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Selective recoupling and stochastic dynamical decoupling

O. Kern∗ and G. Alber
Institut für Angewandte Physik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

(Dated: February 1, 2008)

An embedded selective recoupling method is proposed which is based on the idea of embedding the
recently proposed deterministic selective recoupling scheme of Yamaguchi et al. [1] into a stochas-
tic dynamical decoupling method, such as the recently proposed Pauli-random-error-correction-
(PAREC) scheme [2]. The recoupling scheme enables the implementation of elementary quantum
gates in a quantum information processor by partial suppression of the unwanted interactions. The
random dynamical decoupling method cancels a significant part of the residual interactions. Thus
the time scale of reliable quantum computation is increased significantly. Numerical simulations are
presented for a conditional two-qubit swap gate and for a complex iterative quantum algorithm.

PACS numbers: 03.67.Lx, 03.67.Pp

I. INTRODUCTION

Stabilizing quantum systems against uncontrolled per-
turbations is one of the major challenges in quantum
information science. In comparison with measurement-
based quantum error correction, at first sight dynamical
decoupling methods seem to suffer from the disadvan-
tage of not being capable of correcting unwanted per-
turbations perfectly. However, typically measurement-
based quantum error correction requires ancillary quan-
tum systems and complicated measurement and recovery
operations [3] which are difficult to realize by nowadays
technology. By contrast dynamical decoupling methods
are able to suppress unwanted perturbations significantly
even over long interaction times without requiring ad-
ditional ancillary quantum systems [2, 4, 5, 6]. Thus,
in view of nowadays experimental difficulties in control-
ling many-particle quantum systems these latter methods
offer interesting perspectives, in particular, for the first
generation of quantum information processors.

Recently a deterministic dynamical recoupling scheme
was proposed for dipole-coupled nuclear spins in a crys-
talline solid [1]. While in all previously proposed sim-
ilar schemes [7, 8, 9, 10] the evolution-time overhead
grows linearly with the number of spins, this particu-
lar scheme leads to an evolution-time overhead which
is independent of the number of spins involved. Thus,
it appears to be well suited for the stabilization of
quantum information processors against unwanted inter-
qubit interactions. This recoupling scheme uses par-
ticular combinations of fast broadband and slower se-
lective radio-frequency fields to turn off all couplings
except those between two particularly selected ensem-
bles of spins. Thereby, spins within each ensemble rep-
resenting a particular logical qubit are decoupled [11].
Furthermore, cross-couplings between selected ensembles
are avoided by requiring that qubit couplings have to
be much stronger than any other couplings within each

∗e-mail: oliver.kern@physik.tu-darmstadt.de

ensemble. Unwanted couplings are suppressed up to
second-order average Hamiltonian theory with the help
of time-symmetric pulse sequences. Despite many ad-
vantages in this recoupling scheme the residual higher-
order interactions accumulate coherently thus leading to
a quadratic-in-time decay of the fidelity of any quantum
state [12]. This restricts the achievable time scales of
reliable quantum computation significantly.

In this paper it is demonstrated that the performance
of this recoupling scheme can be improved significantly
by embedding it into a stochastic decoupling scheme. For
this purpose the recently proposed Pauli-random-error-
correction (PAREC) method [2] turns out to be partic-
ularly useful. Thereby, the stochastic decoupling scheme
destroys the coherent accumulation of higher-order resid-
ual interactions to a large extent so that the fidelity decay
of any quantum state is slowed down significantly to an
almost linear-in-time one. As a result reliable quantum
computation can be performed on significantly longer
time scales.

This paper is organized as follows: The basic ideas un-
derlying the recently proposed deterministic recoupling
scheme of Ref. [1] are summarized briefly in Sec. II A for
the sake of completeness. In Sec. II B a simple restricted
embedded decoupling scheme is introduced. Though it
already leads to first improvements in comparison with
the deterministic selective recoupling scheme of Ref. [1],
its error suppressing properties can still be improved sig-
nificantly by an additional simple symmetrization pro-
cedure. In Sec. III the stabilization properties of this
symmetrized embedded recoupling scheme are analyzed
for a unitary conditional two-qubit swap gate. In Sec.
IV its stabilizing properties are investigated by apply-
ing it to the iterated quantum algorithm of the quantum
sawtooth map [13].

http://arXiv.org/abs/quant-ph/0602167v1
mailto:oliver.kern@physik.tu-darmstadt.de
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II. SELECTIVE RECOUPLING BY EMBEDDED

DYNAMICAL DECOUPLING

A. Deterministic selective recoupling of qubits

In this section the basic ideas underlying the recently
proposed recoupling scheme of Ref. [1] are summarized.
In particular, the form and magnitude of the residual
higher-order interaction is discussed which cannot be
suppressed by the suggested pulse sequences.

