
Journal of Physics B: Atomic, Molecular and Optical Physics

Manipulating entanglement sudden death of two-
qubit X-states in zero- and finite-temperature
reservoirs
To cite this article: Mazhar Ali et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025501

 

View the article online for updates and enhancements.

You may also like
Entanglement protection in higher-
dimensional systems
Ashutosh Singh and Urbasi Sinha

-

Maximally genuine multipartite entangled
mixed X-states of N-qubits
Paulo E M F Mendonça, Seyed
Mohammad Hashemi Rafsanjani,
Diógenes Galetti et al.

-

Entanglement in bipartite quantum
systems: Euclidean volume ratios and
detectability by Bell inequalities
A Sauer, J Z Bernád, H J Moreno et al.

-

This content was downloaded from IP address 130.83.36.132 on 15/02/2023 at 10:26

https://doi.org/10.1088/0953-4075/42/2/025501
/article/10.1088/1402-4896/ac8200
/article/10.1088/1402-4896/ac8200
/article/10.1088/1751-8113/48/21/215304
/article/10.1088/1751-8113/48/21/215304
/article/10.1088/1751-8113/48/21/215304
/article/10.1088/1751-8113/48/21/215304
/article/10.1088/1751-8121/ac3469
/article/10.1088/1751-8121/ac3469
/article/10.1088/1751-8121/ac3469


IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 025501 (8pp) doi:10.1088/0953-4075/42/2/025501

Manipulating entanglement sudden death
of two-qubit X-states in zero- and
finite-temperature reservoirs

Mazhar Ali1, G Alber1 and A R P Rau2

1 Institut für Angewandte Physik, Technische Universität Darmstadt, D-64289, Germany
2 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

E-mail: mazhar.ali@physik.tu-darmstadt.de

Received 21 October 2008, in final form 3 December 2008
Published 29 December 2008
Online at stacks.iop.org/JPhysB/42/025501

Abstract

Manipulation of sudden death of entanglement (ESD) of two qubits interacting with
statistically uncorrelated thermal reservoirs is investigated. It is shown that for initially
prepared X-states of the two qubits a simple (necessary and sufficient) criterion for ESD can
be derived with the help of the Peres–Horodecki criterion. It is shown analytically that, in
contrast to the zero-temperature case, at finite temperature of at least one of the reservoirs all
initially prepared two-qubit X-states exhibit ESD. General conditions are derived under which
ESD can be hastened, delayed or averted.

1. Introduction

Entanglement is a vital resource for quantum information
processing [1]. Numerous processes relevant for quantum
computation, quantum cryptography [2] or quantum
teleportation [3] rely on entangled qubit states. Recently, Yu
and Eberly [4–8] found that reservoir-induced decay of single-
qubit coherence can be slower than the corresponding decay of
qubit entanglement. Both abrupt and asymptotically gradual
disappearance of entanglement were predicted in amplitude
[5] and phase damping channels [6]. Abrupt disappearance of
entanglement in finite time was termed ‘entanglement sudden
death’ (ESD). Also recently, experimental evidence of ESD
was reported for an optical setup [9] and atomic ensembles
[10]. Whereas first investigations on ESD concentrated on
entangled two-qubit states, later it was also explored in a wider
context and in higher dimensional Hilbert spaces [11–19].

Clearly, ESD is a serious limiting factor for the use
of entangled qubits in quantum information processing. It
would seem important to stabilize quantum systems against
this unwanted phenomenon. First studies in this context
concentrated on changing initial states to more robust ones
of the same degree of entanglement [20, 21]. Recently, we
have addressed the practically relevant question whether it
is possible to delay or even avert ESD by application of
particularly chosen local unitary transformations for a given

initial state and a given open-system dynamics [22]. We
demonstrated that this is indeed possible for the special two-
qubit system investigated first by Yu and Eberly [5] and have
found similar effects in qubit–qutrit systems [23].

In this paper, we generalize our previous results
and investigate ESD of two qubits which are interacting
with statistically independent (bosonic) reservoirs at finite
temperatures. It is demonstrated that based on the Peres–
Horodecki criterion [24, 25] and on recent results of Huang
and Zhu [26] it is possible to develop systematically a simple
criterion capable of characterizing delay and avoidance of ESD
of initially prepared two-qubit X-states in this open quantum
system. With the help of this criterion it is proved that, in
agreement with recent conjectures based on numerical case
studies [14], all initially prepared two-qubit X-states exhibit
ESD if at least one of the statistically independent reservoirs
is at finite temperature. Only when both reservoirs are at
zero temperature there are always some X-states which do
not suffer ESD. Further, analogous to our previous result
[22] at zero temperature, we demonstrate that also at finite
temperatures of the reservoirs it is possible through local
unitary transformations to hasten or delay ESD depending
on the time of their application. However, unlike in the zero-
temperature case, for the case when at least one reservoir is
at finite temperature, ESD cannot be completely avoided. We
note that other studies have also concluded the inevitability of
ESD for finite-temperature reservoirs [13, 27].
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Figure 1. Schematic representation of the two non-interacting
two-level atoms (qubits) A and B, initially prepared in an entangled
state. Each of them interacts with its own local reservoir R1 and R2.

