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Network implementation of covariant two-qubit quantum operations
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A six-qubit quantum network consisting of conditional unitary gates is presented which is capable
of implementing a large class of covariant two-qubit quantum operations. Optimal covariant NOT
operations for one and two-qubit systems are special cases contained in this class. The design of this
quantum network exploits basic algebraic properties which also shed new light onto these covariant
quantum processes.

PACS numbers: 03.67.Mn,03.65.Ud

I. INTRODUCTION

It is well known that certain tasks of information pro-
cessing cannot be performed perfectly on the quantum
level despite the fact that they can be performed per-
fectly on a classical level [1, 2]. Typically, impossibilities
of this kind on the quantum level hint on the existence
of corresponding no-go theorems. They raise interest-
ing questions concerning the optimality of these quantum
processes with respect to particular quality measures. A
prominent example in this respect is the copying of arbi-
trary quantum states which cannot be achieved perfectly
[3]. The associated problem of determining quantum op-
erations which can achieve this tasks in the best possible
way has stimulated numerous theoretical and experimen-
tal investigations starting with the early work of Bužek
and Hillery [4].
Another process of this kind is the quantum NOT

transformation which is to change an arbitrary quantum
state into an orthogonal one and which cannot be per-
formed perfectly for arbitrary input states [5, 6]. Re-
cently, the problem of optimizing quantum NOT pro-
cesses has been addressed not only for arbitrary pure
one-qubit input states [5] but also for pure two-qubit
input states of a given degree of entanglement [7]. In
this latter context the possible input states are restricted
to the set of pure two-qubit states of a given degree of
entanglement which does not constitute a linear vector
space. Therefore, the previously mentioned impossibil-
ity arguments concerning quantum NOT operations act-
ing on arbitrary input states do not apply. All optimal
quantum operations could be determined which perform
such a quantum NOT operation for all possible pure two-
qubit input states of a given degree of entanglement with
the same quality. It was demonstrated that these op-
timal two-qubit quantum NOT operations are members
of a convex set of covariant (completely positive) two-
qubit quantum operations. This convex set is generated
by four elementary two-qubit quantum operations which
form the vertices of a three-dimensional polytope. Fur-
thermore, it could be shown that only in the case of max-
imally entangled pure two-qubit input states it is possible
to perform such a covariant quantum NOT operation per-
fectly. However, so far it is still unknown how this convex

set of covariant two-qubit quantum operations can be im-
plemented in quantum networks with the help of simple
elementary quantum gates.

In general, a systematic approach to the problem of
designing elementary quantum gate sequences which im-
plement a given family of covariant quantum operations
is not known. In the following it is shown that for the
above mentioned convex set of covariant two-qubit quan-
tum operations this problem can be solved completely.
This is due to the fact that this convex set of quantum
operations has special algebraic properties which can be
exploited in a convenient way. In addition, these alge-
braic properties shed new light on the properties of these
covariant two-qubit quantum operations. With the help
of additional auxiliary qubits it is possible to design a
quantum network which involves a particular sequence
of conditional unitary qubit gates. Depending on the
preparation of the auxiliary qubits any covariant quan-
tum operation within this convex set can be implemented
by this quantum network. One of the advantages of this
particular network implementation is that the sequence
of conditional unitary qubit gates involved is independent
of the covariant quantum operation under consideration.

This paper is organized as follows. In Sec. II basic
definitions and properties of the recently introduced con-
vex set of covariant two-qubit quantum processes [7] are
summarized. The essential algebraic properties of these
quantum operations which are useful for the subsequent
construction of the quantum network are discussed in a
subsection. Sec. III addresses the main problem how this
convex set of quantum operations can be implemented
unitarily by a suitable choice of auxiliary quantum sys-
tems and by an appropriate sequence of elementary quan-
tum gates. As a main result it is shown that any covari-
ant quantum operation of the convex set discussed in
Sec. II can be implemented by a unitary master trans-
formation which is independent of the particular quan-
tum operation under consideration. A quantum network
implementation of this main result involving controlled
unitary Pauli operations is discussed in a subsection.

http://arxiv.org/abs/quant-ph/0701048v1
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II. COVARIANT TWO-QUBIT QUANTUM

OPERATIONS

In this section basic aspects of all completely positive
quantum process are summarized that transform pure
two-qubit input states of a given degree of entanglement
in a covariant way. The recently discussed optimal quan-
tum NOT operations [7] are special cases thereof.