Let us consider nq nuclear spin-1/2 systems in a crys-
talline solid which are interacting with an external static
magnetic field in z-direction. In the rotating wave ap-
proximation their Hamiltonian is given by

Ĥ = −

nq−1
∑

k=0

~ωk

2
σ̂k

z +

nq−1
∑

k<l=0

Jkl

4

(

2σ̂k
z σ̂l

z − σ̂k
xσ̂l

x − σ̂k
y σ̂l

y

)

≡ ĤZ + ĤD

(1)

with the Pauli spin operators σ̂x, σ̂y , and σ̂z . Thereby,
the Larmor frequencies ωk of the first term characterize
the interaction strengths of these spins with an external
inhomogeneous magnetic field so that these spins can be
addressed individually. The second term of the Hamilto-
nian (1) describes the dipole-dipole interaction of the nu-
clear spins with the coupling strength Jkl between spins
k and l being inversely proportional to the cubic power
of their distance.

If these nuclear spins are used as qubits of a quantum
memory, for example, one has to protect them against the
perturbing influence of the interaction Hamiltonian (1).
In the framework of a deterministic decoupling scheme [6]
this may be achieved by an appropriate sequence of fast
electromagnetic pulses. Thereby, a series of fast global
π-pulses is applied in order to suppress the Zeeman term
ĤZ while leaving the dipole-dipole coupling term ĤD in-
variant. This latter term can be suppressed by the well
known WHH-4 pulse sequence [14]. This sequence con-
sists of four fast π/2-pulses applied at times τ , 2τ , 4τ
and 5τ . Thus, the resulting unitary time evolution after
this pulse sequence, i. e. at time Tc ≡ 6τ , is given by

Û(t = 6τ) = Û †
1 (−τ)Û1(τ) ≡

6
∏

j=1

e−i ˆ̃Hjτ/~,

Û1(τ) = e−iĤτ/~P̂ye−iĤτ/~P̂xe−iĤτ/~

(2)

with the interaction-picture (toggled) Hamiltonians
ˆ̃H1 = ˆ̃H6 = ĤD, ˆ̃H2 = ˆ̃H5 = P̂x̄ĤDP̂x and ˆ̃H3 =
ˆ̃H4 = P̂x̄P̂yĤDP̂ȳP̂x. Here, the unitary transforma-

tion P̂x results from a fast global π/2-pulse witch gen-

erates rotations around the x-direction, i. e. P̂x =
⊗nq−1

k=0 exp(−iσ̂k
xπ/4) = P̂ †

x . As a consequence, in
zeroth-order average Hamiltonian theory (AHT) [6] the

time-averaged Hamiltonian vanishes, i. e.

Ĥ
(0)

D =
1

6

6
∑

j=1

ˆ̃Hj = 0. (3)

Due to the time reversal symmetry of the WHH-4 pulse

sequence, i. e. ˆ̃H(t) = ˆ̃H(Tc − t), in AHT all odd higher-

order Hamiltonians vanish, i. e. Ĥ
(2n+1)

D = 0 for n ∈ N0.

If these nuclear spins are used as qubits of a quantum
information processor one also has to implement univer-
sal sets of unitary quantum gates. In particular, one
needs to be able to implement two-qubit entanglement
gates, such as controlled phase gates. This can be accom-
plished by recoupling qubits selectively with the help of a
Super-WHH pulse sequence as proposed in Ref. [1]. Such
a Super-WHH sequence recoupling qubits k and l consists
of three WHH-4 sequences applied to the toggled Hamil-

tonians ˆ̃Hkl
zz = σ̂k

z σ̂l
zĤDσ̂k

z σ̂l
z ,

ˆ̃Hkl
xy = σ̂k

xσ̂l
yĤDσ̂k

x σ̂l
y, and

ˆ̃Hkl
yx = σ̂k

y σ̂l
xĤDσ̂k

y σ̂l
x, respectively. Correspondingly,

there are 18 time periods of duration τ during which the
time evolution is described by the double-toggled Hamil-

tonians
ˆ̃̃
H1 = ˆ̃Hkl

zz,
ˆ̃̃
H2 = P̂x̄

ˆ̃Hkl
zzP̂x, etc.. The appro-

priate WHH-4 pulse sequence of the ˆ̃Hkl
xy Hamiltonian,

for example, is illustrated in Fig. 1, where free evolution

denotes the time evolution according to the Hamiltonian
ĤD over a time interval of duration τ . The quantum
gates resulting from these WHH-4 sequences are denoted
by Ŵ kl

xy, Ŵ kl
zz , and Ŵ kl

yx, respectively . The Super-WHH
sequence is finally obtained from a combination of these
latter quantum gates preceeded by the corresponding
time reversed sequence (compare with the inner part of
Fig. 2). As a consequence [1], this Super-WHH sequence
yields the zeroth-order time-averaged Hamiltonian