2. Open-system dynamics of two qubits coupled to
statistically independent thermal reservoirs

In this section, we briefly summarize the basic equations of
motion governing our open quantum system of interest. In
order to put the problem of ESD, its delay, and avoidance into
perspective, let us consider two non-interacting qubits which
are spatially well separated so that each of them interacts
with its own thermal reservoir (see figure 1). These two
reservoirs are assumed to be statistically independent and are
possibly also at different temperatures.The coupling of these
two qubits to the reservoirs can originate physically from the
coupling of two two-level atoms to the (resonant) modes of
the electromagnetic radiation field, for example, with the local
radiation field at thermal equilibrium.

In the interaction picture and in the dipole- and rotating
wave approximation, the resulting equation of motion of these
two qubits is given by the master equation [28, 14]

dρ

dt
= γ1

2
(m + 1)

[
2σ 1

−ρσ 1
+ − σ 1

+ σ 1
−ρ − ρσ 1

+ σ 1
−
]

+
γ1

2
m

[
2σ 1

+ ρσ 1
− − σ 1

−σ 1
+ ρ − ρσ 1

−σ 1
+

]

+
γ2

2
(n + 1)

[
2σ 2

−ρσ 2
+ − σ 2

+ σ 2
−ρ − ρσ 2

+ σ 2
−
]

+
γ2

2
n
[
2σ 2

+ ρσ 2
− − σ 2

−σ 2
+ ρ − ρσ 2

−σ 2
+

]
. (1)

For reservoirs representing the electromagnetic radiation field,
m and n denote the mean photon numbers of the local reservoirs
coupling to qubits 1 and 2. The spontaneous emission of
atom i from its excited state |1i〉 to its ground state |0i〉 is
described by the spontaneous decay rate γi and σ i

± are the
corresponding raising (+) and lowering (−) operators, i.e.
σ i

+ = |1i〉〈0i | and σ i
− = |0i〉〈1i |. The orthonormal atomic

eigenstates |1〉 = |1〉A ⊗ |1〉B, |2〉 = |1〉A ⊗ |0〉B, |3〉 =
|0〉A ⊗ |1〉B, |4〉 = |0〉A ⊗ |0〉B form the (computational)
basis of the four-dimensional Hilbert space of the two qubits.
The derivation of equation (1) also assumes the validity of
the Born–Markov approximation. The general solution valid
for an arbitrary initially prepared two-qubit state is given in
appendix A by equation (A.1).

There is some numerical evidence [14] that the presence
of nonzero mean thermal photon numbers in equation (1) may
be responsible for ESD. However, systematic exploration of
these phenomena which is capable of proving the sufficiency
of nonzero photon numbers for ESD and of providing

a systematic analytical understanding of ESD in zero-
temperature reservoirs has been missing so far. Our main
purpose is to close this gap. In particular, we shall develop a
simple analytical criterion for ESD which allows a systematic
understanding of ESD and its delay and avoidance for initially
prepared entangled X-states.

3. The Peres–Horodecki criterion and entanglement
sudden death

In this section, we analyse conditions under which initially
prepared entangled two-qubit states evolving according to
equation (1) exhibit ESD. Starting from the general time-
dependent solution of these equations ESD is analysed with
the help of the Peres–Horodecki criterion [24, 25] and with
the help of all principal minors of the partially transposed
time-dependent two-qubit quantum state.

To check for separability of a quantum state, Peres [24]
and Horodeckis [25] developed a powerful necessary and
sufficient condition valid for 2 ⊗ 2- and 2 ⊗ 3-systems. It
states that in these systems a quantum state is separable if
and only if its partially transposed density operator is also a
valid quantum state. Based on this observation, a measure of
entanglement, called negativity, was proposed [29]. It is the
sum of the absolute values of all the negative eigenvalues
of the partially transposed density operator. For 2 ⊗ 2
systems, there can be at most one such negative eigenvalue
[30].

Recently, Huang and Zhu [26] studied the Peres–
Horodecki criterion by focusing on the principal minors of
the partially transposed density matrix. The principal minor
[ρPT(ijkl · · ·)] of the partially transposed density operator ρPT

is the determinant of the submatrix M(ijkl · · ·) formed by the
matrix elements of the i, j, k, l, . . . rows and columns of the
partial transpose ρPT, that is,

M(ijkl · · ·) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρPT
ii , ρPT

ij , ρPT
ik , ρPT

il , · · ·
ρPT

ji , ρPT
jj , ρPT

jk , ρPT
j l , · · ·

ρPT
ki , ρPT

kj , ρPT
kk , ρPT

j l , · · ·
ρPT

li , ρPT
lj , ρPT

lk , ρPT
ll , · · ·

· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

In general, if a matrix is positive semidefinite,
then all its principal minors are non-negative, and vice
versa [31]. Therefore, for an entangled two-qubit
state ρ, the smallest principal minor of its partially
transposed density operator must be negative. For two-
qubit states the non-negativity of the principal minors
[ρPT(1)], [ρPT(2)], [ρPT(3)], [ρPT(4)], [ρPT(12)], [ρPT(13)],
[ρPT(24)] and [ρPT(34)] is guaranteed already by the non-
negativity of the original density matrix ρ. As a consequence, a
general two-qubit state is entangled if and only if the minimum
value of the remaining seven principal minors P(ρPT) is
negative, that is,

