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Abstract. The influence of imperfections on achievable secret-key generation rates of quantum key dis-
tribution protocols is investigated. As examples of relevant imperfections, we consider tagging of Alice’s
qubits and dark counts at Bob’s detectors, while we focus on a powerful eavesdropping strategy which takes
full advantage of tagged signals. It is demonstrated that error correction and privacy amplification based
on a combination of a two-way classical communication protocol and asymmetric Calderbank-Shor-Steane
codes may significantly postpone the disastrous influence of dark counts. As a result, the distances are
increased considerably over which a secret key can be distributed in optical fibres reliably. Results are
presented for the four-state, the six-state, and the decoy-state protocols.

PACS. 03.67.Dd Quantum cryptography – 03.67.Hk Quantum communication

QICS. 20. Quantum communication – 22.10.+k High key rates – 23.10.+l Limits for shared entanglement

1 Introduction

The unconditional security of the four-state [1] and the
six-state [2] quantum-key-distribution (QKD) protocols
has been addressed by many authors (see e.g., [3–6]). Al-
though such security proofs allow for the most general
eavesdropping attacks consistent with quantum theory
(so-called coherent or joint attacks), they impose certain
constraints on possible imperfections in the source and
the detectors used in the protocol by the two legitimate
users (Alice and Bob). One way to deal with such imper-
fections is to absorb their effect into the attack employed
by a potential eavesdropper (Eve). In this spirit, most of
the security proofs assume that any flaws due to imperfec-
tions in the source and/or the detectors do not depend on
the bases used in the protocol i.e., they do not reveal any
information about the basis-choice to Eve. Unfortunately,
such security proofs are not directly applicable to practical
implementations of the protocols as typical imperfections
can be basis-dependent [7].

In particular, due to the lack of efficient single-photon
sources, most of the current realizations of QKD protocols
use as information carriers weak coherent pulses (WCPs),
with a sufficiently low probability of containing more than
one photon [9]. Multiphoton pulses, however, threaten the
security of the QKD protocols as they can be exploited
cleverly by Eve to gain perfect information about part of
the exchanged random key without being detected [10,11].
To this end, she may launch the so-called photon-number-
splitting (PNS) attack which, after the announcement of
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the bases used during preparation, enables her to obtain
full information about the bit encoded in each of the mul-
tiphoton pulses [10,11]. In that respect, each multipho-
ton signal can be viewed as a tagged signal (qubit) which
will yield its complete information to Eve without intro-
ducing detectable errors in the sifted key. Finally, even
today’s available single-photon detectors are not ideal [9].
At telecommunication wavelengths, for example, detection
efficiencies are typically much smaller than unity while
high dark-count rates severely limit the maximum dis-
tances over which a secret random key can be distributed
by means of optical fibers [9–12].

In an effort to bring unconditional security proofs
closer to practical QKD implementations, recent proofs
relax the assumption about basis-independent eavesdrop-
ping [8,13]. In this context, Gottesman, Lo, Lütkenhaus,
and Preskill (GLLP) derived a general expression for the
asymptotically achievable secret-key generation rate for
the four-state protocol, under the assumption of weakly
basis-dependent eavesdropping attacks [8]. Among many
types of imperfections, the GLLP unconditional security
proof takes into account possible tagging at Alice’s source.
From the technical point of view, the GLLP investiga-
tion concentrates on CSS-based post-processing i.e., error
correction and privacy amplification protocols involving
one-way classical communication only and whose achiev-
able secret-key rates result from random encoding and
decoding by asymmetric Calderbank-Shor-Steane (CSS)
quantum codes [14]. In fact the security is first estab-
lished in the framework of an associated protocol based
on a CSS-like one-way entanglement purification protocol
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(see definition 4 of Ref. [15]), which is mathematically
equivalent to CSS quantum codes [16]. Subsequently, the
entanglement-based protocol is reduced to the standard
four-state prepare-and-measure scheme without compro-
mising security.

Motivated by these results, in this paper we investi-
gate to which extent maximum achievable distances of
secret-key distribution in the presence of imperfections,
can be increased by additional use of an error-rejection
procedure involving two-way classical communication. For
this purpose we concentrate on the aforementioned types
of experimentally relevant imperfections namely, tagging
of qubits at Alice’s source, dark counts, low efficiency of
Bob’s detectors and losses in the quantum channel con-
necting them. As a particular example of an error-rejection
procedure we adopt the so-called B-steps of the recently
proposed two-way post-processing protocol of Gottesman
and Lo [15]. In our subsequent investigation we discuss
the four-state, the six-state, and the decoy-state [17,18]
QKD protocols. As a main result it will be demonstrated
that with the help of a succession of B-steps followed by
a CSS-based post-processing, the achievable distances of
secret-key generation in optical fibers can be enhanced
significantly.

This paper is organized as follows: in Section 2, we
briefly recapitulate basic facts about practical QKD im-
plementations and highlight the main (disastrous) effect
of dark counts on the rates for secret-key generation. In
Section 3 we discuss the quantum state of Alice and Bob
after a powerful eavesdropping attack which takes into
account tagged signals, losses and dark counts at Bob’s
detection unit. In Section 4 the influence of B-steps onto
this quantum state and its resulting secret-key generation
rate is investigated. For this latter purpose we focus on a
post-processing protocol combining B-steps and asymmet-
ric CSS codes. The degree to which such a post-processing
can suppress the disastrous effect of dark counts on the
rates for secret-key generation is investigated numerically.

2 Practical QKD implementations

In this section, for the sake of completeness, we briefly
summarize basic facts about practical QKD, which are
essential for the subsequent discussion. In particular, we
establish a model for possible imperfections in practical
implementations of the four- and the six-state QKD pro-
tocols, and discuss asymptotic secret-key generation rates.

2.1 Ideal QKD protocols

Let us start with a summary of the ideal prepare-and-
measure four-state and six-state QKD protocols, which
typically involve three stages. In the distribution stage,
Alice encodes her random bit-string in a random sequence
of non-orthogonal signal states (e.g., polarized single pho-
tons). Such a preparation involves two mutually unbiased
bases (MUBs) in the four-state protocol and three in the

fully symmetric six-state protocol. A first raw key is estab-
lished when Bob measures each received signal at random
in one of the possible bases and registers his outcomes.
In the sifting stage, Alice and Bob reject all (ideally half
for BB84 and 2/3 for the six-state protocol) bits originated
from measurements in bases different from the preparation
ones. Finally, Alice and Bob post-process this sifted key to
distill a secret key. The post-processing stage typically in-
volves error-correction and privacy amplification.

