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Complex chaos is specified by an iterated mapping on complex numbers. It has recently
been found in the dynamics of qubits where each time step is conditioned on a measure-
ment result on part of the system. We analyse the simplest case of one qubit dynamics
with one complex parameter in some detail. We point out that two attractive cycles
can exist and provide examples how the fractal like Julia set divides the areas of corre-
sponding initial states. We show how to determine the set of parameters for which one,
two or no stable fixed cycles exists and provide the numerically calculated images of the
sets. The results can be relevant for the quantum state purification protocol based on
the similar dynamics of two or more qubits and in general for any protocol based on
conditioned nonlinear dynamics where truly chaotic behavior may occur.
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1. Introduction

Quantum dynamics is described by completely positive maps. From the physical
point of view, two types of maps are clearly distinguished. On one hand isolated,
closed systems evolve unitarily, i.e. the map consists of the action of a unitary oper-
ator. On the other hand interaction with other systems and especially measurement
changes the character of the evolution and in general it will not be unitary for open
systems. Unitarity of the evolution excludes exponential sensitivity with respect to
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initial conditions, thus true chaos cannot exist in a closed quantum system. This
strong statement is strictly valid for the distance of two quantum states in the
Hilbert space. Note that in a more restricted sense, considering distance only in
the configuration space, one can find chaotic quantum systems.! We note here that
the term quantum chaos usually refers to the studies of the unitary evolution of
quantum systems with classically chaotic counterparts.?

Measurements on a system break unitarity, and it has been proven that the
quantized version of a classically chaotic system can be chaotic in the quantum
domain as well if it is continuously measured.® Another proposal suggests to feed
back the results of weak measurements?® in order to introduce nonlinearity which
probably could lead to truly chaotic behavior (however, we are not aware of a proof
of the latter statement).

A rather different way of considering measurements emerges in the context
of quantum information theory. Here it is natural to apply measurements on an
ensemble of systems in order to select a subensemble according to the measurement
result. For example, purification protocols are based on such a procedure. In this
way nonlinearity can be introduced into an originally linear system.® In turn, the
nonlinear, conditional dynamics of qubits can lead to true chaos, with no trivial
classical counterpart.® The underlying map is a complex to complex function, with
one complex parameter, therefore the name complex chaos has been coined.

In this paper we present results on the complex, truly chaotic dynamics of qubits,
showing that at most two distinct stable fixed cycles may exist when the system in
consideration consists of a single qubit. The corresponding areas in the parameter
space are determined numerically.

2. Iterated Nonlinear Dynamics of Qubits

The purification scheme we analyze relies on the availability of an ensemble of
identically prepared n-qudit systems. Let us consider these systems pairwise and
apply a quantum XOR gate on each pair, where

XOR2li)1]7)2 = |i)1]i © J)2. (1)

Here D is the dimension of the Hilbert space for each system, the symbol & stands
for difference modulo D and i, j label basis elements in the D dimensional Hilbert
space. After the application of the quantum XOR gate let us make a measurement
on the second system in the computational basis and keep the other member of the
pair only if the result was zero. This procedure selects subensemble of systems in
an identical state. The procedure can be repeated starting from the subensemble.
Thus by iteration one arrives at a highly nonlinear dynamics. The scheme can be
used for quantum state purification® which is especially useful if the systems consist
of at least two qubits (D = 4).

The single qubit case (D = 2) is somewhat simpler, but still leads to rich
dynamics. We introduce the following notation for the description of the qubit in a
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pure state

) = N(2]0) + [1)), (2)

where the normalization reads N = (1 + |2|2)~1/2. Each step of the iterated evo-
lution consists of the nonlinear transformation and an arbitrary but fixed unitary
operation on the qubit

—sinz e cosx

U:( cosT sinz e >, (3)

in the prescribed basis. An initial pure state is always mapped onto a pure state,
therefore a complex to complex function describes each step of the evolution
22+p

2 Fp(z) = 1—pz2’

(4)
where p = tanze’® and the star denotes complex conjugation. In the next section
we discuss some properties of dynamics evoked by (4), which is a rational function
of degree two.

