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Abstract
The concept of asymptotic correctability of Bell-diagonal quantum states is
generalized to elementary quantum systems of higher dimensions. Based
on these results basic properties of quantum state purification protocols
are investigated which are capable of purifying tensor products of Bell-
diagonal states and which are based on B-steps of the Gottesman-Lo-type
with the subsequent application of a Calderbank–Shor–Steane quantum code.
Consequences for maximum tolerable error rates of quantum cryptographic
protocols are discussed.

PACS numbers: 03.67.Mn, 03.67.Dd, 03.67.−a

1. Introduction

Quantum-state purification protocols which are based on local operations and classical
communication and which are capable of purifying tensor products of Bell-diagonal quantum
states are of considerable current interest in the area of quantum cryptography. This may
be traced back to the fact that the security analysis and questions concerning achievable
secret-key rates of many quantum cryptographic protocols are based on basic properties of
such quantum-state purification protocols [1, 2]. So far, a satisfactory understanding of
such protocols has already been obtained in qubit-based scenarios. In particular, it was
demonstrated that powerful quantum-state purification protocols can be developed for tensor
products of Bell-diagonal states by combining a sufficiently large number of purification steps
involving classical two-way communication, so-called B-steps [2], with subsequent quantum
error correction based on Calderbank–Shor–Steane (CSS) codes [3] which involve classical
one-way communication only. Furthermore, the asymptotic properties of these protocols for
large numbers of B-steps can be analysed in a convenient way by characteristic exponents
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which govern the relation between bit- and phase errors [4]. Based on such an analysis it
is straightforward, for example, to determine maximally tolerable bit-error probabilities of
quantum cryptographic protocols of the prepare-and-measure type whose security analysis
can be reduced to the purification of Bell-diagonal qubit states [2, 4–6]. Contrary to qubit-
based scenarios, elementary properties of quantum-state purification protocols are still rather
unexplored in quantum cryptographic contexts in which the transfer of quantum information
is based on higher-dimensional elementary quantum systems, so-called qudits.

Recently, some qudit-based quantum cryptographic protocols were developed whose
security analysis can be related to basic properties of quantum-state purification protocols
capable of purifying tensor products of generalized Bell-diagonal quantum states [7–9].
Motivated by these current developments in this paper the asymptotic properties of qudit-
based quantum-state purification protocols are investigated which involve B-steps and the
subsequent application of a CSS code fulfilling the Shannon bound of Hamada [10]. For
this purpose, the previously developed concept of asymptotic correctability is generalized
to arbitrary-dimensional elementary quantum systems and corresponding relevant exponents
are determined which govern the relation between dit-and phase errors for large numbers
of purification steps (compare with theorem 2). In quantum cryptographic applications, the
phase-error probabilities are not accessible to direct measurement, but they have to be estimated
on the basis of the measured qudit-error probabilities. For this purpose it is convenient to
start a purification protocol with a local unitary mixing transformation which homogenizes
the phase errors associated with each possible dit error. The asymptotic correctability under
the resulting quantum-state purification protocol can be determined in a rather straightforward
way (compare with theorem 4). This latter result is particularly useful for determining lower
bounds on maximally tolerable qudit-error probabilities of quantum cryptographic protocols
whose security analysis can be reduced to the asymptotic correctability under these latter
quantum-state purification protocols.

This paper is organized as follows: in section 2 basic notions of qudit-systems, such as
the definition of generalized Bell states, are summarized. Section 3 is devoted to the definition
of asymptotic correctability of general quantum state purification protocols which involve
tensor products of generalized Bell-diagonal qudit states. In particular, theorem 2 relates this
asymptotic correctability to basic properties of exponents which govern the relation between
dit and phase errors. Section 4 specializes these results to purification protocols which start
with a local mixing operation followed by generalized B-steps and a subsequent application of
a CSS quantum code. In section 5 lower bounds on maximally tolerable dit-error probabilities
of quantum cryptographic protocols are discussed whose postprocessing can be reduced to the
analysis of such purification protocols.

2. Quantum systems of dimension d

We consider a quantum system of dimension d, which is called a qudit. A certain orthonormal
basis of the associated Hilbert space H = C

d is labelled by the elements of the set
Zd := {0, . . . , d − 1}, which are representatives of the ring of residue classes Z/dZ, i.e.
we consider all operations modulo d; we denote addition and subtraction by ‘⊕’ and ‘�’,
respectively. We further denote Z

∗
d := Zd\ {0}.1 In analogy with the abbreviation ‘bit’ for

‘binary digit’ we use the term ‘dit’ for ‘d-ary digit’.
We will need the notion of a probability distribution on d elements, which can be identified

with normalized d-tuples of non-negative real numbers. For convenience, we denote the set

1 Unless d is a prime, Z
∗
d does not represent the set of invertible elements of Z/dZ.
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of such tuples by

Wd :=
{

(p0, . . . , pd−1) ∈ R
d

∣∣∣∣∣
d−1∑
i=0

pi = 1;pi � 0 for all i

}
. (1)

For such a probability distribution p = (p0, . . . , pd−1) ∈ Wd the Shannon entropy is defined
by

Hd(p) := −
d−1∑
i=0

pi logd pi = −(ln d)−1
d−1∑
i=0

pi ln pi. (2)