Following [8,15], throughout this work we adopt the
equivalent entanglement-based versions of the prepare-
and-measure schemes [19,20], based on a two-way CSS-like
entanglement purification protocol (EPP). Let us start
by recapitulating briefly the main steps involved in them.
Alice prepares N qubit-pairs in the Bell state |Φ+〉⊗N [21],
where |Φ+〉 = (|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)/

√
2 is a simul-

taneous eigenstate of the two Pauli operators XA ⊗ XB

and ZA ⊗ ZB, where Z = |0〉〈0| − |1〉〈1| and X =
|0〉〈1| + |1〉〈0| . She keeps half of each pair (denoted by
A) and sends the other half (denoted by B) to Bob in one
of the, say β, possible MUBs. In other words she applies
a random rotation Rb

B, where the random variable b ∈
{0, . . . , β} [15]. From now on, we refer to the eigenstates of
Z, i.e. { |0〉, |1〉}, as the Z-basis (computational basis). As
is well known, the two MUBs (β = 2) involved in the four-
state protocol [1] are related via the Hadamard transfor-
mation H =

∑
i,j(−1)ij |i〉〈j| /

√
2 where i, j ∈ {0, 1} [15,

22], while the three MUBs (β = 3) of the six-state proto-
col [2] are related via successive actions of the unitary
operator T =

∑
j

[
|j〉〈0| − i(−1)j |j〉〈1|

]
/
√

2 [15,22].
Hence, in the former case RB = HB whereas in the latter
RB = TB.

After Bob has received all the transmitted qubits,
Alice announces the sequence of rotations she performed
and Bob undoes all of them. Subsequently Alice and Bob
randomly permute their qubit-pairs so that their result-
ing N -pair quantum state becomes permutation invariant.
They select a random subset of their pairs and they mea-
sure each one of them along the Z-basis, to estimate the
qubit error probability δ of the residual qubit-pairs [22]. If
δ exceeds a certain threshold, secret-key distillation can-
not be guaranteed and the protocol is aborted. Other-
wise, Alice and Bob perform a two-way CSS-like EPP to
extract pure (high-fidelity) entangled pairs, which they
measure along the Z-basis to obtain the final secret key.
Most importantly, if the applied two-way CSS-like EPP
(such as the one considered in the subsequent discussion)
fulfills the requirements of theorem 6 in reference [15], the
entanglement-based protocol can be reduced to a prepare-
and-measure scheme without compromising the security.
The results we are going to present therefore also apply
to the corresponding prepare-and-measure schemes.

2.2 A model for imperfections and losses

Typical QKD implementations deviate from the ideal pro-
tocols mainly in two respects: the signal sources are not
ideal and the link (channel and detectors) between the
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two legitimate users is lossy and noisy. The model we
adopt throughout this work for the description of such
imperfections has been discussed thoroughly in the litera-
ture [9–12]. Here, for the sake of completeness, we briefly
summarize its main ingredients.

We consider an imperfect source which with probabil-
ity ptag produces tagged qubits (signals), in the sense that
Eve is capable of extracting from these qubits the infor-
mation which random rotation (basis) has been used by
Alice on them before their submission to Bob. Thus, Eve is
able to measure each one of these qubits in such a way that
she can unambiguously determine its quantum state with-
out disturbing it i.e., without introducing any detectable
errors. On the contrary, the remaining untagged (ideal)
qubits which are produced by our source with probability
1 − ptag, do not reveal any information to Eve and any
intervention of her (consistent with quantum mechanics)
affecting them will eventually introduce errors. Hence, the
overall bit-error rate estimated by Alice and Bob during
the verification test [23] is basically due to untagged qubits
only i.e., δ = (1 − ptag)δb,u, where δb,u is the probability
with which an untagged qubit contributes to the overall
bit-error rate. Given the symmetry between all the bases
used in the QKD protocols under consideration, we expect
for the corresponding phase-error probability δp,u = δb,u

i.e., δp,u = δ/(1 − ptag).
A practically relevant special case of tagging is the

signal sources currently used in various realistic set-ups,
which produce polarized phase-randomized WCPs [9–12].
In this case, the photon number distribution pi (i = 0,
1, ...) of each pulse is Poissonian, i.e. pi = exp (−µ)µi/i!
with µ denoting the mean photon-number in the pulse.
Alice, therefore, encodes each of her random bits in a po-
larized WCP which is sent to Bob. However, in addition
to single-photon pulses such a source may produce mul-
tiphoton pulses and in that respect it deviates from the
ideal single-photon source. More precisely, single-photons
are produced with probability p1 while multiphoton pulses
with probability ptag = 1 − p0 − p1. As will be explained
in detail later on, Eve can obtain full information on all
the bits encoded in multiphoton pulses by means of the
so-called PNS attack. For a source producing WCPs there-
fore, multiphoton and single-photon pulses can be viewed
as tagged and untagged qubits, respectively. Typically in
WCP-based QKD implementations µ is chosen sufficiently
small, so that the WCP source imitates an ideal single-
photon source as close as possible [9]. The limitations of
our model for the source will be discussed later on in Sec-
tion 5.

In addition to imperfect signal sources, realistic set-
ups involve imperfect quantum channels and detectors.
As a result, the raw-key rate Pexp (i.e., the probability
for a single detection event to occur at Bob’s site), is in
general distance-dependent and less than unity. More pre-
cisely, Pexp has contributions from both real signals ar-
riving at Bob’s detector and dark counts. In the adopted
model, and for the aforementioned WCP source, we expect
that actual signals trigger Bob’s detector with probabil-
ity P signal

exp = 1− exp(−µηcηdet), where ηc and ηdet denote

the transmission efficiency of the relevant quantum chan-
nel and the detection efficiency of Bob’s detector, respec-
tively. For QKD implementations at telecommunication
wavelengths [9], ηdet ∼ 0.1–0.2 and µ � 1 while the quan-
tum channels are optical fibers for which

ηc = 10−(αl+Lc)/10. (1)

Thereby, α denotes a polarization independent loss co-
efficient of the fiber, l is the length of the fiber,
and Lc characterizes a distance-independent loss of the
channel. Moreover, the total dark-count probability for
Bob’s detection unit involving two identical detectors is
P dark

exp ∼ 10−4–10−5. Hence, we typically have [9–12]

Pexp ≈ P signal
exp + P dark

exp = 1 − e−µηcηdet + P dark
exp . (2)

Clearly, for an ideal link involving a lossless quantum
channel and ideal detectors we have Pexp = 1 − e−µ.