Ĥ
(0)

D =
1

36

36
∑

j=1

ˆ̃̃
Hj = J

(0)
kl

(

σ̂k
x σ̂l

x + σ̂k
y σ̂l

y + σ̂k
z σ̂l

z

)

(4)

with the renormalized zeroth-order recoupling strength

J
(0)
kl = (Jkl/4)× (8/9). Due to the time reversal symme-

try of the Super-WHH sequence, in AHT all odd-valued
higher order recoupled Hamiltonians vanish, i. e. i. e.

Ĥ
(2n+1)

D = 0 for n ∈ N0 .
With the help of the zeroth-order recoupled Hamilto-

nian Ĥ
(0)

D of Eq. (4) one can approximate unitary two-
qubit quantum gates of the form

Ûkl
φ = exp

(

−i(σ̂k
xσ̂l

x + σ̂k
y σ̂l

y + σ̂k
z σ̂l

z)φ
)

. (5)

Thereby, for a particular value of the phase φ one has
to adjust the time τ between two successive pulses of a
WHH-4 sequence and the number of times nswhh a Super-
WHH sequence has to be applied according to the rela-
tion

J
(0)
kl · nswhh36τ/~ = φ (6)
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FIG. 1: Schematic representation of the unitary Ŵ kl
xy quantum gate acting on qubits k and l: Free evolution indicates time

evolution according to the Hamiltonian ĤD over a time interval of duration τ .
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Super − WHH

FIG. 2: Schematic representation of a conditional two-qubit gate (Ûφ-gate) obtained by recoupling qubits k and l according to

Eq. (5): The Ŵ ∗ gates are obtained by reversing the order of the broadband pulses suppressing the Zeeman term. Residual
second-order terms of AHT can be eliminated by the restricted randomization step accomplished by random selective π-pulses
σ̂ri,j

. Thereby ri,k has to be equal to ri,l to ensure that the wanted gate action is not disturbed. Still remaining terms are

symmetrized by random π/2-pulses R̂αi
(π/2) = exp

(

−iσ̂αi
π/4

)

, αi ∈ {x, y, z}. Either condition (6) or condition (14) has to
be fulfilled depending on whether the original Super-WHH or the symmetrized Super-WHH sequence is used.

(compare with Fig. 2). However, because of the residual
higher-order interactions which have not been canceled

by the Super-WHH pulse sequence this implementation
of a two-qubit quantum gate gate is only approximate.

The error resulting from these residual higher-order interactions is dominated by the second-order term of AHT
which is generally given by [15]

Ĥ
(2)

= −
1

6Tc

∫ Tc

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1

(

[Ĥ(t3), [Ĥ(t2), Ĥ(t1)]] + [[Ĥ(t3), Ĥ(t2)], Ĥ(t1)]
)

/~
2 (7)

for an arbitrary time-dependent Hamiltonian Ĥ(t). In the case of the Super-WHH sequence we have Ĥ(t) = ˜̃Hj if
(j−1)τ < t < jτ and Tc = 36τ . Therefore, according to AHT the lowest-order correction to the recoupled Hamiltonian



4

of Eq. (4) is given by

Ĥ
(2)

D =

6=k,l
∑

a

[

σ̂k
xσ̂l

x

(

−322J2
alJak + 446J2

akJal + 3628JalJakJkl − 2906J2
akJkl − 1370J2

alJkl

)

+

σ̂k
y σ̂l

y

(

+308J2
alJak + 308J2

akJal + 3208JalJakJkl − 2588J2
akJkl − 2588J2

alJkl

)

+

σ̂k
z σ̂l

z

(

+446J2
alJak − 322J2

akJal + 3580JalJakJkl − 1922J2
akJkl − 3458J2

alJkl

)]

τ2/(~2 · 1728) + . . . .

(8)

Thereby, only terms of the form σ̂k
ασ̂l

β ≡ 1⊗· · ·⊗1⊗ σ̂k
α⊗1⊗· · ·⊗1⊗ σ̂l

β ⊗1⊗· · ·⊗1, (α, β ∈ {x, y, z}) are indicated
as all other terms are irrelevant for our subsequent discussion.