The Hilbert space of a pair of qudits, i.e. H ⊗ H, has a basis of maximally entangled states,
which we call the (generalized) Bell basis of this system. It is defined by [11]

|�lm〉 := 1√
d

[
d−1∑
k=0

zlk|k〉|k � m〉
]

for l, m ∈ Zd , (3)

where z := exp(2π i/d) is the principal root of unity of order d. We denote the associated
density matrices by (l,m) := |�lm〉〈�lm|. We will frequently use classical mixtures of
generalized Bell states, i.e. states of the form

ρ =
d−1∑

l,m=0

Alm|�lm〉〈�lm|, where (Alm)d−1
l,m=0 ∈ Wd×d . (4)

Such mixtures we will identify with their coefficient matrix2, so that we can write

ρ = (Alm)d−1
l,m=0 =




A00 A01 . . . A0,d−1

A10 A11 . . . A1,d−1

...
...

. . .
...

Ad−1,0 Ad−1,1 . . . Ad−1,d−1


 . (5)

The only condition on the entries is that they form a probability distribution on Zd × Zd , i.e.
that all Alm are non-negative and sum up to one. The set of all such mixtures of generalized
Bell states will be denoted by S(d)

bd .
We will consider |�00〉 as the reference state for purification, so that we can interpret l and

m as phase and dit errors, respectively. The columns of the coefficient matrix thus represent
different dit values, whereas the rows represent different phase values. Marginal distributions
of dit and phase errors are therefore given by

A∗m :=
d−1∑
l=0

Alm for m ∈ Zd and Al∗ :=
d−1∑
m=0

Alm for l ∈ Zd . (6)

A generalized XOR operation on two qudits, the control and the target, is defined by
GXOR|k〉|l〉 := |k〉|k � l〉 [11]. The bilateral version applied to two pure generalized Bell
states (l1,m1) and (l2,m2) yields

GBXOR[(l1,m1) ⊗ (l2,m2)] = (l1 ⊕ l2,m1) ⊗ (l2,m1 � m2). (7)

Another mathematical tool which we use is the so-called p-norm for tuples of fixed length,
where p ∈ [1;∞]. For x = (x0, x1, . . . , xd−1) ∈ C

d it is defined by

‖x‖p :=
(

d−1∑
i=0

|xi |p
)1/p

(8)

2 The coefficient matrix is not a density matrix on a Hilbert space.
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for p ∈ [1;∞) and ‖x‖∞ := max {|xi ||i ∈ Zd}. We have ‖x‖p � ‖x‖q for p � q and
limp→∞ ‖x‖p = ‖x‖∞. If |xi | � 1 for all i (which e.g. is the case, if x ∈ Wd ), also
‖x‖p

p � ‖x‖q
q holds. Of particular interest is the fact that the 2-norm is invariant with respect

to a discrete Fourier transform.

3. Asymptotic correctability for qudit systems

In this section, we consider entanglement purification protocols and their properties. We
assume that two distant parties, Alice and Bob, share a large amount of mixtures of generalized
Bell states, i.e. their joint state is ρ⊗n for ρ ∈ S(d)

bd and some large n ∈ N. They perform
two-way entanglement purification until the use of a CSS code fulfilling the quantum Shannon
bound allows them to extract some pure generalized Bell state, e.g. |�00〉. The quantum
Shannon bound is given by the following theorem.

Theorem 1 (quantum Shannon bound). Let d be a prime number and consider a state
ρ = (Alm)d−1

l,m=0 ∈ S(d)
bd . If

AsymCSS
[
(Alm)d−1

l,m=0

]
:= 1 − Hd

[
(A∗m)d−1

m=0

]− Hd

[
(Al∗)d−1

l=0

]
> 0,

there exists a CSS code which can correct a tensor product state ρ⊗n.

Proof. This is an obvious consequence of a theorem by Hamada ([10], theorem 2). �

Using this bound, we can now define the notion of asymptotic correctability; due to the
use of that theorem, in the following we consider d always to be prime. For d = 2, this
definition reduces to that given in [4].

A correction step S(d)
n of a quantum state purification protocol takes as input a state of

the form ρ⊗n and outputs a state of the form ρ ′⊗n′
, where ρ, ρ ′ ∈ S(d)

bd . In general, n′ � n

and ρ ′ is supposed to be more entangled than ρ. Occasionally, a step may fail and does not
output anything. As we do not consider distillation rates we can drop the labels n and n′. A
correction step will thus be treated as a function on S(d)

bd , mapping (Alm)d−1
l,m=0 to (A′

lm)d−1
l,m=0.

Definition 1 (asymptotic correctability). Let ρ = (Alm)d−1
l,m=0 ∈ S(d)

bd and
(
S(d)

n

)
n∈N

be a
sequence of possible correction steps in an entanglement purification protocol. The state ρ

is called asymptotically S(d)
n -correctable, if the inequality AsymCSS

[
S(d)

n (ρ)
]

> 0 holds for
all n � N0, where N0 ∈ N. We call ρ asymptotically non-correctable under the sequence(
S(d)

n

)
n∈N

, if AsymCSS
[
S(d)

n (ρ)
]

� 0 holds for n � N0 for some N0 ∈ N.