The overall bit-error rate in the sifted key has also two
contributions and is modeled by [9–12]

δ = δopt + δdet =
δ0 P signal

exp + 1
2P dark

exp

Pexp
. (3)

The first contribution is independent of the transmission
distance and is a measure of the optical quality of the
whole set-up. In particular, the constant δ0 accounts for
possible alignment errors, polarization diffusion or fringe
visibility. The second contribution δdet, originates from
dark counts at Bob’s detectors, with the factor 1/2 indi-
cating that a dark count represents one of the two possible
random measurement results of Bob. Hence, an error will
be generated in half of the cases only. In the most pes-
simistic scenario usually adopted in security proofs, all
the error rate δ is attributed to Eve.

Finally, any imperfections, losses, and noise signifi-
cantly affect the fraction of tagged qubits arriving at Bob’s
site. In general, the new (effective) tagging probability ∆,
can be expressed in terms of the parameters character-
izing the channel, the source and the detectors. An up-
per bound on ∆, for example, may be obtained by the
following consideration, in the case of a photon source
emitting phase-averaged WCPs [10,11]. An eavesdropper,
Eve, with unlimited power may not only obtain perfect
information about all the classical bits originating from
multiphoton pulses but she may also increase the fraction
of these multiphoton pulses as much as possible without
affecting Bob’s expected click-rate probability. For this
purpose she can replace the lossy quantum channel by
a perfect one (i.e., ηc = 1) so that all multiphoton pulses
are transmitted perfectly. In order to keep Pexp constant
she has to block an appropriate number of single-photon
pulses. Thus, the maximum probability of tagged pulses
arriving at Bob’s detector, which Eve can have perfect
knowledge about, is given by [10,11]

∆ ≈ 1 − (1 + µ) exp (−µ)
Pexp

, (4)

while the corresponding probability for single-photon
pulses is given by (1 − ∆), so that they sum up to unity.
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2.3 Asymptotic secret-key generation rates

As shown by GLLP in reference [8], losses and weak basis-
dependent imperfections such as tagging do not render
any of the QKD protocols under consideration insecure,
but they affect the rates for secret-key generation. More
precisely, for one-way CSS-based post-processing it has
been shown that a secret key can be generated by Alice
and Bob with the asymptotic rate

RCSS =
Pexp

β
[1 − ∆ − H(δ) − (1 − ∆) H (δp,u)] , (5)

where H(x) := −x log2 x−(1−x) log2(1−x) is the binary
Shannon entropy.

Let us briefly analyze the quantities entering this ex-
pression. First of all, in the most pessimistic scenario, all
the errors detected by Alice and Bob during the verifi-
cation test are due to Eve’s intervention. Furthermore,
assuming that Eve has maximized the contribution of the
tagged qubits in the sifted key by replacing the lossy chan-
nel with a perfect one, the estimated bit-error rate ap-
pearing in (5) is now given by δ = (1 − ∆)δb,u, while the
phase-error probability for an untagged qubit reads

δp,u = δ/(1 − ∆), (6)

accordingly. The raw-key rate is given by (2), while the
factor 1/β accounts for the fraction of the raw bits pass-
ing the sifting procedure in a typical prepare-and-measure
scheme. Clearly, for the four-state (two-basis) QKD proto-
col we have β = 2, whereas for the six-state (three-basis)
protocol β = 3. Moreover, it has to be noted that for
post-processing procedures taking into account possible
correlations between bit-flip and phase error, the rate (5)
can be improved [5]. However, throughout this work we
adopt for both protocols the worst-case scenario which
corresponds to having no such correlations thus implying
zero mutual information between bit-flip and phase errors.

Typical behavior of the secret-key generation rate as
a function of the distance (i.e., the length of the opti-
cal fiber l) is depicted in Figure 1. Using equations (1–4)
and (6), we plot the rate RCSS (as determined by Eq. (5))
for the four- and the six-state QKD protocols. A sudden
drop of the key generation rate at about 25 km is clearly
apparent in both protocols. A comparison with the corre-
sponding secret-key generation rate of the four-state QKD
protocol in the absence of dark counts (dotted curve) ex-
hibits that this drop originates from dark counts. Indeed,
in the case of a lossy quantum channel, the contribution
to δ due to signals decreases with increasing l, so that
eventually almost all the contributions to the error rate δ
originate from dark counts. At the critical distance of
25 km the contribution of dark counts becomes dominant
and almost all the key is lost by error correction and pri-
vacy amplification [9,10,12]. The critical distance turns
out to be the same for the two protocols as a result of
equation (5) which was used for both of them. However,
as discussed in [5], the secret-key rate for the six-state
protocol can be improved by means of a post-processing

0 10 20 30 40 50

Distance [km]

-10

-8

-6

-4

-2

0

lo
g 10

 [
R

C
SS

]

Fig. 1. Achievable secret-key rates as given by equation (5), for
non-ideal implementations of the four-state (full curve) and the
six-state (dot-dashed curve) QKD protocols: error correction
and privacy amplification are performed by means of asym-
metric CSS codes which involve one-way classical communica-
tion only. The vertical lines indicate the maximum allowed dis-
tances for secret-key generation as determined by equation (7)
for the four-state (solid line at ∼42 km) and the six-state proto-
col (dot-dashed line at ∼50 km). Also shown is the secret-key
rate of the four-state protocol in the absence of dark counts
(dotted curve). All relevant parameters are chosen as in the
experiment of reference [25] i.e., α = 0.2 dB/km, Lc = 1 dB,
δ0 = 1%, P dark

exp = 2 × 10−4, ηdet = 0.18. At each distance the
mean number of photons µ is optimized such that the corre-
sponding rate is maximal.

procedure which takes into account correlations between
bit-flip and phase errors.

An upper bound on achievable distances can be ob-
tained from the maximally tolerable error rates for single-
photon pulses [9,10]. More precisely, given that Eve has
full information on the error-free part of the key stem-
ming from multiphoton pulses, Alice and Bob can extract
a secret key only if they can prove the presence of quan-
tum correlations (provable entanglement) in the remain-
ing part of the sifted key originating entirely from single-
photon pulses [26,27]. However, this is possible only if the
corresponding (rescaled) error rate δ/(1−∆) does not ex-
ceed 1/4 for the four-state and 1/3 for the six-state QKD
protocol i.e.,

δ

(1 − ∆)
<

β − 1
2β

, for β ∈ {2, 3}. (7)

This is a generalization of the necessary conditions for
secret-key generation in the context of the four- and the
six-state protocols respectively, in the absence of tag-
ging [22,26,27]. Indeed, an intercept-resend eavesdropping
attack can always break entanglement between Alice and
Bob giving rise to an error rate δ ≥ (1 − ∆)(β − 1)/2β.

