29 Quantum Electrodynamics of a Qubit
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A detailed understanding of the basic physical laws governing the exchange of quantum infor-
mation, as well as the interaction between material qubits and the quantized electromagnetic
field, is of central importance for realizing quantum information networks and for suppressing
decoherence due to spontaneous emission of photons. In this section, some basic physical
aspects of this interaction are explored in the special case of a single material qubit.

The energy exchange between a material qubit interacting with the electromagnetic field is
dominated by the absorption and emission of photons [1]. Whereas absorption and stimulated
emission of photons is conditioned on photons which are already present in the electromag-
netic field, spontaneous emission of photons occurs randomly and even if the electromagnetic
field is in its ground state (vacuum) [2]. It is this random and uncontrollable feature of this
latter process which causes spontaneous decay and decoherence of qubits. Therefore, sup-
pressing its undesired and uncontrollable features is one of the major challenges in the context
of quantum information processing. For this purpose powerful error correction methods have
been designed recently [3-5]. Alternatively, spontaneous decay of qubits can also be sup-
pressed at least partially by an appropriate engineering of their coupling to the electromagnetic
field.

The quantum dynamics of a material qubit interacting with the electromagnetic field de-
pend significantly on the structure of the field modes. If a qubit is coupled to a single-field
mode only, its quantum state can be transferred to the field mode and back again in a re-
versible way as described by the Jaynes—Cummings—Paul model [6,7]. This reversible energy
exchange manifests itself in vacuum Rabi oscillations of the qubit between its excited state
and its ground state, for example [7]. But with increasing number of interacting field modes
this reversible character of the qubit—field dynamics is lost gradually [8-11]. In particular,
in the limit of a continuum of accessible field modes the reversibility of the state exchange
between qubit and field is lost completely. Typically, under such circumstances an initially
excited qubit decays to its ground state spontaneously [12]. As a result, a controllable and
reversible transfer of the quantum state of such a qubit to the electromagnetic field and back
again becomes impossible. In general, the spontaneous decay rate of the qubit depends on
the density of field modes it is coupled to. For purposes of processing quantum information,
for example, this latter dependence can be exploited for suppressing spontaneous decay pro-
cess by an appropriate engineering of the mode structure of the electromagnetic field [13].
Photonic crystals [14] are particularly well suited for this purpose.

In this section, we discuss basic physical aspects of the interaction between a single qubit
and the electromagnetic field. In particular, we focus on the following main questions: How
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does the interaction of a qubit with the electromagnetic field depend on the structure and the
density of states of field modes? How does the reversible dynamics of the coupling to a single
mode of the radiation field change to an irreversible energy transfer to the electromagnetic field
as the number of interacting field modes is increased and the continuum limit is approached?
What is the characteristic time evolution of the spontaneous decay of a qubit embedded in
a photonic crystal? How do bandgaps influence this decay? Is it possible to form bound
qubit—field states within a photonic crystal?

In order to address these questions in Section 29.1 we first of all analyze the dynamics of
the spontaneous decay of a single qubit which is assumed to be located at the center of a spher-
ically symmetric metallic cavity. The spherical symmetry of the electromagnetic field modes
the qubit is coupled to allows us to address many aspects of this problem even analytically.
Within this model system we can explore the influence of the cavity size on the dynamics of
the spontaneous decay process of the qubit. The continuum limit of this model is achieved in
the limit of an infinitely large cavity. Basic aspects of the dynamics of spontaneous decay of a
qubit in a photonic crystal, the influence of photonic bandgaps on this decay process, and the
possibility of forming bound qubit-field states are explored in Section 29.2.

29.1 Quantum Electrodynamics of a Qubit in a Spherical
Cavity

In this section we discuss the spontaneous emission of a photon by a single (infinitely heavy)
qubit which is assumed to be located at the center of a spherically symmetric metallic cavity.
With the help of a semiclassical path representation valid for highly excited field modes, the
probability amplitude of observing the qubit in its initially excited state at any later time is
expressed as a sum of probability amplitudes which are associated with repeated returns of
the spontaneously emitted photon to the center of the cavity where it interacts again with the
qubit [10]. In this way we obtain a unified description of the spontaneous emission process
which, in the spirit of the Feynman path integral approach [15], sheds light onto the underlying
elementary physical processes involved in the gradual transition from reversible to irreversible
energy exchange between a single qubit and the electromagnetic field.