As a consequence, the Hamiltonian resulting from recou-
pling of qubits k and l by a Super-WHH sequence is of
the form

Ĥkl′

R = J
(0)
kl

(

σ̂k
xσ̂l

x + σ̂k
y σ̂l

y + σ̂k
z σ̂l

z

)

+O
(

J(Jτ/~)2
)

. (9)

To estimate the resulting error affecting the unitary
gate Ûkl′

φ generated by Ĥkl′

R we have to multiply the

O
(

J(Jτ/~)2
)

term of (9) by the duration nswhh36τ of
this quantum gate. Using condition (6) we see that for a
fixed value of the phase φ the resulting error depends on
nswhh according to J3τ2 · nswhh36τ/~ ∼ φ3/(36nswhh)

2.
Therefore, the resulting contribution to the fidelity fU ′

φ

of any quantum state |Ψ〉 is given by

fU ′

φ
= 〈Ψ|Û †

φÛ ′
φ|Ψ〉 = 1 −O(φ6/(36nswhh)

4). (10)

B. Randomization and selective recoupling

The residual interaction described by the Hamiltonian
(8) can be suppressed significantly by embedding the re-
coupling scheme of Sec. II A into a stochastic decoupling
scheme, such as the recently proposed PAREC scheme
[2]. For this purpose we choose at random an nq-fold ten-
sor product of Pauli-matrices σ̂ri,0

⊗ σ̂ri,1
⊗ · · · ⊗ σ̂ri,nq−1

(r ∈ {0, x, y, z}, σ̂0 ≡ 1̂) and apply it before and after the
i-th Super-WHH sequence. This way each deterministic
Super-WHH sequence is embedded within two statisti-
cally independent random Pauli operations. In contrast
to a usual dynamical decoupling scenario [2] in our case
we have to choose the Pauli-matrices in such a way that

they leave the ideally recoupled gate Hamiltonian Ĥ
(0)

D

of Eq. (4) invariant. This can be achieved by impos-
ing the restriction that the randomly chosen statistically
independent Pauli spin operators have to be identical
for qubits k and l for each Super-WHH sequence, i. e.
σ̂ri,k

= σ̂ri,l
. This restriction assures that terms of the

form σ̂k
ασ̂l

α in Ĥkl′

R remain invariant (compare with Fig.

2). Since Ĥ
(2)

D contains no terms of the form σ̂k
ασ̂l

β with

α 6= β (compare with Eq. (8)) the Pauli-matrices for
qubits k and l can always be omitted, i. e. chosen to be
the identity, ri,k = ri,l = 0.

The only terms of the Hamiltonian Ĥ
(2)

D which cannot
be eliminated by this constrained randomization method
are the ones containing terms of the form σ̂k

ασ̂l
α (α ∈

{x, y, z}) which are shown in Eq. (8). However, by an
additional symmetrization these terms can be made rota-
tionally invariant so that they can be cast into the form of
Eq. (4). Thus, for a given value of φ these terms lead to a
renormalization of the values of the required gate param-
eters τ and nswhh. This rotational symmetrization can
be achieved by selective π/2-pulses which induce unitary

transformations of the form R̂α(ϕ) = exp(−iσ̂α/2 · ϕ)
with α ∈ {x, y, z}. For this purpose one chooses one of

the three unitary transformations R̂k
αi

(π/2)R̂l
αi

(π/2) act-
ing on qubits k and l randomly and applies it before and
the corresponding inverse transformation after the i-th
Super-WHH sequence (compare with Fig. 2). This way
the coefficients of the σ̂k

ασ̂l
α-terms are permuted in the

relevant toggled Hamiltonians. As a consequence one ob-
tains the statistically and rotationally averaged second-
order contribution

ˆ
H

(2)

D =
(

σ̂k
x σ̂l

x + σ̂k
y σ̂l

y + σ̂k
z σ̂l

z

)

J
(2)
kl τ2/~

2 (11)

with

J
(2)
kl =

6=k,l
∑

a

( 1

12
(J2

alJak + J2
akJal)

+
217

108
JalJakJkl −

103

72
(J2

akJkl + J2
alJkl)

)

. (12)

By this combined randomization and symmetrization
method the improved recoupled Hamiltonian

Ĥkl′′

R =
(

J
(0)
kl + J

(2)
kl (τ/~)2 + O

(

J(Jτ/~)4
)

)

·
(

σ̂k
x σ̂l

x + σ̂k
y σ̂l

y + σ̂k
z σ̂l

z

)

(13)

is obtained. In contrast to Eq. (9), now the effective re-
coupling strength is renormalized and the residual error
is suppressed up to fourth-order in the small coupling
parameter Jτ/~ ≪ 1. Thus, in order to implement a

Ûφ-gate, for example, we now have to choose the renor-
malized characteristic parameter τ ′ in such a way that
the condition

(

J
(0)
kl + J

(2)
kl (τ ′/~)2

)

nswhh36τ ′ = φ (14)
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is fulfilled. As a result, in general the required time of
free evolution τ ′ depends on the chosen qubit pair (k, l).