The necessary condition (7) limits the distances up to
which a secret key can be distilled since both ∆ and δ
depend on the length of the optical fiber connecting Alice
and Bob. This bound is indicated in Figure 1 by the
solid vertical line for the four-state and by the dot-dashed
vertical line for the six-state protocol. In Section 4 we
will demonstrate how the gap between these borders and
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the drop of the secret-key generation rates due to dark
counts can be decreased considerably by applying a two-
way error-rejection procedure before switching to one-way
CSS-based post-processing. Before that, we have to derive
the quantum state shared between Alice and Bob at the
end of the distribution stage.

3 Formulation of QKD with tagged qubits

In order to derive the quantum state of Alice and Bob
immediately before the post-processing stage under a re-
alistic scenario, we have to take into account the influence
of a tagging source and possible imperfections in the link
(quantum channel and detectors). Most importantly, we
also have to consider in detail Eve’s strategy which can,
in principle, take full advantage of all imperfections and
losses. Following [8,15], we adopt the entanglement-based
version of the four- and the six-state QKD protocols de-
scribed in Section 2.1.

3.1 An optimal eavesdropping strategy

Consider the tagging scenario described at the end of Sec-
tion 2.2, in which tagged qubits arrive at Bob’s site with
probability ∆. Let also N be the total number of qubit-
pairs shared between Alice and Bob at the end of the
distribution stage. For sufficiently large values of N , we
expect that Nu ≈ (1−∆)N pairs involve untagged qubits
and Nt ≈ ∆N pairs involve tagged qubits (to be referred
to hereafter as the tagged qubit-pairs). In general, the
form of the reduced state of all N pairs, ρ

(N)
tot , depends on

the eavesdropping attack employeed by Eve.
As we discussed earlier, a tagged qubit reveals to Eve

its basis of preparation i.e., which random rotation has
Alice applied on it before its submission to Bob. Thus, Eve
is able to measure each tagged qubit in such a way that she
can unambiguously determine its quantum state without
disturbing it i.e., without introducing any errors. On the
contrary, the remaining untagged qubits are ideal for Alice
and Bob, in the sense that they do not reveal any informa-
tion to Eve. In particular, given that each untagged qubit
is randomly prepared in non-orthogonal states, informa-
tion gain for Eve is only possible at the expense of disturb-
ing its state, thus introducing errors in the sifted key [20].
It has to be noted here that in the model under consid-
eration, the source simply tags any ∆N of the signals in
an uncorrelated and independent way. In other words, we
do not allow for coherent superpositions of tagging pro-
cedures or other highly correlated basis-dependent imper-
fections [8]. Moreover, we assume that apart from the tag-
ging scenario we have just described, the source behaves
in a perfect way while the tagged signals do not convey
any information about the untagged ones. In this frame-
work, we restrict ourselves to a particular class of powerful
eavesdropping strategies where Eve treats tagged and un-
tagged qubits separately. Indeed, tagging allows Eve to
attack a fraction of the qubits without introducing errors.

Any other eavesdropping strategy which is consistent with
quantum mechanics and does not take into account the
tagging may only result in higher error rates in the sifted
key. Finally, given that Eve can have full information on
all the bits encoded in tagged qubits, she may launch the
most powerful attack i.e., a coherent attack, on the re-
maining untagged qubits to extract as much information
as possible about the final key.

Therefore, as long as Eve attacks the sets of tagged
and untagged qubits separately, these sets are not entan-
gled between each other. From now on, the reduced state
of all tagged qubit-pairs is denoted by ρ

(Nt)
t whereas the

corresponding state of all untagged qubit-pairs is denoted
by ρ

(Nu)
u . Our task is to estimate the precise form of these

states and to this end we have to consider a particular
tagging scenario.

3.1.1 Attack on tagged qubits

We will focus on the practically relevant special case of
tagging discussed in Section 2.2 that is, a source which
produces phase-randomized WCPs. For each multiphoton
pulse sent by Alice to Bob, first of all Eve can measure the
photon number. She can do this by means of a quantum
non-demolition measurement without introducing any dis-
turbance. In a second step, Eve can extract from each of
these multiphoton pulses one photon, as described in the
appendix of reference [10], which is stored in a quantum
memory while the remaining signal is sent to Bob. After
the announcement of the bases used during preparation,
Eve measures each of her photons in the correct basis and
obtains full information about the corresponding encoded
bit.

Clearly, by such a PNS attack Eve can eventually de-
termine all the key bits which originate from multiphoton
pulses without introducing any bit-flip errors. Moreover,
she may adjust her attack so that her intervention re-
mains undetected, even if Alice and Bob proceed to moni-
tor the complete photon-number distribution [28]. Hence,
the PNS attack turns out to be Eve’s optimal attack on
the multiphoton pulses [10].

Now we turn to estimate the reduced state of Alice
and Bob for all tagged qubit-pairs, ρ

(Nt)
t . Since Eve at-

tacks each tagged pair individually, we have ρ
(Nt)
t = σ⊗Nt .

Therefore, it is sufficient to consider one of these qubit
pairs. After Bob has undone the rotation applied by Alice
on his qubit, the purified quantum state of a tagged qubit-
pair for which Bob’s half has suffered a PNS attack is of
the form

|χ〉ABE =
1√
2

(
|0〉A ⊗ |0〉B ⊗ |0̃〉E + |1〉A ⊗ |1〉B ⊗ |1̃〉E

)

≡ 1√
2

(
|Φ+〉 ⊗ |0〉E + |Φ−〉 ⊗ |1〉E

)
. (8)

This state can be obtained, for example, in the context
of the Jaynes-Cummings Hamiltonian discussed in the ap-
pendix of reference [10]. Thereby, Eve’s pure ancilla states
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|0〉E =
(
|0̃〉E + |1̃〉E

)
/
√

2 and |1〉E =
(
|0̃〉E − |1̃〉E

)
/
√

2
are orthogonal. The Bell state |Φ−〉 = (|0〉A ⊗ |0〉B −
|1〉A ⊗ |1〉B)/

√
2 characterizes the phase errors introduced

by Eve’s ideal attack. The equal amplitudes of magnitude
1/

√
2 reflect the fact that Eve does not perturb Alice’s

and Bob’s measurement statistics by her attack. Corre-
spondingly, the reduced quantum state of Alice and Bob
resulting from such an ideal attack is a random mixture
of the ideal Bell state |Φ+〉 and the corresponding phase-
flipped Bell state |Φ−〉, i.e.,

σ =
1
2
(|Φ+〉〈Φ+| + |Φ−〉〈Φ−|). (9)

The separability of the state (9) reflects the fact that Eve
has a perfect copy of Bob’s qubit and thus secret-key dis-
tillation is impossible [22,26,27].