3. Properties of the Single Qubit Dynamics

The iterated complex map (4) has two critical points: z.; = 0 and z.2 = oo where
its derivative vanishes (for oo the reciprocal of the limit of the derivative must
be taken). Fixed cycles of the map are defined by F;"(20) = 20. The absolute
value of the multiplier of the periodic orbit, A = (F;")'(20) determines its stability.
For |A| < 1,|A| > 1, |A] = 1 the cycles are attractive, repelling and neutral,
respectively. An important theorem on dynamical maps? ensures that for a fixed
parameter value p by following the orbit of the critical points one can find all
attractive fixed cycles. Consequently, the map (4) can have at most two attractive
cycles.

The complex plane of the initial values zy can be divided into regular and
irregular points forming the Fatou and Julia sets, respectively. Regular starting
points from the Fatou set will converge to a stable cycle (also elements of the
Fatou set) when repeating the iteration. Initial values included in the Julia set are
considered to be chaotic, leading to irregular oscillations or forming unstable cycles.
In Fig. 1. details of the Julia and Fatou sets are shown for a given parameter value.
One can observe self-similar patterns in the Julia set, which is a common property
for Julia sets of rational maps, related to the fractal structure of the set. The Julia
set becomes a circle® for p = 0, for which case a generalized Lyapunov exponent
can be calculated with the value A\g = 21n 2.

In the case of two different attractive periodic orbits the Julia set separates the
two regions of convergence, i.e. convergence to one or to the other stable cycle. Such
a situation is demonstrated in Fig. 2. The fractal structure of the Julia set implies
that around certain points changing the initial state on any small scale may alter
the convergence of the evolution from one fixed cycle to the other or no convergence
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Julia set for p=0.05+0.6 i

Re(zg)

Fig. 1. Julia set of initial states with 1 fixed cycle. Gray scale indicates the speed of convergence
to the attractive cycle {z1 ~ 0.06 + 0.58i,22 ~ —0.41 + 0.6, 23 ~ —0.11 + 0.07:}. Light gray:
fast convergence, dark gray: slow convergence, black: Julia set. The parameter value is set to
p = 0.05 + 0.64.
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Fig. 2. Julia set of initial states with 2 attractive fixed cycles. The parameter value is set to
p = 0.67. Light and dark gray indicate convergence to the two stable fixed cycles, respectively.
The Julia set occupies the border of the two regions (black).
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Fig. 3. The number of attractive periodic orbits in the parameter space. Black indicates the
existence of two distinct stable cycles, gray means a single stable cycle and white is the fully
chaotic region where no attractive periodic orbits exist. The image was generated by numerically
following the orbit of the two critical points and testing for convergence.

at all. Note that a small change of the parameter value results in a change of the
character of the dynamics.

The number of stable cycles depends on the parameter of the dynamics. By
following the orbit of the critical points and testing for convergence, one can deter-
mine the number of distinct stable cycles. An overview is provided by the parameter
space picture in Fig. 3, where the regions with two, one or no attractive periods are
shown. Shapes resembling those of the the Mandelbrot set are formed suggesting
self similarity and fine structures on any small scale.

4. Conclusion

Our results on complex dynamics of qubits can have interesting implications for
the currently discussed feed forward schemes. They indicate that feeding forward
the measurement results can in certain cases lead to a destabilization (chaos) in
contrast to the expected stabilization of the dynamics.

The procedure of feed-forward generates nonlinearity which affects purification
protocols.® Emerging complex chaos results in a delicate behavior, sensitive to the
initial state as well as the parameter of the dynamics. The fractal nature of the
Julia set of initial states means that changes on any scale in the initial condition
can have a dramatic effect by changing the stability of the fixed cycle. The one
qubit system provides a toy model for conditional, iterative dynamics exhibiting all




700 T. Kiss et al.

the above mentioned features. Numerical results indicate a behavior very similar to
the single qubit case also to the case of purifying entangled qubits.
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