P(ρPT) ≡ min{[ρPT(14)], [ρPT(23)], [ρPT(123)], [ρPT(124)],

[ρPT(134)], [ρPT(234)], [ρPT(1234)]} < 0. (3)

Typically, the investigation of these seven principal minors
for general solutions ρ(t) of the density operator equation (1)

2
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is cumbersome. However, significant simplifications are
possible for identical zero-temperature reservoirs with m =
n = 0 and γ1 = γ2 = γ in equation (1). Thus, Huang and
Zhu [26] could demonstrate that for asymptotically long times
t−∞ with γ t−∞ � 1, the separability of ρ

(
t−∞

)
is determined by

the initial state ρ. In particular, these authors showed that the
matrix

ρ̃ =

⎛
⎜⎜⎝

ρ11 ρ21 ρ13 ρ23

ρ12 ρ11 + ρ22 ρ14 ρ13 + ρ24

ρ31 ρ41 ρ11 + ρ33 ρ21 + ρ43

ρ32 ρ31 + ρ42 ρ12 + ρ34 1

⎞
⎟⎟⎠ , (4)

which is defined in terms of the matrix elements of the
initially prepared two-qubit quantum state ρ, determines the
asymptotic separability of the two qubits and thus the presence
or absence of ESD. The derivation of this result is summarized
in appendix B.

If P(ρ̃) < 0, the two-qubit state ρ
(
t−∞

)
is entangled and

ESD does not occur. If P(ρ̃) > 0, the asymptotic quantum
state ρ

(
t−∞

)
is separable and ESD takes place. In summary,

Huang and Zhu [26] showed that for identical zero-temperature
reservoirs the necessary and sufficient condition for ESD is
given by

P(ρ̃) > 0, (5)

and is determined by the initially prepared two-qubit quantum
state.

The derivation in appendix B is carried out for the simplest
case of vacuum reservoirs and by taking γ1 = γ2 = γ .
For γ1 �= γ2, it is not easy to arrive at the similar result
(4). The situation becomes even more cumbersome for
cases with m �= 0 and n �= 0, i.e. for thermal reservoirs.
However, in the case of X-states, the calculation of principal
minors simplifies considerably as shown in the following.
For initially prepared X-states, that is, quantum states with
ρ12 = ρ13 = ρ24 = ρ34 = 0 in the basis of section 2, the
condition (5) can be simplified considerably. In appendix C, all
relevant seven principal minors for X-states ρX are evaluated.
From these expressions it is apparent that for initially
prepared X-states, all the seven relevant principal minors are
positive if and only if the two principal minors are positive,
that is, [

ρPT
X (14)

]
,

[
ρPT

X (23)
]

> 0. (6)

It is apparent from the general solution of the density operator
of equation (1) as given in appendix A that an initially prepared
two-qubit X-state remains an X-state for all times. This fact
is valid for both vacuum and thermal reservoirs. However,
for thermal reservoirs, the corresponding two principal minors
cannot be written in terms of matrix elements of the initial
state alone but they also involve the quantities m, n, γ1 and γ2

in a non-trivial way.
Combining this observation with the results of appendix

C leads to the general conclusion that initially prepared two-
qubit X-states exhibit ESD if and only if at asymptotic times
t−∞ the principal minors are both positive, i.e.[

ρPT
X (14)

(
t−∞

)]
,

[
ρPT

X (23)
(
t−∞

)]
> 0. (7)

4. Two-qubit X-states and quantum control of ESD

In this section, we specialize our discussion of ESD to initially
prepared arbitrary two-qubit X-states. Delay and avoidance
of ESD of initially prepared two-qubit X-states coupled
to statistically independent zero-temperature reservoirs is
discussed in subsection A. In subsection B these results are
generalized to reservoirs at finite temperatures. In particular,
it is proved that if at least one of the reservoirs has nonzero
temperature, all initially prepared X-states exhibit ESD.

Let us first of all briefly summarize some basic properties
of X-states. The density matrix of a two-qubit X-state is of the
general form

ρX =

⎛
⎜⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞
⎟⎟⎠ , (8)

i.e. ρ12 = ρ13 = ρ24 = ρ34 = 0. In particular, Werner
states [32] are special cases of such X-states and some aspects
of their ESD have already been discussed [7, 21, 33, 34].
Equation (8) describes a quantum state provided the unit trace
and positivity conditions

∑4
i=1 ρii = 1, ρ22ρ33 � |ρ23|2 and

ρ11ρ44 � |ρ14|2 are fulfilled. X-states are entangled if and only
if either ρ22ρ33 < |ρ14|2 or ρ11ρ44 < |ρ23|2. Both conditions
cannot hold simultaneously [30].