3.1.2 Attack on untagged qubits

Being able to obtain full information on the fraction of
the key originating from tagged qubits, Eve may attack
the remaining Nu untagged qubits coherently in order to
obtain additional information on the final key. In general,
at the end of such a coherent attack the reduced state of
the untagged pairs ρ

(Nu)
u has a rather complicated form.

In particular each pair can be entangled with Eve’s ancilla
as well as with other untagged qubit-pairs.

However, the key point is that Alice and Bob randomly
permute all their (tagged and untagged) pairs immediately
after Bob has announced the reception of all his qubits. As
a result, the state ρ

(Nu)
u becomes permutation invariant.

Hence, according to lemmas 2 and 3 (including the related
proofs) of reference [15], it suffices for our purposes to con-
sider uncorrelated Pauli attacks only, where Eve applies a
random Pauli operator independently on each submitted
qubit. In particular, she applies X with probability qx, Z
with probability qz, Y ≡ iXZ with probability qy, and
the identity I with probability qI = 1 − qx − qy − qz. The
resulting state of an uncorrelated Pauli attack is therefore
of the form ρ

(Nu)
u = τ⊗Nu , where the single-pair state τ is

diagonal in the Bell-basis [21] i.e.,

τ = qI|Φ+〉〈Φ+| + qz|Φ−〉〈Φ−|

+ qx|Ψ+〉〈Ψ+| + qy|Ψ−〉〈Ψ−|. (10)

Note now that due to Alice’s random rotation the quan-
tum state τ is also rotation invariant i.e., it is symmetrized
with respect to the corresponding group of unitary trans-
formations G = {Rb

A⊗Rb
B | b = 0, . . . , β}. This symmetry,

implies additional constraints on the (error) probabilities
(qx, qy, qz) of the state (10). In particular, for the four-state
protocol we have qx = qz whereas for the more symmet-
ric six-state protocol qx = qy = qz. Thereby, these sym-
metry constraints are characteristic for the two (three)
MUBs used in the four (six)-state QKD protocol. It is
worth noting, however, that this rotation-invariance does
not apply to the case of PNS attacks, as the tagged qubits

inform Eve about their bases of preparation. Eve can al-
ways therefore follow the rotations applied by Alice and
remain undetected.

3.2 Alice’s and Bob’s point of view

Let us now assume that Alice and Bob do not have Eve’s
technology and thus are not able to distinguish between
tagged and untagged qubit-pairs. In other words, from
their point of view all the pairs are equivalent. They only
know that their imperfect source produces ideal qubits
with some probability, and tags the qubits otherwise. For-
mally speaking, Alice and Bob share N qubit-pairs in the
quantum state

ρ
(N)
tot =

1
Π

∑

Π

Π
(
σ⊗Nt ⊗ τ⊗Nu

)
Π†, (11)

where the summation runs over all possible permutations
and expresses Alice’s and Bob’s ignorance about the pre-
cise location of the tagged pairs within the block of N
pairs. In the limit of large N we have Nu ≈ (1−∆)N and
Nt ≈ ∆N , thus obtaining from equation (11)

ρ
(N)
tot ≈ ρ⊗N , (12)

where

ρ = ∆σ + (1 − ∆)τ. (13)

An easy way to see this, is by using the binomial theorem
since the density operators σ and τ commute.

Hence, in view of the state (12, 13), the overall bit-error
rate estimated by Alice and Bob during the verification
test by random pair-sampling and measurements along
the Z-basis [23] is given by

δ = (1 − ∆)δb,u = (1 − ∆)(qx + qy), (14)

where δb,u is the error probability for a single untagged
pair as determined by its state (10). In view of the sym-
metry between all the bases used in the protocols we also
have for the phase-error probability of the untagged pairs
δp,u = δb,u.

Having derived the state shared between Alice and Bob
at the beginning of the post-processing stage, we now turn
to discuss asymptotic secret-key generation rates in the
context of a two-way CSS-like EPP.

4 Increasing secure distances using two-way
post-processing

In this section, we demonstrate how one can suppress the
disastrous effect of dark counts (exhibited as a sudden
drop of RCSS in Fig. 1), thus increasing the distance over
which a secret key can be distributed. Our approach relies
on a two-way error-rejection procedure followed by a one-
way CSS-like EPP.
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4.1 Error-rejection with two-way classical
communication

The error-rejection procedure under consideration is the
so-called B-step entering a two-way post-processing of
the Gottesman-Lo-type [15,29]. It is basically a purifica-
tion process with two-way classical communication and
its properties have been thoroughly discussed in the lit-
erature [15,29–32]. In all these investigations, the authors
mainly focus on the influence of the B-steps on the error
rates as all the involved qubit-pairs are identical. In our
case, however, the situation is substantially different as
the qubit-pairs involved in a B-step may be tagged or un-
tagged. Given that Eve has full information on Bob’s qubit
in the former case, in addition to error rates we have to
keep track of any changes in the rate of tagged qubit-pairs
during B-steps.

Let us start by briefly recapitulating the stages of a
B-step. Alice and Bob randomly form tetrads of qubits
by pairing up their qubit-pairs. Then, within each tetrad
they apply a bilateral exclusive-OR operation (BXOR)
i.e., they apply the local unitary operation XORa→b:
|x〉a ⊗ |y〉b �→ |x〉a ⊗ |x⊕ y〉b, on their halves. Thereby, ⊕
denotes addition modulo 2 while a and b denote the con-
trol and target qubit, respectively. Accordingly, for the
two qubit-pairs constituting the random tetrad we have
the following map in the Bell basis

BXORa→b: |Ψ(a)
i,j 〉 ⊗ |Ψ(b)

x,y〉 �→ |Ψ(a)
i,j⊕y〉 ⊗ |Ψ(b)

i⊕x,y〉, (15)

where i, j, x, y ∈ {0, 1} and the Bell states are denoted
by |Ψ0,0〉 ≡ |Φ+〉, |Ψ0,1〉 ≡ |Φ−〉, |Ψ1,0〉 ≡ |Ψ+〉, and
|Ψ1,1〉 ≡ |Ψ−〉. Subsequently, Alice and Bob measure their
target qubits (b) in the Z-basis and compare their out-
comes. The target pair is always discarded while the con-
trol qubit-pair is kept if and only if their outcomes agree
i.e., if and only if i = x. In general, this procedure is re-
peated many times (many rounds of B-step).