A. Basic definitions and general properties

Let us consider a general completely positive quantum
operation Π which transforms an arbitrary two-qubit in-
put state ρ in a covariant way according to

Π
(

U1 ⊗ U2ρU
†
1 ⊗ U †

2

)

= U1 ⊗ U2Π(ρ)U
†
1 ⊗ U †

2 . (1)

Thereby, the requirement of complete positivity ensures
that this transformation can be implemented in a uni-
tary way possibly with the help of additional auxiliary
quantum systems which are uncorrelated with the two-
qubit system initially. If the covariance condition (1) is
satisfied for arbitrary unitary one-qubit transformations
U1,U2 ∈ SU(2) [8], it is guaranteed that the quality of
performance of a quantum NOT operation is the same
for all possible pure entangled two-qubit input states of
a given degree of entanglement [7, 9, 10].
Recently, it was shown [7] that all possible com-

pletely positive covariant two-qubit quantum operations
Π(v, x, y) fulfilling Eq.(1) form a three-parametric set,
i.e.

ρout = Π(v, x, y) (ρ) =

3
∑

i,j=0

Kij(v, x, y)ρK
†
ij(v, x, y),

(2)
with the Kraus operators

K00(v, x, y) =
1

4
(1 + 3x+ 3v + 9y)

1

2 I ⊗ I,

Ki0(v, x, y) =
1

4
(1 + 3x− v − 3y)

1

2 σi ⊗ I,

K0i(v, x, y) =
1

4
(1− x+ 3v − 3y)

1

2 I ⊗ σi, (3)

Kij(v, x, y) =
1

4
(1− x− v + y)

1

2 σi ⊗ σj , i, j ∈ {1, 2, 3},

the unit operator I and the Pauli spin operators σ1 = X ,
σ2 = Y , and σ3 = Z. The possible values of the three
parameters x,v and y are restricted by the requirement
of non negativity of the prefactors entering (3), i.e.

1 + 3x+ 3v + 9y ≥ 0, 1 + 3x− v − 3y ≥ 0,

1− x+ 3v − 3y ≥ 0, 1− x− v + y ≥ 0. (4)

In addition, trace preservation of the quantum operation
Π(v, x, y) implies

3
∑

i,j=0

K†
ij(v, x, y)Kij(v, x, y) = I. (5)

An optimal quantum NOT operation transforms an ar-
bitrary pure two-qubit input state with a given degree of
entanglement into a not necessarily pure output state of
its orthogonal complement in an optimal way. Thereby,
the sets Ωα of pure two-qubit states with a given degree
of entanglement α ∈ [0, 1/

√
2] are defined by [11, 12]

Ωα =
{

(

U1 ⊗ U2

)(

α|0〉 ⊗ |0〉+
√

1− α2|1〉 ⊗ |1〉
)

∣

∣

∣
U1, U2 ∈ SU(2)

}

. (6)

In the special case α = 0 the two-qubit states are separa-
ble whereas in the opposite extreme case α = 1/

√
2 they

are maximally entangled.
Let us now summarize some basic properties of such

optimal quantum NOT operations [7]:

• There is a characteristic threshold value of entan-

glement at α0 =
√

(

1−
√
1− 4K

)

/2 ≈ 0.1836

with K =
(

8− 3
√
6
)

/20. For α ≤ α0 the opti-
mal quantum NOT operation, i.e. USEP , is in-
dependent of the degree of entanglement α and
is characterized by the characteristic parameters
(v = −1/3, x = −1/3, y = 1/9) (compare with
(3)). This particular quantum operation is iden-
tical to two optimal covariant one-qubit NOT op-
erations u1 [5] applied to each of the input qubits
separately, i.e. USEP = u1 ⊗ u1 with

u1(ρ) =
1

3
(2I − ρ) . (7)

These one-qubit NOT operations u1 transform an
arbitrary pure one-qubit input state into an orthog-
onal state in an optimal way [5].

• For α > α0 the optimal NOT operations depend on
the degree of entanglement α and are characterized
by the parameters (compare with (3))

y = −1

3

2− 31α2β2 + 20α4β4

−2− 35α2β2 + 100α4β4
,

x+ v =
2

3

4− 29α2β2 − 20α4β4

−2− 35α2β2 + 100α4β4
,

x, v ≥ −1

3
(8)

with β =
√
1− α2.

• It can be shown that perfect NOT operations
can be constructed for maximally entangled input
states only. These perfect covariant NOT oper-
ations form a one-parameter family specified by
characteristic parameters fulfilling the conditions
y = − 1

3 , x+ v = 2
3 with x, v ≥ − 1

3 .