III. ERROR ANALYSIS OF A DYNAMICALLY

DECOUPLED Ûφ-GATE

In this section the stabilizing properties of selective re-
coupling by the embedded dynamical decoupling method
of Sec. II B is investigated for a unitary phase gate as de-
scribed by Eq. (5). As shown in Eq. (10) the fidelity of

a unitary phase gate Ûφ which is realized by recoupling
of qubits k and l with the help of the average Hamilto-
nian of Eq. (9) deviates from unity by terms of the or-
der of O

(

φ6/(36nswhh)
4
)

. Thereby, nswhh and τ denote
the number of required iterations of the Super-WHH se-
quence and the time required for the intermediate free
evolution as determined by relation (6), respectively.

In order to estimate the improvement achievable with
the help of the embedded recoupling scheme of Sec. II B
we start from the observation that in the case of a time
independent Hamiltonian Ĥ a rigorous lower bound of
the mean fidelity Ef(T ) of a stochastic dynamical de-
coupling scheme is given by [4, 5]

Ef(T ) ≥ 1 − ‖Ĥ‖2∆tT/~
2 (15)

for ‖Ĥ‖2∆tT/~
2 ≪ 1. Thereby, the norm of the Hamil-

tonian ‖Ĥ‖ is defined by its largest eigenvalue, ∆t is
the time interval between successively applied uncorre-
lated random pulses, E denotes statistical averaging, and
T is the interaction time. This result can be used to
estimate the mean error bound of the fidelity of the cor-
responding embedded decoupling scheme in which the
recoupling procedure leading to the Hamiltonian (9) is
embedded into statistically independent random Pauli
operations. For this purpose we make the replacements
O

(

‖Ĥ‖
)

→ J(Jτ/~)2, ∆t → 36τ , T → nswhh36τ . From
relation (6) we obtain the mean error estimate of the
fidelity to be of the order of O

(

φ6/(364n5
swhh)

)

.

In Fig. 3 (bottom) the mean fidelity fSwap of a uni-

tary Ûπ/4-gate and its dependence on the number of per-
formed Super-WHH sequences nswhh is depicted. In these
numerical simulations this unitary quantum gate is real-
ized by recoupling of the two central qubits of a linear
four-qubit chain. Apart from an irrelevant global phase
this unitary Ûπ/4-gate is nothing but a Swap-gate (com-
pare with Fig. 4). The mean fidelity of Fig. 3 was ob-
tained by averaging over all 24 orthonormal initial states
of the computational basis. The statistical averaging was
performed over 100 runs with statistically independent
realizations of the random pulses involved. The coupling
strength is assumed to be constant for adjacent qubits
and to be vanishing between all other qubits (compare
with Fig. 3 (top). Fig. 3 (bottom) demonstrates that
the fidelity (diamonds) resulting from non-randomized
Super-WHH pulse sequences can be fitted well by a func-
tion of the form exp(−c/n4

swhh) with c ≈ 0.20. This is

3 2 1 0
JJJ

10−7

10−6

10−5

10−4

10−3

10−2

10−1

20101

−
ln

f
S
w
a
p

nswhh

original scheme
randomization only
rand. and symmetr.

FIG. 3: The fidelity (bottom) of the Û12
π/4-gate on a lin-

ear four-qubit chain (top) as a function of the number
of repetitions nswhh of the Super-WHH scheme: original
Super-WHH sequence (diamonds), unsymmetrized embedded
scheme (circles), and symmetrized embedded scheme with
adapted pulse interval τ ′ according to Eq. (14) (squares).
The solid lines represent the fitting functions exp(−c/n4

swhh)
and exp(−crs/n5

swhh) with c = 0.2 and crs = 0.41.

consistent with the simple estimate (10). Using a recou-
pling scheme based on the symmetrized embedded proce-
dure discussed in Sec. II B while choosing τ according to
the modified condition (14), we notice that the resulting
fidelity (squares) is fitted well by a function of the form
exp(−crs/n5

swhh) with crs ≈ 0.41. If symmetrization is
omitted an intermediate behavior is obtained (circles).