Consider now that Alice and Bob apply the B-step pro-
cedure we have just described on their pairs before switch-
ing to a CSS-like EPP. Recall also that the quantum state
of all N qubit-pairs shared between Alice and Bob at this
stage of the QKD protocol has the general tensor-product
form given in equations (12, 13). Depending on whether
the qubit-pairs forming a random tetrad are untagged or
tagged or only one of them is tagged we may distinguish
four different cases.

1. Untagged target and control pairs. According to equa-
tions (12, 13), such a pairing occurs with probability
(1 − ∆)2, while each of the qubit-pairs is in the Bell-
diagonal quantum state (10). Hence, provided that
Alice’s and Bob’s measurements agree, the control pair
is kept and is mapped again onto a Bell-diagonal quan-
tum state of the same form, but with renormalized

parameters [15]

q′I =
(qI + qz)2 + (qI − qz)2

2Qu,s
,

q′z =
(qI + qz)2 − (qI − qz)2

2Qu,s
,

q′x =
(qx + qy)2 + (qx − qy)2

2Qu,s
,

q′y =
(qx + qy)2 − (qx − qy)2

2Qu,s
, (16)

where Qu,s = (qI + qz)2 + (qx + qy)2 is the probability
with which the control qubit-pair is kept. Moreover,
conservation of probability requires the relation qI +
qz + qx + qy = q′I + q′z + q′x + q′y = 1.

2. Tagged target and control pairs. In view of equa-
tions (12, 13) such a pairing takes place with proba-
bility ∆2. The two pairs are in the same Bell-diagonal
state given by equation (9), and thus the map (16)
applies also in this case. Setting qx = qy = 0 and
qI = qz = 1/2, we have that the control pair always sur-
vives and is again tagged i.e., its state is given by (9).

3. Tagged target pair and untagged control pair. Such a
pairing occurs with probability ∆(1 − ∆). Using the
map (15) and the form of the states τ and σ given by
equations (10) and (9) respectively, one immediately
obtains that for the case under consideration the con-
trol pair survives with probability Qt,s = (qI + qz) and
is left in a quantum state of the form (9). Knowing that
one of the purifications of such a state is equation (8),
and giving all the purification to Eve [20], we may con-
clude that the state of the surviving control pair refers
to the tagged state of equation (8). In other words, the
initially untagged control pair becomes tagged when
paired with a tagged target pair. This is equivalent
to the XOR operation of an unknown classical bit S
with a totally known classical bit M . Since the target
bit T = S ⊕ M is announced publically, S becomes
perfectly known to Eve.

4. Untagged target pair and tagged control pair. This is
equivalent to the previous case.

In summary, only cases in which both pairs involved in
a random tetrad are untagged can lead to an untagged
surviving qubit-pair which may later on result to a secret
bit for Alice and Bob. In all other cases, Eve has a perfect
copy of Bob’s surviving tagged qubit.

A qubit-pair initially prepared in the mixed quantum
state (13) with σ and τ given by equations (9) and (10)
respectively, survives the first B-step with probability

P ′
s = (1 − ∆)2Qu,s + 2∆(1 − ∆)Qt,s + ∆2. (17)

Moreover, its new quantum state is given by

ρ′ = ∆′σ + (1 − ∆′)τ ′, (18)

with the renormalized tagging probability

∆′ =
[∆2 + 2∆(1 − ∆)(qI + qz)]

P ′
s

, (19)
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and with the untagged renormalized quantum state

τ ′ = q′I|Φ+〉〈Φ+| + q′z|Φ−〉〈Φ−|
+ q′x|Ψ+〉〈Ψ+| + q′y|Ψ−〉〈Ψ−| (20)

where the new probabilities (q′I, q
′
z, q

′
y, q

′
z) are determined

by equations (16). Correspondingly, the bit-error proba-
bility of this new quantum state is given by

δ′ = (1 − ∆′)δ′b,u = (1 − ∆′)(q′x + q′y). (21)

As a result of the B-step, however, the probabilities of
bit and phase errors for an untagged qubit are not equal
anymore. In particular, we have

δ′p,u = (q′z + q′y). (22)

Consider now that immediately after one such B-step
Alice and Bob switch to a one-way CSS-like EPP to distill
a secret key. The overall asymptotically achievable secret-
key generation rate is given by the corresponding modifi-
cation of equation (5) i.e.,

RBCSS =
PexpP ′

s

2β

(
1 − ∆′ − H(δ′) − (1 − ∆′)H(δ′p,u)

)
,

(23)

where ∆′, δ′ and δ′p,u are given by equations (17–22). The
additional factor of 1/2 accounts for the target qubit-
pairs which are always thrown away during the B-step.
With the help of the recursion relations (16) and (19)
asymptotically achievable secret-key generation rates can
also be determined for cases in which B-steps are applied
iteratively before the final use of the one-way CSS-like
EPP. In that case, however, the factor of 1/2 should be
replaced by 1/2n, for n B-steps. The rate RBCSS is there-
fore a generalization of the GLLP rate RCSS to a post-
processing where the one-way CSS-like EPP is initialized
by a number of B-steps. Indeed, the rate (23) directly re-
duces to the rate (5) in the absence of B-steps i.e., by
setting (q′I, q

′
x, q

′
y, q

′
z) = (qI, qx, qy, qz), P ′

s = 1, ∆′ = ∆,
and dropping the factor 1/2.

4.2 Numerical simulations and discussion

In our simulations, we adopt the most pessimistic ap-
proach i.e, we consider an eavesdropper with unlimited
technological power [10]. In particular, we attribute all
the estimated bit-error rate δ to Eve, assuming that she
possesses the corresponding information on the key. We
thus give Eve all the power to replace the lossy channel
by a perfect one (as described in Sect. 2.2), and to adjust
the two contributions in δ (that is, δopt and δdet) at her
own benefit (see also related discussion in Ref. [12]). For-
mally speaking, combining equations (3) and (14), at the
beginning of the first B-step we have

δ = (1 − ∆)(qx + qy) =
δ0 P signal

exp + 1
2P dark

exp

Pexp
, (24)

where Pexp, P signal
exp and ∆ are defined in Section 2.2.