29.1.1 The model

We consider a single qubit, i.e. a quantum mechanical two-level system with (bare) energy
eigenstates |g) and |e) of well-defined parity and corresponding energies E, = 0 and E, > 0,
interacting with the electromagnetic radiation field in a spherical cavity. The field-modes are
identified by the mode indices [ € I and w; are their frequencies. This two-level system
is assumed to be localized at the center of a spherical cavity, say at position x = 0, and the
spatial extension of its charge distribution is assumed to be much smaller than the wave lengths
of the electromagnetic field modes it is coupled to significantly. Furthermore, this qubit is
supposed to be infinitely heavy so that its center of mass motion is not affected by momentum
transfer from the electromagnetic field to the qubit. Thus, in the dipole approximation [1] the
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Hamiltonian of this quantum system is given by
H = hwoblbo + > hwiaa, — d - E(x = 0) (29.1)
lel
with the dipole operator of the two-level system
d = bo(gldle) + b (eld|g) (29.2)

and with the atomic ladder operators by = |g)(e| and b}, = |e)(g|. The position of the qubit is
denoted by x while its (bare) excitation energy is given by iy = (Ee — E). The creation
and annihilation operators of mode [ € I of the electromagnetic field are denoted by &;r and
ay, respectively. Correspondingly, the expansion of the electric field operator E(x) in terms
of the orthonormal set of mode functions u;(x) is given by

B =iy ’;%l{u;(x)a} — al ) (29.3)
l

with €g denoting the dielectric constant of the vacuum. In Eq. (29.1) only the interaction of
the two-level system with the almost resonantly coupled modes (I € I) of the electromag-
netic field is taken into account. To a good degree of approximation these couplings can be
described approximately by the rotating-wave approximation [1]. Thereby, the interaction
operator —d - E(x = 0) is approximated by the expression

AL hwp At AR hw .
i(gldle)bo > \/ gol“z (x = 0)a] —ield|g)b) Y \/ xolul(x =0)a,.
1 1

The couplings to all other modes (I ¢ I) which are not taken into account by the dipole
and rotating-wave approximation can be treated at a later stage perturbatively. These modes
give rise to a radiative level shift, i.e. Wy — wp, where fuwy denotes the physically ob-
served energy difference of the qubit-system considered [compare with the discussion follow-
ing Eq. (29.13)]. In the case of a realistic atom these radiative energy shifts are the well-known
Lamb shifts [16,17]. It is worth mentioning that for a proper treatment of the influence of these
off-resonant modes the dipole approximation is no longer applicable [18].

Within this model we aim at describing the influence of the mode structure of the cavity
onto the spontaneous emission of photons by the qubit. Thus, we want to restrict ourselves to
an initial condition in which the two-level system is prepared in its excited state |e) and the
electromagnetic field is in its vacuum state | {0}). Due to the coupling between the two systems
the two-level system will exchange its excitation predominantly with the resonantly coupled
modes of the electromagnetic field with w; =~ wo. As long as we restrict ourselves to this par-
ticular initial condition we can replace the two-level system also by a harmonic oscillator by
interpreting the operators bg and by of Eqgs. (29.1) and (29.2) as the creation- and destruction-
operators of a harmonic oscillator. This is possible because by energy conservation in this
case only the ground and first excited state of this harmonic oscillator participate in the dy-
namical evolution. Such a replacement offers advantages because the dynamical evolution of
the qubit interacting with the electromagnetic field reduces effectively to the diagonalization
of a system of coupled harmonic oscillators.
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29.1.2 Mode structure of the free radiation field in a spherical cavity

Before addressing this diagonalization let us first of all determine the mode structure of the free
electromagnetic radiation field in a spherical cavity with ideal metallic boundary conditions.

In the Coulomb gauge [1] the electromagnetic field can be decomposed into two parts,
namely an instantaneous Coulomb interaction between charged particles and the transverse
radiation field. Thus, in the Schrodinger picture the radiation field is described by a vector
potential A (x) which fulfills the transversality condition (V-A)(x) = 0. This vector potential
can always be decomposed into complete orthonormal sets of mode functions u;(x) according
to

A®) = 3/ L (w(x)n +uf(x)a] ).
1

2€eqwy
These mode functions are orthonormal solutions of the Helmholtz equation
(V2 + (/) m(x) = 0 (29.4)

fulfilling the appropriate boundary conditions.