• All completely positive covariant two-qubit pro-
cesses (1) form a three-dimensional convex set [7].
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Any of these processes Π(a) can be represented in
the form

Π(a) = a00I + a11USEP + a01U
(1)
ME + a10U

(2)
ME (9)

with amn ≥ 0 and
∑

m,n∈{0,1} amn = 1. The quan-
tum operations

U
(1)
ME = Π(v = 1, x = −1/3, y = −1/3),

U
(2)
ME = Π(v = −1/3, x = 1, y = −1/3) (10)

are members of the one-parameter family of per-
fect NOT operations for maximally entangled input
states. They are characterized by the additional
property that they leave the reduced density op-

erators of the first (U
(1)
ME) or second (U

(2)
ME) qubit

unchanged. The convex set of quantum processes
(9) forms a three dimensional polytope whose ver-
tices are given by the quantum operations I, USEP ,

U
(1)
ME , and U

(2)
ME . This polytope contains also other

interesting quantum operations, such as the univer-
sal two-qubit NOT process GNOT studied in Ref.[6].
This latter process is the optimal NOT operation
for all possible pure two-qubit input states irrespec-
tive of their degree of entanglement. Its convex de-
composition is given by

GNOT = 0.6 USEP + 0.2 U
(1)
ME + 0.2 U

(2)
ME . (11)

B. Algebraic properties

Let us now explore further algebraic properties of the
covariant two-qubit processes of Eqs.(1) and (9).

The vertices USEP , U
(1)
ME , U

(2)
ME of the polytope (9)

are orthogonal and the operators representing these pro-
cesses are traceless, i.e.

Tr (USEP ) = 0, T r
(

U
(1)
ME

)

= 0, T r
(

U
(2)
ME

)

= 0,

T r
(

U
(1)
MEUSEP

)

= 0, T r
(

U
(2)
MEUSEP

)

= 0,

T r
(

U
(1)
MEU

(2)
ME

)

= 0. (12)

Therefore, according to Eq.(9) the coefficients a ≡
(a00, a01, a10, a11) of an arbitrary covariant two-qubit
quantum operation Π(a) are given by

a00 =
1

4
Tr (Π(a)) , a11 =

Tr (Π(a)USEP )

Tr (U2
SEP )

,

a01 =
Tr

(

Π(a)U
(1)
ME

)

Tr
(

U
(1)
ME

2) , a10 =
Tr

(

Π(a)U
(2)
ME

)

Tr
(

U
(2)
ME

2) . (13)

Another interesting feature of the covariant two-qubit
quantum operations (9) concerns repeated applications.
If two such quantum operations are applied successively

covariant quantum operation a00 a11 a01 a10
U2
SEP 1/9 4/9 2/9 2/9

U
(1)
ME

2
1/3 0 2/3 0

U
(2)
ME

2
1/3 0 0 2/3

USEPU
(1)
ME = U

(1)
MEUSEP 0 2/3 0 1/3

USEPU
(2)
ME = U

(2)
MEUSEP 0 2/3 1/3 0

U
(1)
MEU

(2)
ME = U

(2)
MEU

(1)
ME 0 1 0 0

TABLE I: Convex decompositions of products of elementary
covariant quantum operations which constitute the vertices of
the polytope (9).

the resulting quantum operation is again of the form (9).
Thus, these quantum operations form a half group. The
coefficients of the convex decompositions of some prod-

ucts of the elementary quantum operations USEP , U
(1)
ME ,

and U
(2)
ME are summarized in Table I. According to this

table we have the relation

U
(1)
MEU

(2)
ME = USEP . (14)

Furthermore, it is apparent that the quantum operations

USEP , U
(1)
ME , and U

(2)
ME commute. Finally let us point out

that the considered covariant processes (9) have nontriv-
ial limit expressions for Π(a)n for n→ ∞.

III. QUANTUM NETWORK

IMPLEMENTATION

In this section it is shown how an arbitrary covariant
two-qubit quantum operation (9) can be implemented
in a six-qubit quantum network by an appropriate se-
quence of controlled unitary gates. For this purpose it is
demonstrated first that any covariant two-qubit process
(9) can be implemented with the help of four auxiliary
qubits by a master unitary operation. This master uni-
tary operation is independent of the particular covari-
ant two-qubit quantum operation under consideration.
A particular covariant two-qubit process is selected by
preparing the auxiliary four-qubit quantum system in a
suitably chosen quantum state. In a second step a se-
quence of conditional (unitary) Pauli gates is constructed
which implements this unitary master transformation in
this six-qubit quantum network.