However, as we discussed in Section 3.1, the probabilities
(qI, qx, qy, qz) entering the map (16) are not independent.
The normalization condition for the state (10) implies that

qI = 1 − qx − qy − qz, (25)

while due to symmetry between all the bases used in the
QKD protocols under consideration we have one addi-
tional constraint. That is,

qx = qz = qy (26)

for the six-state protocol, and

qx = qz (27)

for the four-state protocol, respectively.
In the case of the six-state protocol the con-

straints (24–26) fully determine the initial values of the
probabilities (qI, qx, qy, qz). More precisely, we have

qx = qy = qz =
δ0 P signal

exp + 1
2P dark

exp

2(1 − ∆)Pexp
,

qI = 1 −
3

(
δ0 P signal

exp + 1
2P dark

exp

)

2(1 − ∆)Pexp
. (28)

On the contrary, such a unique choice is not possible for
the four-state protocol and we have one open parameter
left that is, 0 ≤ qy ≤ 1. It is known, however, that for
the map (16), the choice qy = 0 gives rise to the largest
resulting value of the phase-error probability and to the
smallest resulting secret-key rate [15]. Therefore, in the
case of the four-state QKD protocol we can restrict our
subsequent discussion to the initial condition

qy = 0,

qx = qz =
δ0 P signal

exp + 1
2P dark

exp

(1 − ∆)Pexp
,

qI = 1 −
2

(
δ0 P signal

exp + 1
2P dark

exp

)

(1 − ∆)Pexp
. (29)

Clearly, in both cases all the probabilities are distance-
dependent. Indeed, the larger the distance between Alice
and Bob becomes, the more power Eve has as she may
take full advantage of all losses, noise, and imperfections.

We turn now to present and discuss numerical results
regarding the effect of applied B-steps on the secret-key
rates, for various QKD qubit-based protocols. For short
distances (i.e., length of the fiber l) where no B-steps are
necessary, the secret-key rate is basically determined by
equations (5), (6) and (3), as in Section 2.3. However, for
secret-key distribution over larger distances application
of B-steps prior to post-processing by one-way CSS-like
EPP is a necessity and the corresponding secret-key rate
is given by (23) combined with equations (17–22) and the
initial condition for B-steps (28) or (29). In any case, for
a given distance we optimize the mean number of photons
to obtain the maximum possible secret-key rate.
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Fig. 2. Four-state protocol. Secret-key generation rates result-
ing from multiple applications of B-steps followed by one-way
CSS-based post-processing: the solid vertical line indicates the
maximum allowed distances according to inequality (7). The
dotted line is the asymptotically achievable distance according
to inequality (31). The parameters are the same as in Figure 1.
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Fig. 3. Six-state protocol. The parameters are the same as in
Figure 2.

The influence of different numbers of B-steps on RBCSS

is depicted in Figures 2 and 3 for the four- and the six-
state protocol, respectively. Whereas for the parameters
chosen in the absence of any B-steps the maximum possi-
ble distance over which a secret key can be distilled with
a significant rate is of the order of 25 km for both proto-
cols, this distance increases significantly if Alice and Bob
perform a few B-steps before switching to the one-way
CSS-like EPP. More precisely, one application of a B-step
already increases this maximum possible distance to ap-
proximately 30 km in the four-state and to 34 km in the
six-state protocol. One may observe a sudden increase in
the secret-key generation rate on applying a B-step. This
is because a B-step decreases the bit-error rate signifi-
cantly and thus the effect of dark counts becomes less sig-
nificant. However, for larger distances, dark counts again
become dominant, resulting in a new dip in the key gener-
ation rate unless a second B-step is applied. For increasing
numbers of B-steps this effect becomes less dominating as
the phase-error probability of the untagged pairs increases
after each B-step [15,29] and therefore dark counts be-
come effective in the phase-error part. It can also be no-
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Fig. 4. Maximum achievable distance for different numbers
of B-steps for the four-state (lower curve) and the six-state
protocol (upper curve).

ticed that in the six-state protocol each B-step results in
a larger increase of the maximal achievable distance with
less reduction of the secret-key generation rate compared
to the four-state protocol. Basically, this is due to the fact
that the six-state protocol can sustain higher error rates.
Finally, as depicted in Figure 4, multiple applications of
B-steps quickly increase the maximum possible distances
almost up to approximately 37 km for the four-state and
to 44 km for the six-state protocol.

Let us now explore to which extent multiple appli-
cations of B-steps are capable of approaching the lim-
iting distances resulting from equation (7) for the two
QKD protocols under consideration. These latter dis-
tances are indicated by full vertical lines in Figures 2
and 3. Following the arguments of reference [8] which
form the basis for the secret-key generation rates of equa-
tions (5) and (23), for our purpose it is sufficient to explore
the possibility of purifying only the untagged qubit-pairs
by B-steps. As demonstrated in reference [32], the inequal-
ity

(

qI −
1
4

)2

+
(

qz −
1
4

)2

>
1
8
, (30)

is a necessary condition for the purification of a Bell-
diagonal state of the form (10) by a sequence of B-
steps followed by a CSS-like EPP. Therefore, using equa-
tions (24–27) inequality (30) yields for the two protocols

∆ <

{
1 − 5δ four-state protocol
1
2

(
2 − 5δ −

√
5δ

)
six-state protocol. (31)

The other solutions of the inequality (30) do not satisfy the
necessary condition for secret-key generation given by (7).

In Figure 5, we plot the possible values of the effective
tagging probability ∆ and the estimated bit-error rate δ
consistent with the necessary conditions (7) and (31), for
the four- and the six-state protocols. These are basically
parameters which can be estimated by Alice and Bob. Ac-
cording to the necessary condition (7), secret-key distil-
lation is, in principle, possible everywhere except in the
black regime. One may notice, however, the small grey
region which (although allowed by inequality (7)) is not



462 The European Physical Journal D

Fig. 5. Regions bounded by equations (7) (white+grey)
and (31) (white) for the four-state (a) and the six-state (b)
QKD protocols. Secret key distillation is not possible by any
means in the black region. The grey region is not accessible to
B-steps and CSS-like EPP.

accessible to a post-processing involving B-steps and a
CSS-like EPP. The upper bounds on distances resulting
from the inequalities (31) are indicated by the vertical
dotted lines in Figures 2 and 3.

From Figures 2, 3 and 4, it is apparent that these lat-
ter threshold values for the maximum possible distances
are approached already after a few iterations of B-steps
followed by a CSS-like EPP. Thus, such a combination
yields a useful method for counteracting the influence of
dark counts on the secret-key rate in practical QKD im-
plementations. However, from Figures 2 and 3 it is also
apparent that at the same time the secret-key rate de-
creases considerably with the application of more than
two B-steps.