In order to generate such a complete system of mode functions for a spherical cavity with
ideal metallic boundary conditions the tangential component of u;(x) and the normal compo-
nent of (V A w;)(x) have to vanish on the surface of the spherical boundary. The resulting
solutions u;(x) of Eq. (29.4) determine the discrete set of all possible eigenfrequencies w;.
Thereby the mode index [ identifies all possible mode functions. Thus, in the Schrodinger
picture the electric and magnetic field operators are given by Eq. (29.3) and by

B(x) =) QEZLM {(V Aw)(x)a + (V Aw)*(x)a) }.
I

In particular, in the case of a spherical cavity of radius R with ideal metallic boundary condi-
tions one may choose two different classes of mode functions, namely

Unm(x) = Nap g (k)Xo (x/]1x1]),
Vorar (%) = Nz, ——V A jir(knpr) X as (x/][x]])

k;nL
with the vector spherical harmonics [19]

X par(x/|1x]]) = “‘Lﬁ“WLM (x/1xID),

and with the (ordinary) spherical harmonics YM (x/||x||) (L € No,—L < M € Z < L). The
wave numbers of the mode functions are denoted by k,,;, = wy 1 /c. Furthermore, jz(kr) is
the regular spherical Bessel function [20] with the asymptotic behavior

(kr)- . sin(kr — L /2)
eLr 1 o 1) g5 r :
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and with (2L + 1)!! = (2L 4+ 1)(2L — 1)(2L — 3) - --5 - 3 - 1. The normalization constants
N, are given by

& ~1/2 =
Nag = {/0 dr ng%(knLT)} wst kgl 7

The eigenvalues w,,;, of the mode functions U,,;,ps and V,,15s are determined by the con-
ditions j,(knrR) = 0 and d(zjL(z))/dx |z—k,, r= 0, respectively. In the case of highly
excited modes, i.e. k,z, R > 1, we find

knLR 4 (L + 1)1/2 (29.5)

knL R>1

so that the density of states is constant, i.e. dn/d(hwnr) = R/(mwhe) with ¢ denoting the speed
of light in vacuum. For these highly excited modes only the mode functions V ,,1,— 17— 0(x)
are nonvanishing at the center of the cavity where the qubit is located. Therefore, in the
dipole approximation the coupling between the qubit and the electromagnetic radiation field
is dominated by these particular modes.

29.1.3 Dynamics of spontaneous photon emission

From the considerations of the previous sections, it is apparent that in the dipole and rotating-
wave approximations the spontaneous decay of a qubit located at the center of a spherical
cavity with ideal metallic boundary conditions can be described by the Hamiltonian

H = hwoblibo+ Y hwiafar+Y {oubod] +ofbfa} = > BlhamBm (29.6)
lel lel k,me{0}yuI

with BT = (bo, 41, @2, . . .) and with the Hermitian matrix

hwy of of
aq hwl 0
him = (oD 0 hwy - . (29.7)

In cases in which the approximately resonantly coupled modes [ € I are highly excited, i.e.
kiR > 1, the coupling constants «; are given by

59 1 * hw
ap = i{g|d|e) - uj (x = 0) L (29.8)
2¢€0
The matrix (29.7) can be diagonalized by a unitary transformation 4, i.e.
A= S PiA
ke{o}ur

with By, = Yom Ui P and Yo L[,Imh,mnum = Akdk,. The operators ]5,: and P are
the creation and destruction operators of the “quasi particles” which describe the dressing of
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the qubit by the radiation field. The eigenvalues A, (dressed energies) are determined by the
condition [10]
FA) =hamo—A-Y dal o 4, (29.9)
hw; — A

lel

For the elements Uy, of this unitary transformation we obtain the relations

TGN
Uer = Ur(A,) = { (1 + 2 ter mul—w) y k=0 (29.10)
_ak(hwk - Ar)_IUO'r . kel

As a result of this diagonalization of the Hamiltonian (29.6), the time evolution of any co-

herent state |fo, B1.B2....) = |[{B:}) with bol{B:}) = Bol{B:}), al{B:}) = Bl{B:})
(I € I; Bo, B € C)is given by

UOHBY = HB®) with Bit)= Y Une” ™/ U )kmbm,

k,me{0}ul

and U(t) = e~iHt/h_Thys, if initially, at ¢ = 0, the qubit is prepared in its excited state |e)
and no photons are present in the radiation field, the probability P(t) of observing the qubit
again in its excited state at a later time ¢ is given by

P(t)=| fo(t) | with fo(t)= > [Uor|* e /" (29.11)
re{0}ur

In the subsequent discussion we concentrate on cases in which the approximately resonant
modes of the spherical cavity are highly excited so that the coupling constants are given by
Eq. (29.8). If the radius R of the spherical cavity is very large, many cavity modes are sig-
nificantly coupled to the qubit. In this case many dressed energies A, contribute to the sum
of Eq. (29.11) so that an analysis in terms of dressed states of the interacting system is not
very practical. In such cases considerable physical insight can be obtained by a semiclassical
path representation [10] of the probability amplitude fo(t) which applies to the cases in which
the relevant cavity modes are highly excited, i.e. k;R > 1 with k; ~ wo/c. In such a semi-
classical path representation fo(t) is represented by a sum of probability amplitudes which
are associated with repeated returns of the spontaneously emitted photon to the center of the
cavity where it interacts repeatedly with the qubit. Assuming that all cavity modes which are
significantly coupled to the qubit are highly excited [compare with Eq. (29.5)], Eq. (29.11)
can be rewritten in the form

