
                          

Perfect excitation of a matter qubit by a single
photon in free space
To cite this article: M. Stobiska et al 2009 EPL 86 14007

 

View the article online for updates and enhancements.

You may also like
Measurement of two-photon
position–momentum
Einstein–Podolsky–Rosen correlations
through single-photon intensity
measurements
Abhinandan Bhattacharjee, Nilakantha
Meher and Anand K Jha

-

Lower bounds for the time-bandwidth
product of a single-photon pulse
V Averchenko, D A Reiß, D Sych et al.

-

Singular diffusion in a confined sandpile
R. S. Pires, A. A. Moreira, H. A. Carmona
et al.

-

This content was downloaded from IP address 130.83.36.132 on 15/02/2023 at 10:25

https://doi.org/10.1209/0295-5075/86/14007
/article/10.1088/1367-2630/ac6901
/article/10.1088/1367-2630/ac6901
/article/10.1088/1367-2630/ac6901
/article/10.1088/1367-2630/ac6901
/article/10.1088/1367-2630/ac6901
/article/10.1088/1402-4896/ab5973
/article/10.1088/1402-4896/ab5973
/article/10.1209/0295-5075/109/14007


April 2009

EPL, 86 (2009) 14007 www.epljournal.org

doi: 10.1209/0295-5075/86/14007

Perfect excitation of a matter qubit by a single photon
in free space

M. Stobińska
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Abstract – We propose a scheme for perfect excitation of a single two-level atom by a single
photon in free space. The photon state has to match the time reversed photon state originating
from spontaneous decay of a two-level system. Here, we discuss its experimental preparation.
The state is characterized by a particular asymmetric exponentially shaped temporal profile.
Any deviations from this ideal state limit the maximum absorption. Although perfect excitation
requires an infinite amount of time, we demonstrate that there is a class of initial one-photon
quantum states which can achieve almost perfect absorption even for a finite interaction time.
Our results pave the way for realizing perfect coupling between flying and stationary qubits in
free space thus opening a possibility for building scalable quantum networks.

Copyright c© EPLA, 2009

Efficient coupling between light and matter at a single
quantum level lies at the heart of scalable quantum
information processing, computation, and communication
[1–3]. Information encoded in a flying qubit used for its
transfer has to be recorded by a localized stationary qubit
(e.g., an atom), i.e., the photon has to excite the atom
with unit probability. Experimental realization of these
protocols remains challenging due to the weak coupling
between a single photon and a single atom in free space.
Recent approaches investigating this problem focus on
the absorption of a single photon by an ensemble of
atoms resulting in a distributed single-photon excitation
entangling the atoms of the ensemble [4–9].
So far, close-to-perfect interaction has been achieved

only in the context of cavity QED in the strong-coupling
regime, where the atom is forced to interact with a single
mode of the radiation field only [10–16]. Scaling up these
schemes is difficult because of the requirement for high
finesse cavities.
Currently, several groups are attempting to quantify

[17,18] and improve light-matter coupling in the absence
of any mode-selecting cavity [19,20]. A detailed study
of single-atom–single-photon interaction in free space
requires the control of all resonant degrees of freedom of

(a)E-mail: magda.stobinska@mpl.mpg.de

the radiation field, i.e., its spatio-temporal vector modes.
Van Enk and Kimble showed theoretically that both
strong focusing and increased overlap of a light beam
with a dipole wave corresponding to the relevant atomic
transition improve the coupling [21,22]. Strong focusing
of a light beam was demonstrated by Quabis et al. by
tailoring the polarization pattern of light in theory [23]
and in experiment [24,25].
We aim at having full control over the field modes and

at exciting and maximizing the coupling to the atom. A
first step toward this goal was the demonstration of a
significant attenuation of a laser beam by a single trapped
ion [26]. Recently, several groups succeeded in improving
on this result [17,19,27–29]. Other groups attempted to
control the excitation of a single atom [30,31], the ultimate
goal being perfect excitation with a single-photon wave
packet [20,22,32]. This should be possible based on a
time reversal argument applied to spontaneous emission
of a single photon [23]. These two goals, however, namely
maximum attenuation of light and prefect excitation of
the atom, are distinctly different. On the one hand,
attenuation of a weak laser beam with zero transmission
should be reachable with the atom populating essentially
the ground state and with narrow-band continuous-wave
laser radiation. On the other hand, a perfectly excited
atom cannot be realized in dynamical equilibrium but
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only in a transient process which involves the excitation
by a π-pulse, for example. Our objective is to realize the
equivalent of a π-pulse excitation process with a single-
photon wave packet [33] properly shaped in space and
time.
In this letter, we outline a scheme for perfect excitation