We now want to generalize the criterion for asymptotic correctability of [4] to qudits. It
turns out that this generalization is straightforward and essentially is a reformulation of the
previous result. The main difficulty in the proof lies in dealing with Shannon entropies for d
elements instead of the binary Shannon entropy.

As in the qubit case we focus on Taylor expansions of the Shannon entropy. The following
two lemmata will considerably simplify our approach.

Lemma 1 (bounds for the Shannon entropy). Let ξ = (ξ0, . . . , ξd−1) ∈ Wd and set
xn := ∑d−1

i=1 ξi = 1 − ξ0. If we associate with ξ the distributions ξmin := (ξ0, xn, 0, . . . , 0)

and ξmax := (ξ0,
xn

d−1 , . . . , xn

d−1

)
, then

Hd(ξmin) � Hd(ξ) � Hd(ξmax)
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holds, and we calculate

Hd(ξmin) = −(ln d)−1[ξ0 ln ξ0 + xn ln xn],

Hd(ξmax) = −(ln d)−1

[
ξ0 ln ξ0 + xn ln

xn

d − 1

]
.

Proof. See appendix A. �

Lemma 2 (a Taylor expansion for the Shannon entropy). Let p = (p0, . . . , pd−1) ∈ Wd and
denote by g := (1/d, . . . , 1/d) ∈ Wd the uniform probability distribution on a set with d
elements. Provided that there exists some factor f > 0, such that pi � f/d holds for all i,
we have

Hd(p) = 1 − K‖g − p‖2
2 + K ′ε(p)‖g − p‖3

3

for some K,K ′ > 0 and a bounded function ε : Wd → [−1; 1].

Proof. See appendix B. �

The following theorem now generalizes theorem 1 of [4] to higher dimensions.

Theorem 2 (asymptotic correctability). Let d be prime and ρ = (Alm)d−1
l,m=0 ∈ S(d)

bd be a state
on which for each n ∈ N a (fictive) S(d)

n step is applied to; the resulting state shall be called
(A′

lm)d−1
l,m=0 ∈ S(d)

bd . Define by

• xn :=∑d−1
m=1

∑d−1
l=0 A′

lm the total dit-error rate;

• yn := ‖g − p‖2/
√

2 a measure for the deviation of the phase error probability
p = (A′

l∗)
d−1
l=0 from the uniform probability distribution g = (1/d, . . . , 1/d).3

Provided that the sequence (xn)n∈N converges to zero, we have the following:

(i) If there exists an r > 2 such that sup
{
xn

/
yr

n

∣∣n ∈ N
}

< ∞, then ρ is asymptotically
Sn-correctable.

(ii) If, on the other hand, inf
{
xn

/
y2

n

∣∣n ∈ N
}

> 0 holds, then ρ is asymptotically non-
correctable with respect to that sequence.

Both statements remain valid if the role of dit errors and phase errors is interchanged.

Proof. We may assume that limn→∞ yn = 0; otherwise our statement follows directly from
theorem 1. Considering the distribution of dit errors ξ = (A∗m)d−1

m=0 and using the binary
Shannon entropy H(x) = −x log2 x − (1 − x) log2(1 − x), lemma 1 allows us to write

Hd(ξ) = L · H(xn) + c(ξ)xn, (9)

where L = ln 2/ ln d and c : Wd → [0; logd(d − 1)] ⊆ [0; 1] is some bounded function. By

lemma 2, for the distribution of phase errors p due to
(
2y2

n

)3/2 = ‖g − p‖3
2 � ‖g − p‖3

3 we
have

Hd(p) = 1 − K · 2y2
n + K ′ε(p)‖g − p‖3

3 (10)

= 1 − K · 2y2
n + K ′ε′(p) · (2y2

n

)3/2
, (11)

3 The factor
√

2 next to yn is only for consistency of notation with the qubit case [4].
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where K,K ′ > 0 and ε, ε′ : Wd → [−1; 1] are bounded functions, provided yn is sufficiently
small. Setting ρ ′ := (A′

lm)d−1
l,m=0 yields

AsymCSS(ρ ′) = 1 − Hd(ξ) − Hd(p) (12)

= −L · H(xn) − c(ξ)xn + 2K · y2
n − 2

√
2K ′ε′(p) · y3

n, (13)

that is

AsymCSS(ρ ′) > 0 ⇔ −L · H(xn)

y2
n

− c(ξ)
xn

y2
n

+ 2K − 2
√

2K ′ε′(p) · yn > 0. (14)

In the following, we will also use the property that limx→0+ H(x)/xs = 0 for s ∈ [0; 1) and
limx→0+ H(x)/xs = +∞ for s ∈ [1;∞).

For the proof of statement (i), note that condition (i) now implies that xn � cyr
n for

some c � 0, which yields −L · H(xn)
/
y2

n � −L · c2/rH(xn)/x
2/r → 0 for n → ∞ due

to r > 2. This means that in (14) all terms except 2K converge to zero. For the proof
of (ii), we have xn � cy2

n for some c > 0. In a similar fashion as before, this results in
−L · H(xn)

/
y2

n � −L · cH(xn)/x → −∞. Also, the second term is negative, whereas all
other terms are bounded, so that for sufficiently large n the quantum Shannon bound is not
fulfilled. �

4. Entanglement purification protocols and asymptotic correctability

In this section, we want to apply our criterion to an actual sequence of correction steps. We
therefore focus on a well-known example for two-way entanglement purification, which
we will call B(d)

n steps and which are defined for any n ∈ N. Considering a state
ρ = (Alm)d−1

l,m=0 ∈ Sbd, the main objective of this section is to derive a condition on ρ

for asymptotic B(d)
n -correctability. It will turn out that we can calculate a characteristic

exponent r(d), such that for the case r(d) > 2 we have asymptotic B(d)
n -correctability, whereas

for r(d) � 2 we have non-correctability. These results generalize our previous results from [4]
from qubits to qudits.