4.1. Delaying and avoiding ESD in statistically independent
zero-temperature reservoirs

As discussed in the previous section, for zero-temperature
reservoirs the criterion for ESD is given by equation (6) which
together with the results of appendix C yields the necessary
and sufficient conditions for ESD

[ρ̃(14)] = ρ11 − |ρ23|2 > 0,

[ρ̃(23)] = (ρ11 + ρ22)(ρ11 + ρ33) − |ρ14|2 > 0.
(9)

Depending on the degree of entanglement of the initially
prepared two-qubit state, two different cases can be
distinguished.

Case 1. For initially prepared entangled two-qubit states
fulfilling the condition,

ρ11ρ44 < |ρ23|2, (10)

the analytical expression for the negativity of the quantum state
ρ(t) satisfying equation (1) for γ1 = γ2 = γ and m = n = 0
is given by

N1(ρX(t)) = max
[
0,−F(p, ρii)

+
√

F 2(p, ρii) − 4p2
(
ρ11F(p, ρii) − p2ρ2

11 − |ρ23|2
)]

, (11)

with F(p, ρii) = (1 − 2p + 2p2)ρ11 + (1 − p)(ρ22 + ρ33) +
ρ44, p = exp(−γ t). For any initially entangled two-qubit
state ρ, equation (10) implies ρ22ρ33 � |ρ14|2 so that one of
the conditions of equation (9) is satisfied. Thus, provided
also the other condition, namely ρ11 > |ρ23|2, is satisfied, an
initially prepared entangled two-qubit state exhibits ESD and
its negativity becomes zero at a finite time, say t1.

3
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Provided both conditions of equation (9) are fulfilled, ESD
can be delayed or even avoided by local unitary operations
acting on the two qubits involved. In particular, consider
local unitary transformations that exchange the density matrix
elements ρ11(t) and ρ44(t) at a time t < t1 which leaves the
product ρ11(t)ρ44(t) unchanged while violating the condition
ρ44(t) > |ρ23(t)|2. According to equation (9), in such a case
ESD will be avoided. ρ44(t) is the probability of finding both
qubits in their ground states. Thus, as a consequence of the
dynamics of equation (1), the density matrix element ρ44(t)

increases monotonically. There will be a limiting time tsw
for any possible switching of these matrix elements for which
ESD can still be avoided. If the local operation is applied
after this limiting time, ESD may possibly be delayed but it is
unavoidable.

This simple consequence of the criterion of equation (9)
explains recent numerical work on this problem [22]. In
fact, operations of this type can avoid ESD for any initially
prepared two-qubit X-state provided they are applied at a time
t < tsw. In particular, this applies to the subset of Werner
states with ρ14 = 0 which are mixtures of a singlet state
with probability a and a completely unpolarized (chaotic)
state. These Werner states exhibit ESD in the parameter range
a ∈ [1/3, (−1 +

√
5)/2) [20] where ρ11(t) > |ρ23(t)|2 while

entanglement decays asymptotically for values of a in the
range a ∈ ((−1 +

√
5)/2, 1] which corresponds to ρ11(t) <

|ρ23(t)|2.
Let us now deal with the question of which unitary

transformations can achieve such a switch between ρ44(t) and
ρ11(t). The most general 2×2 unitary matrix acting on a qubit
is given by

U(2) =
(

cos(θ) eiα −sin(θ) ei(α−ω)

sin(θ) ei(β+ω) cos(θ) eiβ

)
, (12)

which is a linear superposition of the Pauli matrices σx, σy, σz,
and the identity matrix σ0. Exchanging the matrix elements ρ11

and ρ44 can be achieved by applying two appropriately chosen
unitaries UA and UB of the form of equation (12) on qubits A

and B at a suitably chosen time, say t, so that the X-state ρX(t)

is transformed into another X-state (UA⊗UB)ρX(t)
(
U

†
A⊗U

†
B

)
,

for example.
The most general local unitary operations transforming

an arbitrary X-state into another one fulfil the conditions

sin(2θA) = sin(2θB) = 0 −→ θA = rAπ/2,

θB = rBπ/2,
(13)

with rA, rB ∈ Z. X-state preserving local unitary
transformations with even values of rA and rB do not have
any significant effect on the density matrix elements except
multiplying ρ14(t) by a constant phase factor. Odd values of
rA and rB serve the purpose of exchanging ρ11(t) and ρ44(t).
For any odd value of rA = rB , for example, the corresponding
unitary two-qubit operator is given by

U =

⎛
⎜⎜⎝

0 0 0 e2i(α−ω)

0 0 −ei(α+β) 0
0 −ei(α+β) 0 0

e2i(β+ω) 0 0 0

⎞
⎟⎟⎠ . (14)

A case in which such a X-state-preserving local unitary
transformation is applied only onto qubit B can be described by
parameters θA = αA = βA = ωA = 0, for example. They lead
to the transformations ρ11(t) ⇔ ρ22(t), ρ33(t) ⇔ ρ44(t) and
ρ14(t) ⇔ ρ23(t). In view of the characteristic time evolution of
ρ22(t) in zero-temperature reservoirs (compare with appendix
A) and the criterion of equation (9) this implies that such a
switch of matrix elements may delay ESD but it cannot be
avoided.