of a single two-level atom by a single photon in free
space. We show that for this purpose the photon state
has to match the time reversed photon state originating
from spontaneous decay of a two-level system and we
discuss its experimental preparation. Any deviations from
this ideal state limit the maximum absorption. Both
the spontaneous decay process and its reverse process
of perfect excitation require an infinite amount of time.
However, we demonstrate that there is a class of one-
photon quantum states with mode decompositions close to
the ideal one which can achieve almost perfect absorption
even for a finite interaction time. As the mean values of
the electric and the magnetic field of the radiation field
are zero, the excitation of the matter qubit is completely
caused by its uncertainties. They reveal an exponentially
increasing tail and a sharp-edged shape genuine to a time
reversed dipole wave [22,23]. In contrast to other recent
work, such as refs. [19,28], which is based on classical
diffraction theory, we apply a full non-relativistic QED
treatment.

Theory. – Let us consider a trapped atomic qubit at a
fixed position x= 0 in free space. Its excited and ground
state are denoted by |e〉 and |g〉, respectively. Temporally,
the atom interacts almost resonantly with the quantized
radiation field which contains only one photon distributed
over a continuum of temporal modes centered around
the optical atomic transition frequency ω0. Its center-of-
mass motion is not affected if the atom is cooled to its
lowest vibrational state so that its recoil momentum is
picked up by the atom-trap system as a whole, much like
in the Mössbauer effect. In the interaction picture, the
Hamiltonian of this matter-field system reads

V̂ (t) = �
∑
l∈I

glσ̂+âle
i∆l(t−t0)+h.c., (1)

where ∆l = ω0−ωl is the detuning between the atom
and the l-th optical mode with frequency ωl, and
gl =−(i/�)

√
(�ωl)/(2ε0)d ·ul(x= 0) is the l-th mode

coupling constant. The orthonormal mode functions of
the radiation field are denoted by ul(x) and d is the
atomic dipole moment. The annihilation and creation
operators of the field modes are given by âl and â†l .
Similarly, σ̂+ = |e〉〈g| and σ̂− = |g〉〈e| are the atomic
rising and lowering operators. These latter operators are
expressed in the Schrödinger picture that coincides with
the interaction picture at time t0. Only those radiation
field modes l ∈ I contribute significantly to the system
dynamics which are almost resonantly coupled to the
atom within a frequency interval of the order of its
spontaneous decay rate Γ= (4/3)ω30 |d|2/(4πε0�c3)� ω0.

We aim at determining the particular one-photon state
of the quantized radiation field in free space which enables
perfect excitation of the two-level atom prepared in its
ground state |g〉 initially. In the interaction picture,
the normalized quantum state of the coupled atom-field
system is of the form

|ψ(t)〉=
∑
l∈I

fl(t)|g〉⊗ â†l |0〉+ f0(t)|e〉⊗ |0〉 (2)

with |0〉 denoting the vacuum of the radiation field
and with the normalization constraint |f0(t)|2+∑
l∈I |fl(t)|2 = 1. The ideal one-photon wave packet

is determined by a solution of the time-dependent
Schrödinger equation

i� ∂t|ψ(t)〉= V̂ (t)|ψ(t)〉 (3)

in the time interval (−∞, t0] with initial condition
f0(t0) = 1, fl(t0) = 0. Within the Wigner-Weisskopf ap-
proximation [34], the unique solution of eq. (3) is given
by

f0(t) = e−Γ|t−t0|/2,
(4)

fl(t) =
g∗l

∆l− iΓ2 sgn(t− t0)
(e−Γ|t−t0|/2e−i∆l(t−t0)− 1)

with sgn(x) = x/|x| for x �= 0. This solution is valid for
time t∈ (−∞, t0] or t∈ [t0,∞) and it is continuous but
not smooth at time t0 where the specified conditions are
met. According to eqs. (2) and (4), the atom-field state
is separable only at times t→±∞ with the atom being
in its ground state. Thus, in the time interval (−∞, t0],
eq. (4) describes perfect absorption of the photon which is
completed at time t0. Similarly, in the interval [t0, ∞),
it describes spontaneous decay of the two-level system
initially prepared in its excited state at t0.
From the uniqueness of the solution (4) it follows that

perfect excitation of the two-level atom starting from its
ground state is possible only if the light is prepared in the
one-photon state (expressed in the Schrödinger picture)

|χ〉− =− lim
tin→−∞

∑
l∈I

g∗l
∆l+ i

Γ
2

e−iωl(tin−t0)a†l |0〉. (5)