4.1. Bell diagonal states and B(d)
n steps

We now introduce a generalization of the Bn step of [4] to d dimensions. For n ∈ N, a B(d)
n

step is defined by the following procedure.

(i) Alice and Bob arbitrarily choose n qudit pairs QP1, . . . ,QPn.
(ii) Alice and Bob apply n − 1 GBXOR transformations with control QP1 and target pairs

QP2, . . . ,QPn.
(iii) Alice and Bob measure the dit parity on the pairs QP2, . . . ,QPn and discard the measured

pairs. They keep QP1, if and only if all parities are zero, otherwise they discard it.

Starting with a tensor product of Bell states, the transformation of step (ii) is given by
n⊗

i=1

(li , mi) �→
(

n⊕
i=1

li , m1

)
⊗
[

n⊗
k=2

(lk,m1 � mk)

]
. (15)

The first pair is thus kept, if m1 � mk = 0 holds for all k ∈ {2, . . . , n}.
Because we deal with mixtures of generalized Bell states, we want to formulate a B(d)

n

step as a mapping on the set S(d)
bd . This is done in the following theorem.
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Theorem 3 (evolution of states for B(d)
n steps). For each k ∈ {1, . . . , n} let ρ(k) = (A(k)

lm

)d−1
l,m=0 ∈

S(d)
bd be a state. If a B(d)

n step is applied to these states and if not all pairs are discarded, the
state of the remaining pair is given by ρ ′ = (A′

lm)d−1
l,m=0 ∈ S(d)

bd with coefficients

A′
lm = (dN)−1

d−1∑
i=0


z−il

n∏
k=1


d−1∑

j=0

zijA
(k)
jm




 ,

where z := exp(2π i/d) denotes the principal value of the root of unity of order d and
N :=∑d−1

m=0

[∏n
k=1

(∑d−1
l=0 A

(k)
lm

)]
is the normalization constant, i.e. the probability of survival

of the first qudit pair. Note that the final state is itself Bell diagonal and does not depend on
the order of the initial states.

Proof. See appendix C. �

Although we will not use it, it may be worth mentioning that a sequence of a B(d)
n step and a

B(d)
m step is equivalent to a single B(d)

n·m step.

4.2. Asymptotic correctability using a sequence of B(d)
n steps

Before we proceed with the calculation, we have to introduce some notation. As might be
seen from theorem 2, we mainly have to focus on purely exponential behaviour, that is, in
many equations we will skip subexponential terms. To be precise, for some non-negative-
valued function f , we define its exponent by z(f ) := limn→∞ n

√
f (n), where we always

assume that this limit exists; any such function may now be written as f (n) = c(n)zn for
some subexponential function c, i.e. some function c such that z(c) = 1 holds. We call
two-functions f and g asymptotically exponentially equal, if z(f ) = z(g), in which case we
shall write f

a.e.= g.
For simplicity we will further assume that A∗0 > max{A∗m|m ∈ Z

∗
d} holds; if this is not

the case, we can apply the local-unitary operation 11 ⊗∑k∈Zd
|k �m〉〈k|, provided that A∗m is

the unique largest dit-error probability. We further assume that the phase error rates converge
to the uniform probability distribution, which is always the case unless the component of the
Fourier transform of the first column which has maximum absolute value is not unique.

4.3. Evolution of dit errors

The evolution of dit errors is straightforward. We denote by ξ = (ξ0, . . . , ξd−1) ∈ Wd the
distribution of dit errors, i.e. ξm := A∗m for m ∈ Zd . The application of a B(d)

n step may be
viewed as a mapping B(d)

n : ξ �→ ξ ′, defined by

ξ ′
i = ξn

i

ξn
0 + · · · + ξn

d−1

for i ∈ Zd , (16)

which follows directly from theorem 3. Therefore, using the notation of theorem 2,

xn := 1 − ξ ′
0 =
∑d−1

m=1 ξn
m∑d−1

m=0 ξn
m

=
[∑d−1

m=0 ξn
m∑d−1

m=1 ξn
m

]−1

=
[

1 +
ξn

0∑d−1
m=1 ξn

m

]−1

. (17)

Setting ξmax := max{ξm|m ∈ Z
∗
d}, the following inequality holds for the denominator:

ξn
max �

d−1∑
m=1

ξn
m � (d − 1)ξn

max. (18)
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Using an appropriate function h : Wd → [1; d − 1] yields

xn =
[

1 +
ξn

0

h(ξ)ξn
max

]−1

=: u(n)x̃−n, (19)

where x̃ := ξ0/ξmax > 1 and appropriate values u(n) ∈ [1/2; d]. In particular, we have
xn

a.e.= x̃−n and limn→∞ ξ ′
m = δm,0, so that the correction of dit errors is guaranteed under B(d)

n

steps.