IV. NUMERICAL SIMULATION OF A

QUANTUM ALGORITHM

In this section the question is explored how much can
be gained by stabilizing an iterative quantum algorithm
by the embedded recoupling scheme of Sec. II B.

A. Quantum computation with the Ûφ gate

For purposes of quantum computation one needs to
know how to perform two-qubit entanglement gates, such
as the controlled-not-gate (CNot-gate) or the controlled-
phase-gate (CP (ϕ)-gate), on the basis of the recoupled

Hamiltonian Ĥkl′

R . Definitely, such quantum gates can be
performed only between qubits k and l which are coupled,
i. e. for which Jkl 6= 0. Therfore, in order to be able to
entangle any two qubits of a quantum computer it is nec-
essary to swap qubit pairs with vanishing coupling con-
stants to neighboring positions. Fortunately, such a uni-
tary swapping gate can be realized easily by the unitary
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= ei π
4 · Ûπ/8 Ûπ/8 = ei 3

4
π·

R̂y(π
2 )

R̂-x(π
2 )

Ûπ/8

R̂x(π)

Ûπ/8

R̂x(π
2 ) R̂-y(π

2 )

ϕ

= −ei ϕ
4 ·

R̂x(π
2 )

Ûπ/8

R̂y(π)

Ûπ/8

R̂x(π)

R̂x(ϕ
2 )

Ûπ/8

R̂y(π)

Ûπ/8

R̂y(ϕ
2 ) R̂x(π

2 )

R̂-x(π
2 ) R̂y(ϕ

2 ) R̂x(π
2 )

FIG. 4: Quantum gates of the Swap, CNot, and controlled-phase gate (CP (ϕ)): R̂±α(ϕ) = exp(∓iσ̂α/2 · ϕ), α ∈ {x, y, z}.

6 7 8

3 4 5

0 1 2
J

J

J
· 2 −

3/2

J
· 2

−3/
2

(k, l) J
(2)
kl /J3

{(0, 1), (1, 2), − 923
192

(6, 7), (7, 8), + 113

54
√

2

(0, 3), (3, 6),

(2, 5), (5, 8)}

{(1, 4), (4, 7), − 2357
288

(3, 4), (4, 5)} + 113

27
√

2

FIG. 5: Left : The qubits of the nine-qubit quantum informa-
tion processor are arranged on a lattice. The lines connecting
qubits i and j indicate the values of the coupling constants
Jij ; right : The table shows the two different values of the

coupling constants J
(2)
kl for each qubit pair (k, l).

phase gate of Eq. (5) because Swapkl ≡ Ûkl
π/4. Through-

out the rest of this paper we will use the quantum phase
gate Ûkl

π/8 as a basic building block for all two-qubit quan-

tum gates. Thus, the quantum Swapkl-gate consists of
the repeated application of two such gates. For the real-
ization of other two-qubit quantum gates repeated appli-
cations of this Ûπ/8-gate in combination with single-qubit
gates are required. In Fig. 4 basic gate decompositions
are depicted for the CNot-gate, the CP (ϕ), and for the
Swap-gate. These decompositions will be used in the next
section for the simulation of a quantum algorithm. The
Ûπ/8-gate itself can be generated approximately either by
repeated application of the original or of the randomized
Super-WHH recoupling sequence using either condition
(6) or relation (14) for the determination of the free evo-
lution time τ between successive fast pulses.

B. Lattice model of a quantum computer

For the subsequent numerical simulations of a quan-
tum algorithm we consider a quantum information pro-
cessor consisting of nq = 9 qubits which are arranged on
a lattice as indicated in Fig. 5. The coupling constants
of vertical or horizontal qubit pairs are assumed to be

equal while the coupling constants of diagonal neighbors
are smaller by a factor of 2−3/2 due to the larger distance
between them. Non-neighboring qubits are assumed to
be uncoupled. According to relation (14) this implies
that in the embedded recoupling scheme two different
time intervals τ are required for the free evolutions. The

values of the coupling strengths J
(2)
kl for the 9-qubit lat-

tice used in our subsequent simulation are apparent from
the table of Fig. 5.

In the following it is assumed that a quantum algo-
rithm is performed on this quantum information proces-
sor according to the following rules:

1. Single-qubit gates are performed instantaneously
and perfectly.

2. Two-qubit gates between vertical or horizontal
neighboring qubits are performed by repeated ap-
plications of the unitary Ûπ/8-gate of Sec. IVA in
combination with single-qubit gates as illustrated
in Fig. 4. The Ûπ/8-gate itself is generated by
applying Super-WHH sequences nswhh times as in-
dicated in Fig. 2.