Case 2. For initially prepared entangled two-qubit X-states
satisfying the alternative condition

ρ22ρ33 < |ρ14|2, (15)

the analytical expression for the negativity of the resulting
quantum state ρX(t) is given by

N2(ρX(t)) = max[0, p(
√

(ρ22 − ρ33)2 + 4|ρ14|2
− (ρ22 + ρ33) − (2 − 2p)ρ11)]. (16)

Equation (15) implies ρ11ρ44 � |ρ23|2. Thus, the first
condition of equation (9) is always satisfied so that ESD
occurs whenever also the second condition is satisfied. The
simplest case arises for ρ23 = 0 where the initially prepared
state is a Werner state, i.e. an incoherent mixture of a triplet
state with probability a and the completely unpolarized state.
ESD takes place in the parameter regime a ∈ [1/3, 1) where
both conditions are satisfied during the time evolution. In
the case of an initially prepared Bell state, i.e. for a = 1,
the second condition of equation (9) fails and entanglement
decays asymptotically.

As discussed above, the first condition of equation (9)
is always fulfilled in the cases considered here so that
ESD takes place always except in the particular case of
an initially prepared Bell state which fulfils the condition
(ρ11(t) + ρ22(t))(ρ11(t) + ρ33(t)) = |ρ14(t)|2. As a
consequence any switch capable of exchanging ρ23(t) and
ρ14(t) will be sufficient to avoid or delay ESD. Such a switch
can be implemented by a local unitary X-state-preserving
transformation acting on qubit A or B only. As a result the
second condition of equation (9) remains always true, while
the validity of the first condition depends on the choice of the
switching time t. If ρ33(t) > |ρ14(t)|2 ESD is unavoidable.
However, for all switching times violating this condition
ESD is averted completely. As an example, let us consider
Werner states with ρ23(0) = 0. In the parameter range
a ∈ [1/3, (−1 +

√
5)/2) the condition ρ33(t) > |ρ14(t)|2 is

fulfilled for all times so that ESD takes place. In the parameter
regime a ∈ ((−1 +

√
5)/2, 1] this condition is violated so that

entanglement decays asymptotically.

4.2. Controlling ESD in statistically independent
finite-temperature reservoirs

According to equation (6), ESD takes place if and only if the
two principal minors

[ρPT(14)] = m2(m + 1)2 + e−(2m+1)γ t [F (1)]

+ e−2(2m+1)γ t [F (2)] + e−3(2m+1)γ t [F (3)]

+ e−4(2m+1)γ t [F (4)],

4
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[ρPT(23)] = m2(m + 1)2 + e−(2m+1)γ t [G(1)]

+ e−2(2m+1)γ t [G(2)] + e−3(2m+1)γ t [G(3)]

+ e−4(2m+1)γ t [G(4)], (17)

are positive in the limit of very long interaction times. For
simplicity, we have taken m = n and γ1 = γ2 = γ in
equation (17). The quantities F (i) and G(i) are functions
of m and of the initial matrix elements of the initially
prepared quantum state. Their explicit forms are given
in appendix D. Furthermore, the general expressions for
[ρPT(14)] and [ρPT(23)] are provided in appendix C. For
sufficiently long times, say t � t−∞ and for m > 0, factors
of the form e−(2m+1)γ t−∞ are exponentially small and therefore
both [ρPT(14)] and [ρPT(23)] are positive. Analogously, one
can show that for unequal values of the mean photon numbers
m and n, both minors are positive if and only if at least one of
these mean photon numbers is not equal to zero. Hence, we
arrive at the central result that if one of the (photon) reservoirs
is at nonzero temperature all initially prepared X-states exhibit
ESD. This same conclusion was also reached in [13, 27].

As ESD is unavoidable in these cases, it may be useful at
least to delay it. Indeed this can be achieved for all possible
X-states [5, 22]. For the sake of demonstration let us consider
the particular example of an initially prepared entangled state
of the form

ρ = 1
3 (|1, 1〉〈1, 1| + 2|
〉〈
|) (18)

with |
〉 = (|0, 1〉±|1, 0〉)/√2. It is known that this entangled
state, while interacting with a vacuum reservoir, looses its
entanglement at γ t ≈ 0.5348 [22]. However, while interacting
with reservoirs at finite temperatures, the time of sudden death
for this initial state depends on the values of m and n. The
solution of equation (1) for the input state of equation (18)
can be obtained easily using the general solution given by
equation (A.1). After taking the partial transpose of the
resulting density operator it is possible to obtain an analytical
expression for the negativity of the quantum state at any time
t. Setting m = n = 0.1, for example, we observe that ESD
occurs at time tESD ≈ 0.4115/γ . Depending on the time when
local unitary transformations are applied to qubits A and B,
ESD can be speeded up or delayed for some finite time.

Figure 2 displays the time tend at which ESD takes
place and its dependence on the time of switching tsw. The
earlier appropriate local unitary transformations are applied,
the more ESD is delayed. However, typically such a delay
is possible only for a certain range of switching times tsw,
such as tsw < tB = 0.279/γ in figure 2. Eventually ESD is
unavoidable. In the case considered in figure 2, it takes place
at tend ≈ 0.9817/γ .