4.4. The evolution of phase errors

In comparison to the dit-error evolution, the calculation of the phase errors is more
sophisticated. For using theorem 2, we only need to calculate the value 2y2

n = ‖g − p‖2
2,

where p is the phase error distribution (pl := Al∗) and g = (1/d, . . . , 1/d) is the uniform
probability distribution. By use of theorem 3, it follows

2y2
n = ‖g − p‖2

2 =
∥∥∥∥∥∥
(

1

d
−
∑

m

∑
i z

−il
(∑

j zijAjm

)n
dN

)d−1

l=0

∥∥∥∥∥∥
2

2

. (20)

The 2-norm is invariant with respect to a discrete Fourier transform (xi)i �→(
d−1/2∑d−1

i=0 zij xi

)
j
. Thus the use of

∑d−1
i=0 zik = dδk,0 implies

2y2
n = 1

d

∥∥∥∥∥∥
(

δl,0 −
∑

m

(∑
j zljAjm

)n
N

)d−1

l=0

∥∥∥∥∥∥
2

2

. (21)

The zero component cancels against the normalization; this yields

2y2
n = 1

d

∥∥∥∥∥∥
(∑

m

(∑
j zljAjm

)n
N

)d−1

l=1

∥∥∥∥∥∥
2

2

, (22)

where we take the 2-norm on d − 1 elements only. The evaluation in the general case is
complicated, although one may expect that in the limit n → ∞ only the first column of
(Alm)d−1

l,m=0 should be relevant. In the next section, we will slightly modify the protocol, so that
a calculation of the exponential behaviour of 2y2

n for the modified protocol becomes possible.

4.5. The mixing operation

Consider the single-qudit transformation U1 :=∑d−1
x=0 z−x2 |x〉〈x| and define

U := U1 ⊗ U ∗
1 =

d−1∑
x,y=0

zy2−x2 |x〉〈x| ⊗ |y〉〈y|. (23)

This implies U |�lm〉 = zm2 |�l�2m,m〉 or U : (l,m) �→ (l � 2m,m). That is, the transformation
of a Bell-diagonal state by the local unitary operation U permutes the coefficients within a
fixed column of the coefficient matrix. This property can be used to simplify the calculation
of 2y2

n; we therefore introduce the following step immediately before Alice and Bob apply the
B(d)

n step.

• For each qudit pair Alice and Bob randomly choose a value n ∈ Zd and apply Un to the
respective pair.
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Considering a density matrix ρ, this means ρ �→ d−1∑d−1
n=0 Unρ(U †)n. For a mixture

of Bell states, ρ = (Alm)d−1
l,m=0, this step mixes the entries in the columns. Complete mixing

within column m, i.e. Alm �→ A∗m/d, will take place, if 2m and the dimension d are coprime.
If we want to have complete mixing for all columns except the m = 0 column, we have to
restrict our considerations to odd primes (which we already did due to the use of theorem 1);
the case d = 2 (the only even prime) was done in [4].

For fixed l ∈ Zd , one can calculate

d−1∑
m=0


d−1∑

j=0

zljAjm


n

=

d−1∑

j=0

zljAj0


n

+
d−1∑
m=1


d−1∑

j=0

zlj A∗m

d


n

(24)

=

d−1∑

j=0

zljAj0


n

+
d−1∑
m=1

(
A∗m

d

)n


d−1∑

j=0

zlj




︸ ︷︷ ︸
=d·δl,0

n

(25)

and due to l �= 0 in (22) it follows

2y2
n · dN2 =

∥∥∥∥∥∥∥



d−1∑

j=0

zljAj0


n

d−1

l=1

∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥

d−1∑

j=0

zljAj0


d−1

l=1

∥∥∥∥∥∥∥
2n

2n

. (26)

It can now be seen that ‖x‖2n
2n = K(n)‖x‖n

∞ for any d-tuple x, where K(n) ∈ [1; d] may
depend on x. This yields

2y2
n · dN2 = K(n)

∥∥∥∥∥∥∥

d−1∑

j=0

zljAj0


d−1

l=1

∥∥∥∥∥∥∥
2n

∞

(27)

= K(n)


max

∣∣∣∣∣∣
d−1∑
j=0

zljAj0

∣∣∣∣∣∣
∣∣∣∣∣∣ l ∈ Z

∗
d


2n

. (28)

This shows that the determination of the evolution of phase errors is related to the search for
the largest absolute value of the Fourier transform of a probability distribution, where the zero
component of the transformed tuple is ignored.

4.6. Exponential behaviour

Up to now, we have shown xn
a.e.= x̃−n, where x̃ = A∗0/ max{A∗m|m ∈ Z

∗
d}. This implies for

the normalization constant of a B(d)
n step that Nn = K ′(n)An

∗0 for K ′(n) ∈ [1; d]. Thus we
find

2y2
n = 1

d
· K(n)

K ′(n)2
·
(

max
{∣∣∑

j zljAj0

∣∣∣∣l ∈ Z
∗
d

}
A∗0

)2n

=:
K(n)

K ′(n)2
· ỹ2n

d
. (29)

The condition xn
a.e.= yr(d)

n now yields x̃−n = ỹr(d)n or

r(d) = − ln x̃

ln ỹ
= ln[A∗0/max{A∗m|m ∈ Z

∗
d}]

ln
[
A∗0/max

{∣∣∑
j zljAj0

∣∣∣∣l ∈ Z
∗
d

}] . (30)

This generalizes the characteristic exponent r from our previous work [4] from qubits to qudits.
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Finally, we have to relate the characteristic exponent r(d) to the conditions in theorem 2;
this we will do in the following theorem.

