of qubits N the eigenspace associated with
λ = 1 is five dimensional and is given by (9). By induction one can also demonstrate that for
N > 2 solutions of (6) with eigenvalue λ = −1 do not exist. It is only in the special case of
N = 2 that a non-trivial normalized eigenvector exists. Explicitly it is given by [12]

X̂6 = −|0〉|1〉〈1|〈0| + |0〉|1〉〈1|〈1| + |1〉|0〉〈0|〈1| − |1〉|0〉〈1|〈1| − |1〉|1〉〈0|〈1| + |1〉|1〉〈1|〈0|.
(10)

Having determined an orthonormal basis of the attractor space A, the general form of the
asymptotic dynamics of the quantum network can be determined with the help of (8). Thus,
for any number of qubits with N > 2 the projected quantum state ρ̂out is given by

ρ̂out = p
P̂2ρ̂P̂2

p
+ (1 − p)

1 − P̂2

2N − 2
. (11)

This state is stationary because it is invariant under all controlled-NOT operations under
consideration. Here, the projection operator P̂2 = |0〉〈0| + |�〉〈�| projects onto the two-
dimensional subspace H2 ⊂ H spanned by the pure states |0〉 and |�〉 which are invariant
under all controlled-NOT operations under consideration. The probability p = Tr{P̂2ρ̂}
measures the overlap of the initially prepared quantum state ρ̂ with this invariant subspace.
Equation (11) implies that any initially prepared quantum state ρ̂ which is contained completely
in subspace B(H2) is not affected by the randomly applied controlled-NOT operations. Thus,
B(H2) forms a decoherence-free subspace [13, 14].
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Figure 2. Distance D between the nth iterate ρ̂n and the projected quantum state ρ̂out for different
pure six-qubit states ρ̂ = |ψ〉〈ψ |: |ψ〉 = |000001〉(——), |111111〉(— · —), |101010〉(· · · · · ·).

Let us finally discuss the convergence towards the asymptotic dynamics. A convenient
measure for the distance D between the quantum state after n iterations ρ̂n and the
corresponding asymptotic quantum state Ûn

l0
ρ̂outÛ

n†
l0

can be based on the Hilbert–Schmidt

norm by the relation D2 = (ρ̂n − Ûn
l0
ρ̂outÛ

n†
l0

, ρ̂n − Ûn
l0
ρ̂outÛ

n†
l0

).
In figure 2 numerical results are presented depicting the distance D between the states

ρ̂n and ρ̂out = Ûn
l0
ρ̂outÛ

n†
l0

for a cyclic quantum network consisting of N = 6 qubits and for
various initial quantum states ρ̂ with a uniform probability distribution. It is apparent that
convergence is achieved in a strictly monotonic way. Nevertheless, the rate of convergence
depends on the initially prepared quantum state.

In figure 3 analogous numerical results are depicted for a cyclic quantum network
consisting of two qubits and for the distance D between the states ρ̂n and ρ̂out. Contrary
to the previously considered case, now the asymptotic dynamics is not always stationary, i.e.
typically ρ̂out �= Ûn

l0
ρ̂outÛ

n†
l0

, because according to (10) there is also a non-trivial eigenspace
with eigenvalue λ = −1. Depending on whether the initially prepared quantum state ρ̂

overlaps with this eigenspace or not the asymptotic dynamics of ρ̂n is non-stationary or
stationary.

In conclusion, we have presented a general method which allows us to determine the
asymptotic dynamics of arbitrary quantum systems under the influence of iterated random
unitary operations. It is based on the determination of the associated asymptotic attractor
space. This attractor space is independent of the probability distribution characterizing
the classical randomness and is typically low dimensional thus simplifying the asymptotic
dynamical description considerably. Although this probability distribution influences the rate
of convergence the asymptotic dynamics itself is robust against perturbations of the classical
randomness involved. As a particular application of this method results have been presented
for cyclic qubit networks. From these results we can conclude that the classical randomness
involved in random unitary transformations may not always lead to a stationary asymptotic
state. Furthermore, in cases in which it does the resulting asymptotic stationary state need not
be a maximally mixed state, i.e., the dynamics does not lead to complete thermalization. The
asymptotic dynamics may involve a decoherence-free subspace. In such cases, all quantum
coherences and entanglement within this decoherence free subspace will be preserved but
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Figure 3. Distance D between the nth iterate ρ̂n and the projected quantum state ρ̂out for different
pure two-qubit states ρ̂ = |ψ〉〈ψ |/√|〈ψ |ψ〉|: |ψ〉 = 0.3 eiπ/5|10〉 + eiπ/7|11〉(——), |10〉 +
|11〉(— · —).

all quantum coherences between quantum states inside and outside this decoherence-free
subspace will be destroyed completely in the asymptotic limit.

It is expected that the exploration of the structure of attractor spaces associated with the
dynamics of more general networks will shed light also onto other open problems of network
dynamics in the quantum domain, such as the connection between network topology and the
resulting asymptotic dynamics.
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