In figure 3 the relation between tend and tsw is depicted
for mean thermal photon numbers m = n = 0.01. In this
case ESD occurs at tESD ≈ 0.5172/γ . If the switch is
applied before tA ≈ 0.5172/γ , ESD is hastened. Any
switch made before tB ≈ 0.2877/γ delays ESD up to the
maximum possible time tend ≈ 2.7087/γ . This larger delay
in comparison with the case considered in figure 2 is due to
smaller values of the mean photon numbers.

Two recent papers that have appeared since completion of
our work examine related topics. One studies two harmonic

0.1 0.2 0.3 0.4 0.5
γ tsw

0.2

0.4

0.6

0.8

1

γ tend

γ tAγ tB

Figure 2. Dependence of the time tend of ESD on the switching time
tsw for m = n = 0.1: the X-state-preserving local unitary
transformations switch the density matrix elements ρ11 and ρ44 in
equation (18). Starting on the right at switching time tA ≈ 0.4115/γ
this dependence exhibits a broad and small dip before rising to the
maximum possible time tend ≈ 0.9817/γ .

0.1 0.2 0.3 0.4 0.5
γ tsw

0.5

1

1.5

2

2.5

3

γ tend

γ tAγ tB

Figure 3. Dependence of the time tend of ESD on the switching time
tsw for m = n = 0.01: the local unitary transformations are the
same as in figure 2. For switching times below tA ≈ 0.5172/γ this
dependence has a broad and small dip before rising to the maximum
possible time tend ≈ 2.7087/γ .

oscillators coupled to a common environment also modelled as
oscillators [35]. ESD and entanglement revival are examined
as well as non-Markovian environments. The other studies
two interacting qubits in a magnetic field and a thermal
Markovian environment, presenting nonmonotonic relaxation
rates as functions of the magnetic field and temperature [36].

5. Conclusions

A criterion has been presented characterizing the conditions
which lead to ESD of X-states of two qubits coupled to
statistically independent reservoirs at finite temperatures.
Based on this criterion, we have presented an analytical
description of ESD of X-states and its delay or its avoidance
by local unitary actions. We have proved that if at least one of
the reservoirs is at finite temperature, all X-states exhibit ESD.
Thus, in these cases ESD can only be delayed but not averted.
Preliminary studies [23] indicate that similar results also hold
for qubit–qutrit systems.
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Appendix A

Solutions of equation (1) for some special initially prepared
X-states have been provided in the appendix of [14]. In
this appendix we provide the most general solutions of
equation (1) for any initially prepared two-qubit quantum
state ρ with density matrix elements ρij in the computational
basis introduced in section 2. These solutions are given
by

ρ11(t) = 1

(2m + 1)(2n + 1)
{mn + m[(n + 1)ρ11 + ρ33

− n(ρ22 − ρ33 + ρ44)] e−(2n+1)γ2t + n[(m + 1)ρ11

+ (m + 1)ρ22 − m(ρ33 + ρ44)] e−(2m+1)γ1t

+ [(m + 1)(n + 1)ρ11 − mρ33 − n(ρ22 + mρ22

+ mρ33 − mρ44)] e−[(2m+1)γ1+(2n+1)γ2]t },
ρ22(t) = 1

(2m + 1)(2n + 1)
{m(n + 1) − m[(n + 1)ρ11

+ ρ33 − n(ρ22 − ρ33 + ρ44)] e−(2n+1)γ2t

+ (n + 1)[(1 + m)ρ11 + (m + 1)ρ22 − m

× (ρ33 + ρ44)] e−(2m+1)γ1t + [−(m + 1)

× (n + 1)ρ11 + mρ33 + n((m + 1)ρ22

+ mρ33 − mρ44)] e−[(2m+1)γ1+(2n+1)γ2]t },
ρ33(t) = 1

(2m + 1)(2n + 1)
{n(m + 1) + (m + 1)

× [(n + 1)ρ11 + ρ33 − n(ρ22 − ρ33 + ρ44)]

× e−(2n+1)γ2t − n[(m + 1)ρ11 + (m + 1)ρ22

−m(ρ33 + ρ44)] e−(2m+1)γ1t + [−(m + 1) (A.1)

× (n + 1)ρ11 + mρ33 + n((m + 1)ρ22

+ mρ33 − mρ44)] e−[(2m+1)γ1+(2n+1)γ2]t },
ρ12(t) = 1

2m + 1
{m(ρ12 + ρ34) e

−1
2 (2n+1)γ2t + [(m + 1)

× ρ12 − mρ34] e
−1
2 [2(2m+1)γ1+(2n+1)γ2]t },

ρ13(t) = 1

2n + 1
{n(ρ13 + ρ24) e

−1
2 (2m+1)γ1t + [(n + 1)

× ρ13 − nρ24] e
−1
2 [(2m+1)γ1+2(2n+1)γ2]t },

ρ24(t) = 1

2n + 1
{(n + 1)(ρ13 + ρ24) e

−1
2 (2m+1)γ1t

+ [nρ24 − (n + 1)ρ13] e
−1
2 [(2m+1)γ1+2(2n+1)γ2]t },

ρ34(t) = 1

2m + 1
{(m + 1)(ρ12 + ρ34) e

−1
2 (2n+1)γ2t

+ [mρ34 − (m + 1)ρ12] e
−1
2 [2(2m+1)γ1+(2n+1)γ2]t },

ρ14(t) = ρ14 e−[(m+ 1
2 )γ1+(n+ 1

2 )γ2]t ,

ρ23(t) = ρ23 e−[(m+ 1
2 )γ1+(n+ 1

2 )γ2]t .