Theorem 4 (asymptotical B(d)
n -correctability). A state ρ = (Alm)d−1

l,m=0 ∈ S(d)
bd is asymptotically

B(d)
n -correctable, if and only if r(d) > 2.

Proof. Setting r := r(d) and using (19) and (29) we find

xn

yr
n

= u(n)x̃−1 ·
(

ỹ2n K(n)

2dK ′(n)

)−r/2

= u(n)

(x̃ · ỹr )n

(
K(n)

2dK ′(n)

)−r/2

. (31)

The characteristic exponent r(d) is chosen in such a way that (x̃ · ỹr )n = 1 (in particular,
xn

/
yr

n

a.e.= 1). The remaining terms are bounded for all n ∈ N by some lower bound being
larger than zero and some upper bound being less than infinity. Thus, theorem 2 implies the
assertion. �

5. Applications in quantum cryptography

Let us now consider some cryptographical applications of our theorems. In the generic model
of entanglement-based quantum cryptography, Alice prepares the state |�00〉⊗n and sends
every second qudit to Bob. The transmission is considered to be insecure, so that Eve can
perform general coherent attacks. The task of Alice and Bob is now to estimate the resulting
errors and, if possible, to perform entanglement purification. This provides Alice and Bob
with (nearly) maximally entangled states, from which they can extract a secret key.

Although in general the total state of Alice and Bob is complicated, a random permutation
of their qudit pairs and a fictive-Bell-measurement argument [2] allows us to restrict the
theoretical analysis to tensor products of mixtures of generalized Bell states. If we consider
protocols consisting of one B(d)

n step for an appropriately chosen n ∈ N and the application of
a CSS code according to theorem 1, we only have to determine the coefficients (Alm)d−1

l,m=0 in
order to determine, whether we can obtain a secret key.

A final remark has to be made on prepare-and-measure protocols. The reduction of
CSS-based protocols for qudits was done by Hamada [10] and the reduction of B(d)

n steps also
follows the well-known lines (cf e.g. [2, 8]). The only remaining point is the reduction of
our mixing operation; but this mixing only mixes phases and does not change any dit value
and therefore has no influence on the key. This means Alice and Bob can just skip it in the
associated prepare-and-measure protocol.

In the remaining part we will consider states which may appear in a quantum cryptographic
protocol, and we will also deal with the problem that in general we cannot infer all coefficients
(Alm)d−1

l,m=0 from measurements, but only the dit-error distribution ξ = (A∗m)d−1
m=0 can be

measured and any further information has to be inferred from symmetries of the protocol.

5.1. The generalized isotropic case

We start with a particularly simple example, namely generalized isotropic states, which were
also considered in [9]. A generalized isotropic state is of the form

ρ = (α, β, γ, δ) :=




α γ · · · γ

β δ · · · δ

...
...

. . .
...

β δ · · · δ


 ∈ S(d)

bd . (32)
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If β = γ , this is called an isotropic state. An interesting property of generalized isotropic
states is that they remain of this form, if they are subjected to B(d)

n steps; it is thus possible to
view a B(d)

n step as a mapping B(d)
n : (α, β, γ, δ) �→ (α′, β ′, γ ′, δ′), where the coefficients are

given by

α′ = {[α + (d − 1)β]n + (d − 1)[α − β]n}/dN,

β ′ = {[α + (d − 1)β]n − [α − β]n}/dN,

γ ′ = {[γ + (d − 1)δ]n + (d − 1)[γ − δ]n}/dN,

δ′ = {[γ + (d − 1)δ]n − [γ − δ]n}/dN,

N = [α + (d − 1)β]n + (d − 1)[γ + (d − 1)δ]n.

(33)

Evaluation of (30) now yields

r(d) =
[

ln
α + (d − 1)β

γ + (d − 1)δ

]/
ln

[
α + (d − 1)β

|α − β|
]

, (34)

and thus r(d) > 2 ⇔ α2 + (d − 1)β2 − [α + (d − 1)β]/d > 0. Using α > β, we regain the
result for isotropic channels of our previous work [9]. Further, the protocol of Chau [7] yields
isotropic states with β = γ = δ, so that we can regain the tolerable error rates of his protocol
for primes ([7], table 2, first column)4. In the case d = 2, this state reduces to the general
mixture of qubit Bell states as considered in [4]. Further note that in the case of generalized
isotropic channels we could have done the calculation for r(d) without the use of the mixing
operation.

5.2. Maximum tolerable error rates for two-basis cryptography

In quantum cryptography, the protocol in [7] produces isotropic states, where β = γ = δ,
but in general uses a large number of bases. On the other hand, the theoretical analysis of
protocols which use only two bases does not, in general, lead to generalized isotropic states.