3. If the target qubits of a two-qubit gate are not ver-
tical or horizontal neighbors they are moved into
such positions by applying a sequence of Swap-gates
according to the following simple strategy [17]: If
the vertical position of the qubits is the same, move
the lower qubit to the upper one. Otherwise, move
the lower one to the same horizontal position and
afterwards move the left one as far as necessary to
the right.

4. A Super-WHH sequence is always applied in such
a way that the qubit whose physical position has
the smaller label (compare with Fig. 5) is qubit

k in Ŵ kl
xy, i. e. it is transformed by the σ̂x trans-

formations. The gate sequence of the CP (ϕ)-gate
(compare with Fig. 4) is applied in such a way that
the first single-qubit gate is applied always to the
qubit with the smaller label.
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C. The Quantum Algorithm

In order to investigate the stabilizing properties of the
embedded recoupling scheme the quantum algorithm of
the quantum sawtooth map [13] is simulated according
to the rules of Sec. IVB. One iteration of the quantum
sawtooth map transforms an initial nq-qubit quantum
state |Ψ〉 to the quantum state

|Ψ〉′ = e−iT p̂2/2e−ikV̂ (θ̂)/2|Ψ〉 (16)

with the sawtooth potential V (θ) = (θ−π)2 (0 ≤ θ < 2π)
and the (dimensionless) momentum operator p̂. Initially
the nine-qubit quantum information processor is pre-
pared in the momentum eigenstate |Ψ〉 = |100110011〉.
The (dimensionless) parameters of the sawtooth map
are assumed to have the same values as in the previ-
ous simulations of Ref. [16], i. e. T = 2π/2nq and
K ≡ kT = −0.5. Therefore, in Husimi-distributions,
such as the ones presented in Fig. 8, the dynamics of
the sawtooth map is restricted to a phase-space cell of
size 2π×2π and its corresponding classical dynamics are
integrable. In these Husimi-distributions the initial state
corresponds to a horizontal line slightly above the middle.

Our gate decomposition of the quantum algorithm of
this sawtooth map consists of ng = 2n2

q + 2nq quantum
gates. It differs slightly from the gate decomposition of
Ref. [13] since we are using the CP (ϕ)-gate instead of
the four-phases phase gate of Ref. [13]. In particular,
[2 · nq(nq + 1)/2] quantum gates originate from the two
quantum Fourier transforms after which the inversion of
the qubit positions is taken care of by relabeling instead
of swapping.

D. Numerical Results

In Figs. 6,7, and 8 results of our numerical simulations
of the fidelity

f(t) = |〈Ψ(t)|Ψideal(t)〉|
2 (17)

are presented for different numbers of repetitions nswhh ∈
{5, 6, . . . , 10, 16} of the Super-WHH sequences. For each
value of nswhh we calculated the fidelity of the quan-
tum state |Ψ(t)〉 of the quantum sawtooth map for up to
t = 300 iterations as well as the corresponding Husimi-
distributions.

The quadratic-in-time fidelity decay of the non-
randomized recoupling scheme is clearly apparent from
Figs. 6 and 7. (The corresponding fidelities are plotted
in black color). This decay is caused by the coherent ac-
cumulation of errors due to the second-order AHT-term
of the Super-WHH sequences involved in the realization
of the unitary Ûπ/8-gate [12]. The t-dependence of the
fidelity can be fitted by the function

f(t) = exp
(

−c · t2/n4
swhh

)

(18)

50 100 150 200 250 300
Number of Iterations t

0.2

0.4

0.6

0.8

1

f
H
t
L

nswhh=85,6,7,8,9,10,
16<

50 100 150 200 250 300
Number of Iterations t

0.8

0.9

1

f
H
t
L

nswhh=88,9,10<

FIG. 6: Upper plot: Fidelity plots of the quantum saw-
tooth map implemented with the original recoupling scheme
of Yamaguchi et al.[1] (black) and the corresponding plots of
the symmetrized embedded recoupling scheme (red): Dashed
curves show the fidelity estimations according to Eqs. (18)
and (19). Lower plot: Fidelity plots of the restricted random-
ized (blue) and of the symmetrized (red) embedded recoupling
scheme.