The solution also shows that the completion of both
perfect absorption and spontaneous emission of a photon
requires an infinite amount of time. This fact is not
surprising in view of the well-known exponential decay
law since perfect excitation might be considered as the
reverse process of spontaneous emission. The final state of
the radiation field resulting from spontaneous decay of the
atomic qubit starting at time t0 reads

|χ〉+ =− lim
tin→∞

∑
l∈I

g∗l
∆l− iΓ2

e−iωl(tin−t0)a†l |0〉. (6)

In view of eq. (5), the natural question arises what
excitation probabilities can be obtained during a finite
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Fig. 1: (Colour on-line) Excitation probability |f0(t)|2 of eq. (8)
evaluated for ΓT = 2 (full), ΓT = 3 (dashed) and ΓT = 5 (dash-
dotted). The corresponding maximum excitation probabilities
are 0.75, 0.90, and 0.99.

interaction time t∈ [tin, t0] and how do they depend on
the spatio-temporal properties of exciting wave packet?
For this purpose, let us assume that initially at time tin
we prepare the atom in its ground state and the radiation
field in the state

|χ(tin)〉=−
∑
l∈I

g∗l
∆l+ i

Γ
2

e−iωl(tin−t0)a†l |0〉. (7)

This state has the same probability distribution for
the occupied modes of the radiation field as the ideal
state (5) but the phases of the corresponding probability
amplitudes are different. For t� tin, the solution of the
Schrödinger equation yields the excited-state probability
amplitude

f0(t) =

∫ t
tin

dt′e−Γ(t−t
′)/2Γe−Γ(t0−t

′)/2Θ(t0− t′)

= Θ(t0− tin)
(
Θ(t0− t)e−Γ(t0−t)/2

×(1− e−Γ(t−tin))+Θ(t− t0)e−Γ(t−t0)/2
×(1− e−Γ(t0−tin))

)
. (8)

The time evolution of the excitation probability |f0(t)|2 is
depicted in fig. 1. It approaches unity only in the limit of
tin→−∞. However, for a finite interaction time T = t0−
tin, with T 	 1/Γ, the excitation probability approaches
unity exponentially fast, i.e., |f0(t0)|2 = (1− exp(−ΓT ))2.
According to eq. (8), the probability amplitude f0(t)
results from a constructive interference of all probabil-
ity amplitudes associated with the excitation of the atom
by the uncertainties of the radiation field at times t′,∈
[tin, t]. The probability amplitude of the field-induced
excitation during a time interval [t′, t′+dt′] is given by
dt′ Γ exp{−Γ(t0− t′)/2}Θ(t0− t′) and the atomic proba-
bility amplitude to remain in the excited state |e〉 during
a time interval [t′, t] by exp{−Γ(t− t′)/2}. This equation
also shows explicitly that the field uncertainties can excite
the atom only for t′ � t0.

2 4 6 8 10 12
t
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Fig. 2: (Colour on-line) Excitation probability |f0(t)|2 of
eq. (10). The maximum amounts to |f0(t)|2 = 0.54.

The form of the quantum state of eq. (7) is crucial
for achieving almost perfect excitation during a finite
interaction time. This state corresponds to a time-reversed
dipole wave [20,22]. If the initial state of the light was
replaced by a reflected but not time-reversed dipole wave,
such as

|σ(tin)〉=−
∑
l∈I

g∗l
∆l− iΓ2

e−iωl(tin−t0)a†l |0〉, (9)

the resulting excitation of the atomic qubit would change
drastically. This initial condition yields the excitation
amplitude

f0(t) =

∫ t
tin

dt′e−Γ(t−t
′)/2Γe−Γ(t

′−t0)/2Θ(t′− t0)

= −Θ(t− tin)
(
Θ(tin− t0)Γ(t− tin) e−Γ(t−t0)/2

+ Θ(t0− tin)Γ(t− t0)e−Γ(t−t0)/2
)
. (10)

This probability amplitude f0(t) also results from a
constructive interference of all probability amplitudes
associated with the excitation of the atom at times
t′ ∈ [tin, t]. The probability amplitude of the atomic
excitation in a time interval [t′, t′+dt′] is given by
dt′ Γ exp{−Γ(t′− t0)/2}Θ(t′− t0) and the probability
amplitude of the atom to remain in the excited state
during a time interval [t′, t] by exp{−Γ(t− t′)/2}. The
field uncertainties responsible for the excitation are
non-zero only for t′ � t0. This implies f0(t) = 0 for
tin � t� t0.
A typical time evolution of eq. (10) is depicted in

fig. 2. The atomic excitation reaches its maximum at
the interaction time tmax = t0− tin+2/Γ with t0 � tin,
which equals |f0(t= t0+2/Γ)|2 = 0.54. This maximum
value cannot be increased further by any choice of the
interaction time. In other words, perfect excitation cannot
be achieved with the single-photon state of eq. (9). It is
interesting to note that the time dependence described
by eq. (10) is also obtained in the case of spontaneous
decay of an initially excited two-level atom positioned in
the center of a very large spherically symmetric metallic
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cavity of radius R for times 1/Γ� t� 2t0 [35]. Here, t0 =
2R/c denotes the time which the spontaneously emitted
photon takes to return again to the atom after reflection
at the metallic boundary of the cavity. The subsequent
reabsorption of the photon is described by the probability
amplitude given by eq. (10). Recently related experimental
results were reported [36].
Similarly, a single-photon quantum state with a