Let us now focus on protocols which use two Fourier-dual bases and in which the total dit
value probabilities A∗m (m ∈ Zd) are measured. Such protocols were considered in [8] and it
was shown there, that for l, m ∈ Zd the symmetry relations

Alm = Ad−m,l = Ad−l,d−m = Am,d−l (35)

hold for the quantum states describing Alice’s and Bob’s entanglement. A consequence of
these relations is Al∗ = A∗l for l ∈ Zd .

From the measured dit errors A∗m a lower bound on r(d) has to be inferred. From (30) it can
be seen that we need three quantities to calculate r(d), namely x := A∗m, max{A∗m|m ∈ Z

∗
d}

and

M := max



∣∣∣∣∣∣
d−1∑
j=0

zljAj0

∣∣∣∣∣∣
∣∣∣∣∣∣l ∈ Z

∗
d


 . (36)

We will write max{A∗m|m ∈ Z
∗
d} = f · (1 − x) · (d − 1)−1, where f ∈ [1; d − 1]. The

case f = 1 is the apparently isotropic case, where all A∗m for m ∈ Z
∗
d are equal, whereas

f = d − 1 relates to those cases, in which there are only errors of one type. Equation (30)

4 Note that the rates given by our formula also coincide with Chau’s rates for prime powers. Although this may not
be by accident, this case is not covered by our derivation.
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now reads

r(d) =
(

ln
x

f · 1−x
d−1

)
·
(

ln
x

M

)−1
. (37)

The values of x and f can be directly inferred from the measured dit-error probabilities.
However, estimating the value of M is more involved. We note that small values of M
correspond to small values of r(d). So, for a lower bound on r(d) we need a lower bound on
M, which will be derived now.

For any complex number z ∈ C, we have |z| � Re z and the maximum over all l ∈ Z
∗
d is

definitely larger than the average over this set. We thus have

M � max

{
Re
∑d−1

j=0
zljAj0|l ∈ Z

∗
d

}
� Re

1

d − 1

∑d−1

l=1

∑d−1

j=0
zljAj0. (38)

Exchanging the summation and using the fact that
∑d−1

l=1 zlj = dδj,0 − 1 yields

M � 1

d − 1

∑d−1

j=0
(dδj0 − 1)Aj0 = A00 −

∑d−1
j=1 Aj0

d − 1
. (39)

Note that in the case of the generalized isotropic channel this is an equality. Up to this point
we have given a simple, but achievable lower bound on M. In order to infer this lower bound
from the qudit-error probabilities measurable in the protocol we use the relations

A∗0 = A00 +
d−1∑
l=1

Al0 � A00 +
d−1∑
l=1

Al∗ = A00 +
d−1∑
l=1

A∗l = A00 + (1 − A∗0), (40)

which imply A00 � 2A∗0 − 1. Note that equality holds, if and only if Alm = 0 for
(l,m) ∈ Z

∗
d × Z∗

d . Plugging this bound into the bound for M yields

M � x − d · 1 − x

d − 1
. (41)

The isotropic channel of (32) is the worst case with respect to correctability (i.e., it has the
smallest r(d)) of all apparently isotropic channels, i.e. channels where A∗m = A∗m′ for all
m,m′ ∈ Z∗

d . Furthermore, we have equality in (40) and thus in (41), if for this isotropic
channel δ = 0 holds; this case was considered in [9]. If we do not have an isotropic channel,
the tolerable error rate according to our bound depends on f , which can be seen as a parameter
characterizing the non-isotropy of the measured probability distribution.

By plugging in our bound for M and solving for x = A∗0, we get as a sufficient condition
for correctability

x >
2d(2d − 1) + (d − 1)(f +

√
(4d + f )f )

2[(2d − 1)2 + (d − 1)f ]
, (42)

where we only consider x > (d + 1)/(2d) due to the entanglement bound of [8]. In figure 1,
we plotted bounds on the maximum tolerable error rate (1 − x) as a function of d. The upper
line is the apparently isotropic case (f = 1), the lower one the case with just one type of
error (f = d − 1). The lower bound for the maximum tolerable error rate in a given protocol
lies between these two lines. We thus have shown lower bounds on the maximum tolerable
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d

0.1

0.2

0.3

0.4

0.5

1−x

Figure 1. Lower bounds for the maximum tolerable error rate (1 − x = 1 − A∗0) as a function
of the dimension d; the upper line corresponds to the apparently isotropic case f = 1 (where
this bound is exact), the lower one to the maximum non-isotropy f = d − 1. All other cases
lie in between. The lines start at 1 − x = 0.2, the upper one converges to 0.5, the lower one to
1/2 − 1/2

√
5 ≈ 0.276.

error rates of two-basis quantum cryptography using the protocols considered. In the case of
apparently isotropic channels our bounds are the best possible lower bounds, in other cases
they become worse the more non-isotropic the channel gets.

6. Conclusions

We have generalized the ideas of our previous work [4], namely the notion of asymptotic
correctability, to d-dimensional quantum systems, where d is a prime. We determined a
criterion for asymptotic correctability and applied it to B(d)

n steps, which yielded an expression
for the characteristic exponent r(d) related to asymptotic B(d)

n -correctability. Applying this
condition to cryptographic protocols yielded lower bounds for maximum tolerable error rates
and the bound in the case of apparently isotropic channels is tight. The restriction to prime
dimension is due to two given facts, namely

• the use of asymmetric CSS codes, for which we use Hamada’s quantum Shannon bound
(theorem 1), which was only derived for primes; and

• the use of the mixing operation U of section 4.5 to simplify our calculations.