1 2 3 4 5 6
lnHtL
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H
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H
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H
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L
L
L

nswhh=5

1 2 3 4 5 6
lnHtL

-8

-6

-4

-2

0

2

l
n
H
-
l
n
H
f
H
t
L
L
L

nswhh=10

FIG. 7: Logarithmic fidelity plots of the quantum sawtooth
map with nswhh = 5 (left) and nswhh = 10 (right): the original
Yamaguchi et al.[1] scheme (black), the restricted but unsym-
metrized embedded approach (blue), and the restricted and
symmetrized embedded scheme (red).

with c ≈ 0.87 (compare with the seven lowest dashed
lines of the upper picture of Fig. 6). According to Ref.
[12] there should also be a linear contribution in the ex-
ponent of (18) which dominates the fidelity decay for
small numbers of iterations. Neglecting this linear con-
tribution is the reason for the slightly imperfect overlap
of our fitted fidelities with the corresponding numerical
results.

Simulations based on the restricted embedded recou-
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nswhh = 6 nswhh = 8 nswhh = 10

FIG. 8: Husimi-distributions of the quantum states resulting
from the quantum sawtooth map: (Upper row) The origi-
nal scheme of Yamaguchi et al.[1], (Middle row) the embed-
ded but unsymmetrized approach, (Lower row) the embedded

and symmetrized scheme. The Ûπ/8-gates used in the com-
putations consist of nswhh = {6, 8, 10} Super-WHH sequences
(from left to right). These distributions are averaged over
290 ≤ t ≤ 299 numbers t of iterations of the sawtooth map.

pling scheme without symmetrization are shown in Fig.
6 (lower part, blue plots) and Fig. 7 (blue plots). The
fidelity decay is suppressed significantly but on the time
scale of these plots it is still quadratic in time. This orig-
inates from the fact that terms of the Hamiltonian of Eq.
(8) of the form σ̂k

ασ̂l
α, α ∈ {x, y, z}, are not eliminated

by the PAREC method without symmetrization.
Using the randomized and symmetrized Super-WHH

sequence together with the appropriately chosen free evo-
lution times (compare with Eq. (14)) it is possible to get
an almost linear-in-time fidelity decay at least on time
scales where errors of the order of O

(

J(Jτ/~)4
)

are neg-
ligible (compare with Figs. 6 and 7 (red plots)). In these
cases the fidelity decay can be fitted by the function

f(t) = exp
(

−crs · t/n5
swhh

)

(19)

with crs ≈ 7.85 (compare with the six upper dashed lines
of the upper picture of Fig. 6 which are almost indistin-
guishable from the corresponding full curves).

V. CONCLUSIONS

We showed how a selective recoupling scheme can be
embedded into a stochastic decoupling scheme in such a

way that a particularly selected coupling is achieved and
that, in addition, the coherent accumulation of higher-
order errors is suppressed significantly. Even if compu-
tation times of a quantum information processor are so
long that the residual higher-order interaction term of
Eq. (13) of the order or O

(

J(Jτ/~)4
)

is no longer negligi-
ble, it is possible to suppress also these errors significantly
by a suitable adjustment of the free evolution time τ in-
volved in the realization of the relevant two-qubit gates
(Ûφ-gates). In generalization of the procedure discussed
in Sec. II B (compare with Eq. (14)) this can be achieved
either by explicitly calculating the fourth-order contribu-
tion of AHT and by solving the corresponding implicit
equation of fifth order for τ involving renormalized cou-
pling strengths or, alternatively, adjusting the value of τ
so that the resulting fidelity decay is as small as possible.

Basic properties of our embedded stabilization scheme
were analyzed for a single two-qubit gate. In particular,
it was demonstrated that our proposed embedded sym-
metrized recoupling scheme results in an improvement of
the scaling of the error of a swapping gate with n−5

swhh

instead of n−4
swhh. Thereby, nswhh denotes the number of

repetitions of an embedded Super-WHH sequence which
are required for the realization of the phase gate. There-
fore, in our embedded recoupling scheme fewer numbers
of repetitions of Super-WHH sequences are necessary for
achieving a particular degree of error suppression. Typ-
ically, this also implies fewer pulses which are required
for performing a quantum computation with a particular
error tolerance. This aspect is apparent from the upper
plot of Fig. 6 where at t ≈ 70 iterations the fidelity of the
original recoupling scheme with nswhh = 16 is the same as
the one of the embedded symmetrized recoupling scheme
with nswhh = 6.

Finally, we want to address briefly the additional phase
shifts each selective pulse is accompanied by in any re-
coupling scheme. These phase shifts (compare, e. g., with
Eq. (24) of Ref. [1]) originate from the transformation
from the interaction picture to the Schrödinger picture. If
necessary, such a phase shift can be eliminated by letting
the system evolve freely after the application of a selec-
tive pulse for the same amount of time thereby embed-
ding this additional time evolution between two broad-
band π pulses. This way an additional phase shift with
the opposite sign is generated.
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