-i0
Folf) = — s T g e ) | Uor I°
211 J_sotio 0l — A
ool |Te{ <}AU> 2 df R
_ 1 ' —iat/r| Uo df
= o ™ &) A

with the characteristic function f(A) of Eq. (29.9) being approximately given by

f(A) — hwo—A—l—hE cot, (—1}5> (29.13)
2 he
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Thereby, the summation over all highly excited cavity modes has been performed with the
help of contour integration. The parameter

R wp . .
Pe |2 2 — eld 2
Gl ] =g Cdor|

of Eq. (29.13) is a smooth function of A and in the spirit of a Mittag—Leffler expansion [21]
all singularities of f(A) are contained in the cotangent function. For A = hwy, the value of
I' is equal to the spontaneous decay rate which according to Fermi’s Golden rule describes
the spontaneous decay |e) — |g) of the qubit in the infinite cavity limit R — oo. In our
subsequent treatment we shall assume that I" is independent of A and that it is equal to this
spontaneous decay rate. This corresponds to the flat-continuum approximation [22] in the
infinite cavity limit. Furthermore, we have incorporated an approximately A-independent fre-
quency shift into the renormalized physically observable transition frequency wg of the qubit
system. It is assumed that this renormalized transition frequency includes also the radiative
corrections of the off-resonant modes ([ ¢ I).
With the help of Eqs. (29.12) and (29.13) fo(t) can be written in an equivalent form as

fO(t) - ev'\wgt—f‘t/2
. h_F 00+i0 I e—iAt/h GIW(A) e A)} M-1 29.14)
21 J_soqio (A —hwo + iAL'/2)? M=1

or

oo M-1 M_1

folt) = e7iwot=TH/2 4 % Z@t——M( . )

M=1 r=0 r

% e—ilwo—il/2)(t—2RM]c) [-T(t —2RM/c)]" "
(T+r)

with the ©-function defined by ©(z) = 1 forz > 0 and ©(z) = 0 for z < 0. In the spirit of a
Feynman path integral approach [15] fo(t) is represented as a sum of probability amplitudes
which are associated with M > 1 returns of the spontaneously emitted photon to the center of
the spherical cavity. Equations (29.14) and (29.15) correspond to a semiclassical limit of such
a Feynman path integral representation as they apply for highly excited cavity modes only.
According to the first terms of Eqs. (29.14) and (29.15) the spontaneous emission of a photon
is characterized by an exponential decay of the qubit with the spontaneous decay rate I'. Each
time the photon returns to the center of the spherical cavity it interacts again with the qubit.
These successive qubit—photon interactions are turned on at multiples of the classical photon
return time 7" = 2R /c, and are described by the probability amplitudes of Eqgs. (29.14) and
(29.15) with M > 1. Due to the spherical symmetry of the cavity the probability amplitudes
of all possible photon paths interfere constructively at the center of the cavity. In spite of this
constructive interference the initial-state probability P(t) does not rise again to its initial value
of unity at times ¢t &~ 2R/c. Physically speaking this is due to the fact that the re-excitation
of the qubit takes a time of the order of 1/T". However, during this time the qubit can also
re-emit this photon again spontaneously. The resulting characteristic time evolution of this

(29.15)
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competition between re-excitation and re-emission is described by the first term of the sum of
Eq. (29.15) with M = 1.

At its subsequent returns to the center of the cavity the photon already contains information
about its previous time evolution. In particular, according to Eq. (29.14), each one of the
photonic returns contributes to fo(¢) with an additional phase of magnitude

2AR
W(A) = —
Moreover, the scattering matrix element
Y(A) =1 ikl A — hwy — kD)2

" A —hwo +iAL/2 ~ A — hwo + iAT/2

describes scattering of the photon during its returns to the center of the cavity. So, during its
first return to the center of the cavity, for example, the photon is either not scattered at all
or it is scattered by the qubit due to absorption and subsequent spontaneous emission. These
two possibilities manifest themselves in the terms of Eq. (29.15) with M = 2,7 = 0 and
M = 2,r = 1, for example. In particular, if the photon was not scattered during its first
return the qubit can be excited at the photon’s second return already at time t = 4R/c. If
the photon was scattered during its first return it experiences a time delay thus leading to a
corresponding later excitation of the qubit at time ¢ ~ 4R/c. The terms of Eq. (29.15) which
are associated with higher returns of the photon to the center of the cavity can be interpreted in
an analogous manner with M enumerating the number of returns and the index 7 enumerating
the number of previous scattering processes. In particular, the binomial coefficient (M;l)
counts the indistinguishable possibilities to scatter r times during (M — 1) previous returns.