A. Unitary representation with auxiliary qubits

For the purpose of implementing the covariant quan-
tum operations (9) unitarily with the help of auxiliary
qubits let us first of all introduce some useful notation.
In addition to the four dimensional Hilbert spaceH of the
two-qubit input states we introduce four auxiliary qubits
whose Hilbert space Hancilla is sixteen dimensional. The
quantum states |ijkl〉 with i, j, k, l ∈ 0, 1 are assumed to
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form an orthonormal basis in this latter Hilbert space.
We start from the observation that apart from normal-
ization factors the Kraus operators of (3) are unitary.
Therefore, it is convenient to introduce the correspond-
ing sixteen renormalized unitary two-qubit operators

F2i+j 2k+l = σ2i+j ⊗ σ2k+l (15)

with σ0 = I and i, j, k, l ∈ {0, 1}. From these latter
unitary two-qubit operators we can construct the unitary
master transformation

U =
∑

i,j,k,l∈{0,1}

F2i+j 2k+l ⊗ |ijkl〉〈ijkl| (16)

which operates on all six-qubits of the Hilbert space H⊗
Hancilla. Let us assume that initially the four auxiliary
qubits are prepared in the mixed quantum state

Σ(a) =
∑

i,j,k,l∈{0,1}

asgn(i+j) sgn(k+l)

3sgn(i+j)+sgn(k+l)
|ijkl〉〈ijkl|(17)

with the normalization a00 + a01 + a10 + a11 = 1
and with sgn(x) = x/|x| denoting the signum-function
(sgn(0) = 0). Depending on the values of the coeffi-
cients a ≡ (a00, a01, a10, a11) any covariant quantum pro-
cess Π(a) can be implemented unitarily with the help of
the unitary master transformation (16) by preparing the
auxiliary four qubits in the quantum state (17) initially
and by disregarding these four auxiliary qubits after the
unitary transformation, i.e.

(

a00I + a01U
(1)
ME + a101U

(2)
ME + a11USEP

)

(ρ) ≡

Π(a)(ρ) = Trancilla
{

Uρ⊗ Σ(a)U†
}

. (18)

This unitary implementation of the covariant quantum
operations (9) is a main result of our paper. It can be
proved in a straightforward way by inserting Eqs.(16) and
(17) into Eq.(18).

Before addressing the general problem of imple-
menting an arbitrary quantum operation of the form
of Eq.(18) by elementary quantum gates in this six-
qubit quantum network let us consider the unitary
implementation of the covariant quantum operation

Π(a00 = 0 = a10 = a11, a01 = 1) = U
(1)
ME as an ex-

ample. For this purpose the auxiliary four-qubit
quantum system has to be prepared in the mixed
quantum state Σ(a00 = 0 = a10 = a11, a01 =
1) = (1/3) {|0001〉〈0001|+ |0010〉〈0010|+ |0011〉〈0011|}.
Thus, Eq. (18) yields

Π(a00 = 0 = a10 = a11, a01 = 1) =
F01√
3
ρ
F †
01√
3
+

F02√
3
ρ
F †
02√
3
+
F03√
3
ρ
F †
03√
3

= U
(1)
ME . (19)

B. Network implementation with conditional Pauli

gates

Let us now implement the unitary master transforma-
tion (16) by a quantum circuit in the six-qubit quan-
tum network which involves four auxiliary qubits. Ac-
cording to Eq.(16) the quantum circuits have to be de-
signed in such a way that, whenever the four auxiliary
qubits are prepared in a particular quantum state of the
computational basis |ijkl〉 (i, j, k, l ∈ {0, 1}), the unitary
transformation F2i+j 2k+l is acting onto the two target
qubits of the main system with Hilbert space H. In order
to achieve this goal let us introduce elementary condi-
tional unitary five-qubit quantum gates C(U) which in-
volve four control qubits and one target qubit and whose
action on an arbitrary quantum state |ψ〉 of the target
qubit and a quantum state of the computational basis of
the four control qubits |ijkl〉 is given by

C(U)|ψ〉target⊗|ijkl〉control = U i·j·k·l|ψ〉target⊗|ijkl〉control
(20)

(compare with Fig. (1)). In other words, the unitary

✉

✉

✉

✉

U

FIG. 1: Quantum circuit representation of the elementary
controlled unitary operation C(U) which involves four control
and one target qubit. Thereby, U denotes a unitary operation
acting on the single target qubit which is performed if and
only if the control qubits are in state |1111〉control.

operation U acts on the target state |ψ〉target if and
only if the four control qubits are prepared in the state
|1111〉control. Universal quantum gates which are capable
of implementing such controlled unitary operations were
studied extensively in Ref. [13], for example.
With the help of the controlled unitary operations