Appendix B

For the simple case of vacuum reservoirs, i.e. m = n = 0, and
γ1 = γ2 = γ the time evolution of the two-qubit state ρ̃(t)

under amplitude damping can be written as [26]

ρ̃(t) =

⎛
⎜⎜⎝

p2ρ11 p
√

pρ12 p
√

pρ13 pρ14

p
√

pρ21 ρ22(t) pρ23 ρ24(t)

p
√

pρ31 pρ32 ρ33(t) ρ34(t)

pρ41 ρ42(t) ρ43(t) ρ44(t)

⎞
⎟⎟⎠ , (B.1)

where p = e−γ t , and ρ22(t) = p((1 − p)ρ11 + ρ22), ρ24(t) =√
p((1−p)ρ13 +ρ24), ρ33(t) = p((1−p)ρ11 +ρ33), ρ34(t) =√
p((1 −p)ρ12 + ρ34), and ρ44(t) = 1 −pρ22 −pρ33 − (2p −

p2)ρ11. As t → ∞, p → 0 and the final state of the two-qubit
system will always be in the ground |0, 0〉 state, irrespective
of its initial state.

The partial transpose of equation (B.1) is given by

ρ̃PT(t) =

⎛
⎜⎜⎝

p2ρ11 p
√

pρ21 p
√

pρ13 pρ23

p
√

pρ12 ρ22(t) pρ14 ρ24(t)

p
√

pρ31 pρ41 ρ33(t) ρ43(t)

pρ32 ρ42(t) ρ34(t) ρ44(t)

⎞
⎟⎟⎠ .

(B.2)

Due to exponential decay the probability p tends to zero for
large times and the positivity or negativity of each principal
minor of equation (B.2) is determined by its nonvanishing
terms of lowest order in p. Based on this observation
equation (B.2) can be written as

ρ̃PT(t) = ρ̄ + ρ̆, (B.3)

with

ρ̄ =⎛
⎜⎜⎝

p2ρ11 p
√

pρ21 p
√

pρ13 pρ23

p
√

pρ12 p(ρ11 + ρ22) pρ14
√

p(ρ13 + ρ24)

p
√

pρ31 pρ41 p(ρ11 + ρ33)
√

p(ρ21 + ρ43)

pρ32
√

p(ρ31 + ρ42)
√

p(ρ12 + ρ34) 1

⎞
⎟⎟⎠ ,

(B.4)

ρ̆ =

⎛
⎜⎜⎝

0 0 0 0
0 −p2ρ11 0 −p

√
pρ13

0 0 −p2ρ11 −p
√

pρ21

0 −p
√

pρ31 −p
√

pρ12 −ρ̆44

⎞
⎟⎟⎠ , (B.5)

and with ρ̆44 = p(ρ11 + ρ22) + p(ρ11 + ρ33) − p2ρ11. The
matrix ρ̆ is negative semidefinite, i.e. ρ̆ � 0.

Let us first of all assume that the minimum principal
minor of the matrix (B.4) is nonzero, P(ρ̄) �= 0. Because the
contributions of the matrix elements of ρ̆ are of higher order
in

√
p in comparison with ρ̄, the minimum principal minor of

the matrix (B.2) has the same sign as P(ρ̄). Consequently, the
matrix ρ̆ plays no role in determining the separability of ρ̃(t).
It is found that every principal minor of the matrix

ρ ′ =

⎛
⎜⎜⎝

ρ11 ρ21 ρ13 ρ23

ρ12 ρ11 + ρ22 ρ14 ρ13 + ρ24

ρ31 ρ41 ρ11 + ρ33 ρ21 + ρ43

ρ32 ρ31 + ρ42 ρ12 + ρ34 1

⎞
⎟⎟⎠ , (B.6)
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is equal to the corresponding principal minor of matrix (B.4)
apart from multiplication by a suitable positive coefficient. For
example,

[ρ̄(23)] = p2[(ρ11 + ρ22)(ρ11 + ρ33) − |ρ14|2] = p2[ρ ′(23)].

(B.7)

Hence the separability of ρ̃(t) is determined by the matrix ρ ′

which is independent of the decay parameter p.
If the minimum principal minor of the matrix (B.4) is

zero, the higher order terms in matrix (B.5) must be taken
into account and the corresponding principal minors of matrix
(B.2) are either zero or nonpositive. For example, suppose
[ρ̄(23)] = 0, then the corresponding principal minor [ρ̃PT(23)]
is given by

[ρ̃PT(23)] = [ρ̄(23)] − p2ρ11[ρ̄(2)] − p2ρ11[ρ̄(3)] + (p2ρ11)
2.

(B.8)

For ρ11 > 0, [ρ̃PT(23)] is negative and for ρ11 =
0, [ρ̃PT(23)] = 0. Similarly all seven principal minors are
nonpositive if the corresponding principal minors of ρ̄ are
zero.