According to Egs. (29.14) and (29.15) the dynamics of the qubit depend significantly on
the number of cavity modes which are coupled resonantly to the qubit by the spontaneous
energy exchange.

1. The large cavity limit. In this case, the number of cavity modes significantly participating
in the spontaneous decay process is large, i.e. I'dn/dwnr—1 = I'R/(cm) > 1. Thus,
the spontaneous emission time 1/T" is much shorter that the time 7' = 2R/c required
by a photon to travel from the center of the spherical cavity to its boundary and back
again. The resulting short interaction times between the qubit and the spontaneously
emitted photon imply that the contributions to fo(t) of subsequent returns of the photon
are well separated in time at least for sufficiently small numbers of returns. A typical time
dependence of the initial-state probability P(t) for such a case is depicted in Fig. 29.1(a).
Apart from the initial approximately exponential decay for times 0 < ¢t < T, one also
notices the contributions of M > 1 repeated returns which lead to an increase of P(t).
Nevertheless, for the reasons discussed above, the initial-state probability does not rise
again to a value of unity at the first return (M = 1) of the spontaneously emitted photon
to the center of the cavity. Furthermore, the contribution of the A/-th return is split into
M distinct peaks which are associated with all possible previous scatterings of the photon
at the center of the cavity. According to Eq. (29.15) each of these scatterings leads to a
time delay and a resonant phase shift of magnitude 7 so that these peaks are always
separated by zeros of P(t). Eventually, for sufficiently large values of M contributions
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of repeated returns overlap in time thus giving rise to a complicated interference pattern
of the quantum probability amplitude.
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Figure 29.1. Initial-state probability P(t) as a function of time ¢ in units of the photon pe-
riod T = 2R/c in a spherical metallic cavity of radius R. (c is the speed of light in vac-
uum.) The spontaneous decay rates (in the infinite cavity limit) are given by I' = 20/T" (a) and
I' = 0.75/T (b). The transition between the large (a) and small (b) cavity limit is apparent.

2. The small cavity limit. In this opposite limit, only one cavity mode is significantly cou-
pled to the qubit, i.e. I'dn/dw,;—1 = T'R/(cr) < 1. Thus the spontaneous decay time
1/T" is much larger than the time 7" = 2R/c which is required for a photon to travel
from the center of the spherical cavity to its boundary and back again. In this case, the
contributions of numerous repeated returns in Eq. (29.15) overlap in time and an analysis
of the spontaneous decay process in terms of the semiclassical path representations of
Eqgs. (29.14) and (29.15) is no longer practical. However, a straightforward evaluation of
the probability amplitude fy(t) is still possible in the framework of the dressed-state rep-
resentation of Eq. (29.11). In fact, there are only two relevant dressed energies, namely
Ay = h(@o + we)/2 £ /R2@o — we)?/4+ h2cT'/(2R), where wc denotes the fre-
quency of the almost resonant cavity mode. So, in this limiting case one obtains from
Eq. (29.11) the corresponding results of the Jaynes—Cummings—Paul model, i.e.

e Q— (wc—w0)/2 _iqr QO+ (we —p)/2 ;
— i(@otwe)t/2 iQt iQ
folt) =e { 20 et 20 ¢

with the detuning-dependent vacuum Rabi frequencies 2 = /(wc — ©0)2/4 + c['/(2R).
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29.2 Suppression of Radiative Decay of a Qubit in a
Photonic Crystal

In this section, we discuss basic physical aspects of the radiative decay of a single qubit which
is embedded in a photonic crystal [23,24]. Inside a photonic bandgap, the small density of
states of the electromagnetic field modes may lead to a significant suppression of spontaneous
decay of such a qubit even in the continuum limit. Furthermore, the possibility of forming
bound qubit-field states is discussed for which the electromagnetic field is localized around
the position of the qubit.