C(U) also other controlled operations can be realized in
a straightforward way. Suppose one wants to implement
a five-qubit quantum gate in which the target qubit is
transformed by a unitary transformation U if and only if
the first, second, and third (control) qubits are in state
|0〉 and the fourth control qubit is in state |1〉 of the com-
putational basis. As apparent from Fig. 2 this quantum
gate may be realized by acting with a Pauli spin operator
X onto the control qubits one, two, and three before and
after the application of the controlled unitary quantum
gate C(U).
Also multi-target conditional unitary quantum gates

can be realized with the help of the elementary quan-
tum gate C(U). Such multi-target gates are natural gen-
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❡

❡

❡

✉

U

=

✉

✉

✉

✉

U

X X

X X

X X

FIG. 2: Controlled unitary operation with a unitary operation
U acting on the target qubit if and only if the first, second,
and third control qubits are in state |0〉 and the fourth control
qubit is in state |1〉 of the computational basis.

eralizations of the one-qubit controlled quantum gates
just introduced. In a general d-target conditional unitary
quantum gate a set of unitary operations, say {Ui}di=1,
are performed on d target qubits simultaneously if and
only if the control qubits are prepared in prescribed quan-
tum states. In Fig. 3 a two-target conditional quantum
gate is depicted in which the unitary operations U and V
are performed on the first and the second target qubit if
and only if the first and the second control qubits are pre-
pared in state |0〉 and the third and fourth control qubits
are prepared in state |1〉 of the computational basis.

❡

❡

✉

✉

U

V

=

❡

❡

✉

✉

U

❡

❡

✉

✉

V

FIG. 3: Circuit implementation of a two-target quantum gate
which performs an operation U on the fifth qubit and an oper-
ation V on the sixth qubit conditional on the first two qubits
being in state |0〉 and qubits three and four being in state |1〉
of the computational basis.

With the help of such two-target conditional quantum
gates a simple sequence of conditional two-target Pauli
gates can be designed in our six-qubit quantum system
which performs the master unitary transformation (16).
The circuit scheme of this network is depicted in Fig. 4.
The first four qubits constitute the control qubits of the
auxiliary quantum system. According to Eq.(18) these
auxiliary qubits have to be prepared in the quantum state
(17) initially. The two input qubits of the main quantum
system are prepared in an arbitrary quantum state ρ.
The dynamics of the composite six-qubit quantum sys-
tem are governed by the master unitary transformation
(16) which is implemented by the network displayed in
figure 4. The action of this dynamics on the two qubits
of the main quantum system after having discarded the
four auxiliary qubits is given by the quantum operation
(18).

IV. CONCLUSION

A six-qubit quantum network implementation of all
possible two-qubit quantum operations was presented
which transform all pure two-qubit input states of a given
degree of entanglement in a covariant way. An advan-
tage of this particular implementation is that it is based
on a sequence of conditional Pauli gates which does not
depend on the quantum operation under consideration.
A particular covariant quantum operation is selected by
preparing the four auxiliary qubits in an appropriate
quantum state. The implementation presented rests on
special algebraic properties of these covariant two-qubit

quantum operations. Analogous approaches exploiting
similar algebraic properties may also turn out to be useful
for network implementations of other covariant quantum
processes.
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❡

❡

X

❡

✉

❡

❡

Y

✉

✉

❡

❡

Z

❡

❡

✉

❡

X

❡

❡

❡

✉

Y

❡

❡

✉

✉

Z

✉

❡

✉

❡

X

X

✉

❡

❡

✉

Y

X

✉

❡

✉

✉

Z

X

❡

✉

✉

❡

X

Y

❡

✉

❡

✉

Y

Y

❡

✉

✉

✉

Z

Y

✉

✉

✉

❡

X

Z

✉

✉

❡

✉

Y

Z

✉

✉

✉

✉

Z

Z

✲

✲

Σ(a) ✡
✡
✡✡✣

✑
✑✸

❳❳③❅
❅❅❘

ρ ✟✟✯
❍❍❥

Π(a)(ρ)
◗◗s
��✒

FIG. 4: Network consisting of 15 conditional unitary one- and two-target Pauli gates which performs the unitary master
transformation (16) on a six-qubit quantum system. Initially the four auxiliary qubits are prepared in state Σ(a) of (17) and
the two qubits of the main quantum system are prepared in an arbitrary quantum state ρ. After the application of these
quantum gates the two qubits of the main quantum system are in the quantum state Π(a)(ρ) of (18).
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