Gaussian mode distribution

|Φ(tin)〉=N
∑
l∈I

g∗l e
−∆2l /σ2e−iωl(tin−t0) a†l |0〉 (11)

will not achieve perfect excitation. The normalization
constant is given by N = (8π)1/4/√Γσ and σ measures
the width of the mode distribution. For this state, the
maximum value of the excitation probability is equal to
|f0(tmax)|2 = 0.80 and is obtained for a width σ= 1.46Γ at
time tmax = t0+1/Γ.
It is worth noting that the interaction of a two-level

atom with a photon is governed completely by its electric
and magnetic field uncertainties since the mean values of
the fields vanish for the atom-field state (2). The time
evolution of the excitation probability |f0(t)|2 probes the
dynamics of the uncertainties of the quantized radiation
field in the immediate vicinity of the atom. For the
case of perfect absorption these uncertainties are given
explicitly by eq. (4). In order to obtain also insight into
the uncertainties of the radiation field at a space-time
point (x, t) far away from the atom |x|ω0/c	 1, one has to
investigate the normally ordered variances of the electric
Ê and the magnetic B̂ fields. Before the completion of the
ideal excitation process t� t0 eqs. (2) and (4) yield the
result (F̂= Ê or (cB̂))

〈: (e · F̂(x))2 :〉 = �ω0 6Γ sin
2θ

16πε0c|x|2 (e · eθ)
2

× e−Γ(t0−t−|x|/c)Θ(t0− t− |x|/c) (12)

in the limit of interest ω0� Γ. Here, θ denotes the angle
between the atomic dipole operator d and x, eθ and eϕ
are unit vectors along the corresponding coordinate lines
of spherical coordinates and e is an arbitrary unit vector.
These variances reveal the characteristic shape of the
time-reversed dipole wave which leads to asymptotically
perfect excitation under the model assumptions made
above.

Planned experiment. – In our planned experi-
ment [20], we will use a 174Yb2+ ion as a two-level system
with 1S0 and

3P 01 electronic levels as the ground and the
excited state, respectively, and no hyperfine structure.
The atomic transition frequency ω0 = 251.8 nm is in the
ultraviolet regime. The ion will be trapped at the focus
f = 2.1mm of a metallic parabolic mirror, being one
electrode of a Paul trap. The rf needle-shaped electrode
will come from the back of the mirror through a small
hole. This trap design will ensure almost full 4π angle of

ion-light interaction in the strong focusing regime. The
aberration corrections will be done using a diffractive
element located in front of the mirror. Since the ion has
only one decay channel and its dipole moment will be
parallel to the mirror axis we obtain free space geometry.
There are several methods which allow for single-photon
pulse generation with the desired spatio-temporal shape
and spectral distribution. The first relies on electro-optic
modulation of a single-photon wave packet [37]. Another
experimentally more accessible method applies a strongly
attenuated laser pulse containing n� 1 photons on
average. This technique is widely used in quantum
key distribution [38]. We can shape a pulsed temporal
mode electronically with modulators starting from a
continuous-wave laser. Next, we will turn it into a radially
polarized spatial doughnut mode. After reflection from
the mirror surface, its polarization, at the focal point,
will only contribute to polarization parallel to the axis
of the mirror and, therefore, will excite a linear dipole
oscillating parallel to this axis. Using this simpler method,
perfect coupling is achieved if the probability of excitation
matches the probability of finding a single photon in the
pulse. In addition, as a third option one can generate the
properly shaped single-photon Fock state wave function
conditionally using photon pairs from parametric down
conversion. This method is similar to ghost imaging in
the time domain.
Of course, none of these methods will produce an infi-

nitely long pulse. This is not an obstacle for our exper-
iment, however, because one can truncate somewhat the
exponential tail of the one-photon wave packet of eq. (7).
For example, truncating the pulse to a duration of five
lifetimes the excitation probability can be as high as 0.99.
For quantum-storage applications it is straightforward to
expand this scheme to a lambda transition between two
long-lived states [32]. Furthermore, efficient coupling in
free space opens the possibility for non-linear optics at
the single-photon level.
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