29.2.1 Photonic crystals and associated density of states

Nowadays it is possible to engineer materials in such a way that the possible modes of the elec-
tromagnetic field propagating in such a medium exhibit bandgaps in their frequency spectrum.
Such materials are referred to as photonic bandgap (PBG) materials, PBG crystals, or photonic
crystals (PCs). Typically, the density of states (DOS) of the electromagnetic field inside such
a PGB material is singular. The original idea of PCs is due to John and Yablonovitch, who
both suggested independently that materials with periodic variation in the dielectric constant
could influence the properties of photons in much the same way as semiconductors affect the
properties of electrons [14]. In contrast to semiconductors, however, PCs do not exist natu-
rally and therefore need to be fabricated. More precisely, one has to create a periodic lattice
of dielectric matter with periodicity on the scale of the wavelengths of light. Typically this
dielectric matter involves rods, spheres, slabs, etc. which are sometimes also referred to as
“dielectric atoms.” As a result, under appropriate conditions a complete PBG may arise so that
for frequencies inside this gap regime electromagnetic wave propagation of any polarization
is forbidden in any direction.

It is also possible to create point defects in a PC by destroying the periodicity of the lattice
of the crystal locally. Such imperfections may involve changes of the dielectric constant (or
equivalently of the refractive index) of one of the “dielectric atoms.” Alternatively, they may
also arise from a modification of the size or even from the removal of a “dielectric atom” from
the lattice of the crystal. By destroying the perfect periodicity such a point defect can then
“pull” a mode (or a group of modes) inside an otherwise forbidden bandgap. The resulting
photonic state known as defect mode is strongly localized and decays exponentially in the
bulk, while its frequency and symmetry can be controlled. The crystal surrounding a defect
acts as a highly reflecting mirror. Clearly, if losses can be controlled, a high-) microcavity
(with a size of the order of the cubic wavelength of light A*) can be obtained. Moreover, this
microcavity may operate at optical or even near-infrared wavelengths, where ordinary cavities
which are used in typical quantum optical experiments are already very lossy. Alternatively,
instead of a point defect one can also introduce line defects in an otherwise perfect photonic
crystal structure which may act as a “lossless” waveguide. Finally, combining both line and
point defects, the creation of channel-drop filters and other components necessary for the
construction of all-optical circuits is possible. A thorough and rather readable account of the
fabrication and the optical properties of PCs can be found in [25, 26], for example.
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Let us now focus on the ability of photonic crystals to suppress the spontaneous emission
of photons. The discussion of quantum optical phenomena, such as spontaneous emission, in
PCs requires a suitable DOS incorporating all the essential physical features associated with
these materials. Neglecting the vectorial nature of electromagnetic waves one may obtain a
simple isotropic model where a propagating photon experiences the same periodic potential,
irrespective of its polarization or direction of propagation [27,28]. Thus, the propagation of an
electromagnetic wave in such an ideal structure can be described by a scalar one-dimensional
wave equation. The dispersion relation of this electromagnetic wave exhibits forbidden gaps
and allowed bands. Typically, for frequencies close to the upper band-edge frequency we
the dispersion relation can be approximated by the effective-mass dispersion relation i.e.,
Wk & we + A(k — ko)?, where A is a material-specific constant and k. is the wave-vector
corresponding to we. Accordingly, the isotropic DOS pr(w) (= dn/dw) for frequencies close
to we is approximately given by

() = V k2 O(w—we)
PIL= (27)3 2v/A Vw — we

where O(w — we) is the unit step function indicating that there is a frequency gap below
we and V' is the volume. In a finite one-dimensional PC, however, the singular behavior of
Eq. (29.16) is smoothened [29, 30]. This effect can be incorporated into the isotropic model
by an appropriate smoothing parameter in Eq. (29.16) [31, 32].

Band-structure studies have shown that the vectorial nature of electromagnetic waves has
to be taken into account in order to achieve good agreement with experiments. Quantum op-
tical phenomena, however, are expected to depend mainly on the local DOS (LDOS), i.e., the
DOS in the neighborhood of the relevant embedded qubit, rather than on the global DOS.
Furthermore, according to band-structure calculations, even if a PC does not possess a com-
plete PBG, its LDOS may exhibit pseudogaps as well as Van-Hove singularities for which an
isotropic DOS is a good local approximation [33, 34]. Finally, it is worth noting that a highly
peaked behavior analogous to that of Eq. (29.16) appears also in an ideal waveguide close to
its fundamental frequency [13].

Besides the isotropic model, also an anisotropic one has been proposed [28] which pre-
serves the vectorial nature of electromagnetic waves. The corresponding dispersion relation
close to the upper band-edge frequency is of the form wy = we + A(k — ke)?, while the as-
sociated DOS differs from Eq. (29.16) as the square-root factor now appears in the numerator
instead of the denominator, i.e. pa (w) ~ v/w — weO(w—w,). Although the anisotropic model
is closer to realistic three-dimensional PCs, it is mainly the isotropic DOS of Eq. (29.16) which
has been used in quantum-optical problems so far.