Appendix C

For X-states, i.e. quantum states with ρ12 = ρ13 = ρ24 =
ρ34 = 0, the dependence of all seven principal minors of
equation (3) on [ρPT(14)] and on [ρPT(23)] is given by

[ρPT(14)] =
∣∣∣∣ρ11 ρ23

ρ32 ρ44

∣∣∣∣ = ρ11ρ44 − |ρ23|2,

[ρPT(23)] =
∣∣∣∣ρ22 ρ14

ρ41 ρ33

∣∣∣∣ = ρ22ρ33 − |ρ14|2,

[ρPT(123)] =
∣∣∣∣∣∣
ρ11 0 0
0 ρ22 ρ14

0 ρ41 ρ33

∣∣∣∣∣∣ = ρ11[ρPT(23)],

[ρPT(124)] =
∣∣∣∣∣∣
ρ11 0 ρ23

0 ρ22 0
ρ32 0 ρ44

∣∣∣∣∣∣ = ρ22[ρPT(14)],

[ρPT(134)] =
∣∣∣∣∣∣
ρ11 0 ρ23

0 ρ33 0
ρ32 0 ρ44

∣∣∣∣∣∣ = ρ33[ρPT(14)],

[ρPT(234)] =
∣∣∣∣∣∣
ρ22 ρ14 0
ρ41 ρ33 0
0 0 ρ44

∣∣∣∣∣∣ = ρ44[ρPT(23)],

[ρPT(1234)] =

∣∣∣∣∣∣∣∣

ρ11 0 0 ρ23

0 ρ22 ρ14 0
0 ρ41 ρ33 0

ρ32 0 0 ρ44

∣∣∣∣∣∣∣∣
= [ρPT(14)][ρPT(23)].

(C.1)

Appendix D

The expressions for F (i) in equation (17) are given by

F (1) = m(m + 1)[(2m + 1)ρ11 + ρ22 + ρ33 − 2mρ44],

F (2) = −2m4[2ρ2
44 − ρ44 + ρ22 + 8|ρ23|2 + ρ33

]
+ 2m3[−2ρ2

44 + 2ρ33ρ44 + ρ44 − 16|ρ23|2 − 2ρ33

+ 2ρ22(ρ44 − 1)
] − m2[ρ2

22 + (2ρ33 − 4ρ44 + 3)ρ22

+ ρ2
33 + 24|ρ23|2 + 3ρ33 − 4ρ33ρ44 − ρ44

]
− 4m(m + 1)3ρ2

11 − m
[
ρ2

22 + 2ρ33ρ22

+ ρ22 + ρ2
33 + 8|ρ23|2 + ρ33

] − |ρ23|2 + (m + 1)2

× ρ11[(8ρ44 + 2)m2 + (−4ρ22 − 4ρ33 + 2)m + 1],

F (3) = −2ρ2
11(m + 1)3 + (m + 1)ρ11[(2m2 + m − 1)

× (ρ22 + ρ33) + 2mρ44] + m
[
(m + 1)ρ2

22

+ (2(m + 1)ρ33 − m(2m + 3)ρ44)ρ22

+ (m + 1)ρ2
33 + 2m2ρ2

44 − m(2m + 3)ρ33ρ44
]
,

F (4) = [m2(ρ11 − ρ22 − ρ33 + ρ44)

+ m(2ρ11 − ρ22 − ρ33) + ρ11]2. (D.1)

Similarly, the expressions for G(i) in equation (17) are
given by

G(1) = m(m + 1)[(2m + 1)ρ11 + ρ22 + ρ33 − 2mρ44],

G(2) = −2m4[2ρ2
22 − 4ρ33ρ22 − ρ22 + 2ρ2

33 + ρ11 − ρ33

+ 8|ρ14|2 + ρ44
] − 2m3[4ρ2

22 − 8ρ33ρ22 − 2ρ22

+ 4ρ2
33 + 3ρ11 − 2ρ33 + 16|ρ14|2 + ρ44

]
+ m2[ρ2

11 − 2(ρ44 + 3)ρ11 − 6ρ2
22 − 6ρ2

33 + ρ2
44 + 2ρ22

+ 12ρ22ρ33 + 2ρ33 − 24|ρ14|2
]

+ m
[
2ρ2

11 + (ρ22

+ ρ33 − 2ρ44 − 2)ρ11 − 2ρ2
22 − 2ρ2

33 + 4ρ22ρ33

− 8|ρ14|2 − ρ22ρ44 − ρ33ρ44
]

+ ρ2
11 + ρ22ρ33

+ ρ11(ρ22 + ρ33) − |ρ14|2, (D.2)

G(3) = −2ρ2
11(m + 1)3 + (m + 1)ρ11[(2m2 + m − 1)

× (ρ22 + ρ33) + 2mρ44] + m
[
(m + 1)ρ2

22

+ (2(m + 1)ρ33 − m(2m + 3)ρ44)ρ22 + (m + 1)ρ2
33

+ 2m2ρ2
44 − m(2m + 3)ρ33ρ44

]
,

G(4) = [m2(ρ11 − ρ22 − ρ33 + ρ44)

+ m(2ρ11 − ρ22 − ρ33) + ρ11]2.
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