We believe that it is reasonable to assume that Hamada’s bound may be extended to prime
powers. We further believe that formula (30) also holds, if the mixing operation is not applied,
but we were not able to give a rigorous proof for that statement. Even if this is not the case,
it might be possible to generalize the mixing operation to prime powers. Provided that these
tasks are solved, our results hold for prime power dimensions.

It would also be interesting to know, if there are better bounds on the value of
M = max

{∣∣∑d−1
j=0 zljAj0

∣∣∣∣l ∈ Z
∗
d

}
, if Al0 is known for all l ∈ Zd and to infer better bounds

on M for the non-isotropic case by using the symmetry relations of two-basis protocols, but
both tasks seem to be relatively complicated.
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Appendix A. Proof of lemma 1

By definition of the Shannon entropy, it is obvious that it is invariant with respect to any
permutation of the ξi . Furthermore, we know that it is concave, i.e.

Hd(λ · ξ + (1 − λ) · η) � λHd(ξ) + (1 − λ)Hd(η) for λ ∈ [0; 1]. (A.1)

One now can see that ξmax can be represented as a convex combination of permutations of ξ ,
where ξ0 is left invariant, and, on the other hand, ξ can be constructed by a convex combination
of permutations of ξmin. �

Appendix B. Proof of lemma 2

A Taylor expansion of Hd up to second order around g yields

Hd(p) = 1 +
d−1∑
i=0

(
1 − 1

ln d

)
(pi − gi) − d

2 ln d

d−1∑
i=0

(gi − pi)
2 + R2(p). (B.1)

Due to the fact that we only consider probability distributions p, the first-order term vanishes
and the second-order term can be written in the form of lemma 2 using K := d/(2 ln d). The
remainder term R2(p) can be calculated by Lagrange’s formula, i.e.

R2(p) =
d−1∑
i=0

p̃−2
i

3! · ln d
(pi − gi)

3 (B.2)

for some set p̃i , where pi � p̃i � 1/d or 1/d � p̃i � pi holds for any i. By assumption, we
have p̃i � f/d; this yields

|R2(p)| �
d−1∑
i=0

(f/d)−2

3! · ln d
|pi − gi |3 = K ′‖p − g‖3

3 (B.3)

for K ′ := d2 · (3!f 2 · ln d)−1, which concludes the proof. �

Appendix C. Proof of theorem 3

In this section, we give the proof of theorem 3, which closely follows the ideas presented in
[12]. The main idea in the proof is that the phase propagation can be seen as a convolution,
which can be calculated by a sequence of Fourier transform, multiplication and inverse Fourier
transform.

The proof is done by induction, which (the case n = 1 being obvious) we start for n = 2.
Consider (Alm)lm, (Bst )st ∈ S(d)

bd and denote (l,m) := |�lm〉〈�lm|. Applying steps (i) and (ii)
of a B(d)

n step in this case yields

ρ =
∑
l,m

Alm(l,m) ⊗
∑
s,t

Bst (s, t) =
∑

l,m,s,t

AlmBst (l, m) ⊗ (s, t) (C.1)

GBXOR�→
∑

l,m,s,t

AlmBst (l ⊕ s,m) ⊗ (s,m � t). (C.2)

Considering only the case where m � t = 0 and tracing out the second pair further yields

N−1
2

∑
l,m,s

AlmBsm(l ⊕ s,m) =
∑
lm

[
N−1

2

∑
l′

AlmBl�l′,m

]
(l,m), (C.3)
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where N2 = ∑m

[(∑
l Alm

)(∑
l Blm

)]
is the normalization constant. We assume now that

the theorem is true for all numbers up to a fixed value n and proceed via induction: let ρ(i) =(
A

(i)
lm

)d−1
l,m=0 be mixtures of Bell states for i ∈ {1, . . . , n + 1}. The outcome of a B(d)

n step

applied to the states 1, . . . , n shall be denoted as ρ ′ = (A′
lm)d−1

l,m=0 with normalization constant

Nn, the outcome of a B
(d)
n+1 on all n + 1 states shall be ρ ′′ = (A′′

lm)d−1
l,m=0. We calculate

A′′
lm = 1

dN2

∑
i

z−il




∑

j

zijA′
jm




∑

j ′
zij ′

A
(n+1)
j ′m




 (C.4)

= 1

d2N2Nn

∑
i

z−il


∑

i ′,j

zij+i ′j
n+1∏
k=1


∑

j ′
zi ′j ′

A
(k)
j ′m




 (C.5)

= 1

d2N2Nn

∑
i,i ′,j

zi(j−l)+i ′j
n+1∏
k=1


∑

j ′
zi ′j ′

A
(k)
j ′m


 , (C.6)

where N2 is the normalization constant for a B(d)
n step with n = 2 applied to ρ ′ and ρ(n+1).

Using
∑d−1

i=0 zi(j−l) = dδj,l , this implies the assertion, if the normalization constant is correct.
This can be verified by direct calculation. �
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