What should be kept in mind is that both isotropic and anisotropic models are valid for
frequencies around the band-edge and for relatively large gaps. This is apparent from the fact
that none of these models exhibits the correct behavior for relatively large frequencies i.e.,
none of them approaches the open-space value for w > w.. Moreover, in a realistic PBG
material the gap does not necessarily mean a true zero but a range of frequencies over which
the DOS is several orders of magnitude smaller than that of open space. The essential point
therefore is that, an appropriate model of DOS for the description of a PBG continuum must
exhibit a dip over a range of frequencies and also it has to tend to the open-space DOS as

(29.16)
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the frequency becomes much larger or much smaller than the midgap frequency. A rather
simple model of such a DOS is an inverted Lorentzian of higher order (p), such as given by
the expression

Kp
pr(w) = po(w) |1 — ( , (29.17)

w —we)P + KP
where w, is the midgap frequency, K is the width of the gap and p,(w) denotes the open-space
DOS which is a smooth function of w [32,35-38].

29.2.2 “Photon + atom” bound states

Let us consider an initially excited qubit which is placed in a material exhibiting gaps in the
spectrum of the electromagnetic field it supports [31,39,40]. Such a qubit may be realized
by an atom which is placed inside a PC or by an appropriate “dielectric atom,” for example.
Clearly, for transition frequencies of this qubit around the band edge of the PC, i.e. (wo ~ we),
for both isotropic and anisotropic models we have an unconventional DOS which is not a

smoothly varying function of frequency. In fact, the Fourier transforms (memory kernels) of
the isotropic and anisotropic DOS, i.e. Gr(a)(7) = ffooii)lo dwpray(w)exp[—iwr], reflect
long-range correlations in time of the form Gy(7) ~ 7~/ and Ga(r) ~ 7=%/% for 7 > 0,
respectively [41].

For the sake of illustration let us focus on the spontaneous emission by such a qubit
embedded in a PC which can be described by the isotropic model. In terms of the resol-
vent operator of this system, i.e. G(z) = O°°+i0 dt exp(izt)U (t), the probability amplitude
A.(t) = (e|U(t)|e) of observing the qubit at time ¢ after its preparation in its excited state (and

the electromagnetic field in its ground state again) is determined by the matrix element [39]
L . S, (29.18)
(z — wo)v/z — we +1C

The constant C represents the strength of the coupling between the qubit and the continuum
of field modes of the electromagnetic field. For the isotropic model it is given by

gee(z) —=

[eldlg) PR2we
127(60\/Z

One can easily verify that the expression for G..(z) has three poles. Whether they are
complex- or real-valued will be determined by the detuning 6 = wy — we. In general, the
poles with positive imaginary parts fall outside the contour of integration which is relevant for
determining the time evolution of the system. Poles with negative imaginary parts describe the
irreversible spontaneous decay of the qubit and purely real-valued poles are responsible for
asymptotic long-time oscillations of the probability amplitude .A.(t). These latter oscillations
may be associated with stable bound states of the atom—field system within the PC.

In Fig. 29.2, the time evolution of the atomic population | A.(t) |? is depicted for the
isotropic model and for various detunings 6 = wo — we Of the transition frequency of the qubit
wo from the band-edge frequency w.. As expected for transition frequencies well inside the
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bandgap, i.e. § = —10C%/3 < 0, the qubit remains in the excited state forever. The pe-
riodically modulated dielectric host prevents the energy exchange between the qubit and the
modes of the electromagnetic field inside the PC. Thus a significant part of the spontaneously
emitted radiation remains localized close to the position of the qubit. Typically, such localized
photonic states may extend over many wavelengths around the qubit [28]. As a result of the
strong interaction between the atom and its own localized radiation the population | A.(t) |
exhibits oscillations for § < 0, while in the long-time limit we have the formation of a “pho-
ton + atom” bound state . This bound state consists of an excited-state and a ground-state
component of the qubit and of an electromagnetic field component which cannot propagate in
the PC. The possibility of formation of such “photon + atom” bound states in PCs has already
been predicted in the early 1970s by Bykov [42]. For transition frequencies sufficiently out-
side the bandgap, i.e. § = 10C%/% >> 0, the dynamics of the coupling to the electromagnetic
field is governed by an exponential decay of the initially excited qubit. However, the decay
rate I depends on the detuning from the band edge, i.e. I' ~ C/ /6. This is due to the fact
that the isotropic DOS does not approach its open-space value even for detunings § >> 0.

In the language of dressed states, the coupling of the atom to the strongly modified radi-
ation reservoir causes a strong vacuum Rabi splitting which is reflected by the vacuum Rabi
oscillations in the atomic populations. One of the two components of the doublet created by
the splitting is pushed inside the gap, where it is protected against spontaneous decay, while
the other one is pushed outside where it decays. Depending on the magnitude and the sign
of 4, the relative magnitude of the two components changes. This relative magnitude deter-
mines which fraction of the initial excitation remains trapped at the position of the qubit in the
long-time limit.

As depicted in Fig. 29.2, in the isotropic model the qubit exhibits a nonzero steady-state
population even for moderate positive detunings. This, however, is an artifact originating from
the divergence of the isotropic DOS as described in Eq. (29.16). For the anisotropic model and
for the DOS of Eq. (29.17) the component of the doublet outside the bandgap decays much
faster. Thus, even for small positive detunings the “photon + atom” bound state decays and the
asymptotic oscillations in the population are not so pronounced. In general, the dynamics of a
qubit coupled to a PBG continuum depend mainly on the width of the gap (as compared with
the atomic linewidth) as well as on the “band-edge” behavior of the continuum. In addition,
they slightly depend on the particular profile of the DOS one may adopt (see, for instance,
Fig. 29.3).

Finally, in contrast to the decay rate, the Lamb shift of an atom which is embedded in a PC
is not affected by the unconventional radiation reservoirs significantly [43]. This is due to the
fact that the Lamb shift originates from virtual photons of all frequencies up to an effective cut
off of the order of the rest mass energy of an electron [18]. Compared to this huge frequency
regime, a PC modifies the spectrum of the electromagnetic field in a small frequency interval
only.

29.2.3 Beyond the two-level approximation

Besides single-photon spontaneous emission also other quantum optical phenomena involv-
ing collections of two-level systems and few-level systems have been addressed in the context
of PBG continua. For an extensive review see [23], for example. In general, as long as the
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Figure 29.2. Spontaneous decay of an initially excited qubit embedded in a PC (isotropic model
of DOS): The time evolution of the population of the excited state of the qubit is plotted for
various detunings & = wo — we of the transition frequency of the qubit from the band-edge
frequency. All the detunings are in units of C%/3.

problem under consideration involves the exchange of a single photon between the embedded
system and the PC-continuum, it can be handled in a straightforward way by direct solution
of the appropriate time-dependent Schrodinger equation. Nevertheless, the direct extension of
this approach to situations involving more than one photon in a PBG continuum of an arbitrary
DOS does not seem tractable. On the other hand, in view of the non-smooth frequency depen-
dences of typical DOS standard tools of quantum optics, such as Markovian master equations
and quantum Monte Carlo wavefunctions, are not able to describe the essential physical ef-
fects involved. The description of such cases has been attracting increasing interest recently as
problems of this kind keep emerging also in other branches of physics. As a result a number
of new techniques applicable to strongly interacting dissipative systems have been developed
during the last years [36,44—48].

29.2.4 Exercises

1. Hamiltonian diagonalization. Diagonalize the Hamiltonian for spontaneous emission
(29.6). In particular show that the elements of the related unitary transformation are
given by Eq. (29.10), whereas the dressed energies are determined by Eq. (29.9).

2. Excitation probability. Show that the probability for an initially (¢ = 0) excited qubit to
be excited also at time ¢ is given by (29.11). Assuming that the cavity modes significantly
coupled to the qubit are highly excited, derive Eq. (29.12). Finally, derive Egs. (29.14)
and (29.15) from Eq. (29.12).
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Figure 29.3. Spontaneous decay of an initially excited qubit embedded in a PC (inverted-
Lorentzian profile of DOS for p = 8 and £ = 2T'): The time evolution of the population
of the excited state of the qubit is plotted for various detunings d. = wo — w. of the transition
frequency of the qubit from the midgap frequency.

3. Resolvent operator. The resolvent of a Hamiltonian H is defined by G(z) = (z — H) .
Consider a system with a total Hamiltonian H= ﬁo + V, where ﬁo and V are the
unperturbed part and the interaction, respectively. Let also S = {|a), |b), |c), ...} be the
set of eigenstates of Hy with respective energies wg,wp, We, - - ., in units with A = 1. |
Show that, if initially the system is in state |a), the matrix elements G,, and G, are
determined by

|

(Z - Wa)gaa, =1+ Z ‘A/ajgja- j
jes |

(2 — wp)Gba = Z VoiGia-

jes

4. Spontaneous emission in the resolvent-operator formalism. Let H be given by Eq. (29.6)
and |a) = |e) ® |{0}), |b) = |g) ® |1;) with respective energies w, = wo, wWp = w.
Thereby, [ is an index running over all the field modes and |1;) denotes an one-photon
state. Show that

gaa=<Z—wo—Zz|Ci—l|:l) 3

l

Starting from this equation, derive Eq. (29.18), using the density of states (29.16).
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