As decoy-state protocols were developed in order to
suppress imperfections arising from multiphoton pulses it
is of interest to explore the influence of B-steps on the cor-
responding achievable secret-key generation rates. For this
purpose let us consider a decoy-state protocol involving
two decoy WCPs with mean photon numbers κ < ν ful-
filling the additional requirement κ exp(−κ) < ν exp(−ν),
and a signal pulse with mean photon number µ > κ + ν.
Therefore, the decoy pulses are detected with probabilities
P

(κ)
exp and P

(ν)
exp obeying the relations [17,18]

P (κ)
exp = P dark

exp e−κ + s1κe−κ + sm(1 − e−κ − κe−κ),

P (ν)
exp ≥ P dark

exp e−ν + s1νe−ν + sm(1 − e−κ − κe−κ)
ν2e−ν

κ2e−κ
.

(32)

Thereby, sm is the conditional probability that the detec-
tor clicks provided a multiphoton pulse with mean photon
number κ hits the detector, whereas s1 is the correspond-
ing probability for single-photon pulses. Using (32) we ob-
tain

s1 ≥
ν2eκP

(κ)
exp − κ2eνP

(ν)
exp − (ν2 − κ2)P dark

exp

κν(ν − κ)
:= s1. (33)

The inequality in the second line of (32) is valid provided
the inequalities κ < ν and κ exp(−κ) < ν exp(−ν) are ful-
filled. Correspondingly, the probability ∆µ of multiphoton
signal pulses can be upper-bounded as follows

∆µ ≤ 1 − s1µe−µ

P
(µ)
exp

:= ∆̃µ. (34)
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Fig. 6. Four-state protocol with decoy pulses: the parameters
are the same as in Figure 2, while µ = 0.55, κ = 0.10, and
ν = 0.27.
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Fig. 7. Six-state protocol with decoy pulses: the parameters
are the same as in Figure 6.

To investigate the influence of B-steps on the achiev-
able secret-key rates in the context of QKD proto-
cols with decoy pulses, we can adapt our previous ar-
guments easily. In particular, a lower bound on the
resulting secret-key generation rate is obtained from equa-
tions (16), (17), (19), (21), and (23). Thereby, the recur-
sive relations have to be solved by setting ∆ = ∆̃µ in
the initial conditions (28) and (29) for the six- and the
four-state protocol, respectively. These initial conditions
take into account that the phase-error probability can be
bounded from above by δ/(1 − ∆̃µ). The resulting lower
bound on the secret-key generation rate and its depen-
dence on the length of the optical fibre used for the trans-
mission of photons are depicted in Figures 6 and 7 for
the four- and the six-state protocol, respectively. Follow-
ing reference [17], we have chosen µ, κ and ν equal to 0.55,
0.10 and 0.27, respectively. Typically, multiple application
of B-steps increase the distance over which a secret key
can be exchanged significantly. The maximum distances
and their dependence on the number of applied B-steps is
shown in Figure 8 for both protocols with decoy pulses.
The asymptotically achievable maximum distances of the
order of 80 km are reached already after a few B-steps.
Moreover, it is worth noting that the net increase in dis-
tance of about 15 km (after 2 or 3 B-steps) is the same as
that for the conventional four- and six-state protocols.
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Fig. 8. Maximum achievable distances for different numbers
of B-steps for the four-state (lower curve) and the six-state
(upper curve) protocols with decoy pulses.

In closing, we would like to stress once more that, al-
though our results have been formulated in the frame-
work of the two-way EPP-based versions of the four- and
the six-state QKD protocols, they also apply to the corre-
sponding prepare-and-measure schemes. According to the-
orems 5 and 6 in reference [15] such a reduction is possible
without compromising security, due to basic properties of
the B-step and the one-way CSS-like EPP. Let us briefly
highlight the main steps in this reduction. In the termi-
nology of [15], a B-step involves only measurements of the
form ZA ⊗ ZB for the purpose of bit-flip error detection
and subsequent rejection. Hence, no post-selection based
on phase-error syndromes takes place during the two-way
part of the post-processing. In the one-way CSS-like part
each operator being measured is either of X - or Z-type
(definitions 1 and 4 of reference [15]) while, at any rate,
earlier measurements do not affect the sequence of sub-
sequent measurements. Moreover, all the operators com-
mute with each other and thus all the measurements of
Z-type can be performed before all the measurements of
X -type. To complete the reduction, one has to note that
X -type measurements at the end of post-processing yield
phase-error syndromes which do not affect the value of the
final key and thus Alice and Bob do not have to perform
them [3]. In the resulting prepare-and-measure schemes
the classical post-processing involves a number of two-
way error-rejection steps (parity checks) and additional
one-way post-processing (error-correction and privacy am-
plification) based on asymmetric CSS codes. The phase-
error syndrome measurements become effectively privacy
amplification [3].

5 Concluding remarks

We have analyzed secret-key generation rates in the pres-
ence of imperfections arising from tagging of Alice’s source
and from dark counts at Bob’s detectors. In particular,
we considered a post-processing procedure (error correc-
tion and privacy amplification) based on a combination
of B-steps and asymmetric CSS codes. As a main result,

for the four-state, the six-state, and the decoy-state proto-
cols, it was demonstrated that such a post-processing may
considerably increase the maximum distances over which
a secure key can be distributed in optical-fiber links.

Hence, incorporation of B-steps in the post-processing
stage of practical implementations of the protocols is
proven to be particularly useful. The usefulness of B-steps
is also one of the main results of a recent thorough investi-
gation of decoy-state protocols presented in reference [33].
On the contrary, P-steps of the Gottesman-Lo type do not
seem to be as useful as B-steps. Indeed, all our numeri-
cal simulations demonstrate that a few applications of B-
steps are sufficient to bring the maximal secure distances
very close to the upper bound. Recently, this inessential-
ity of P-steps has been pointed out by other authors as
well [32–34].

We would like to conclude this work with a discus-
sion about certain assumptions underlying our approach
and related possible open questions. Our model for sources
and detectors is not as general as possible and it suffers
from the same limitations as the model adopted in ref-
erences [8,10–12]. For instance, we have focused on im-
perfect sources which tag a fraction of the signals in an
uncorrelated and independent manner. In other words, we
have not considered the case of coherent or other highly
correlated basis-dependent tagging [8]. In this context, our
analysis has been based on a particular class of eavesdrop-
ping attacks where the sets of tagged and untagged qubits
are attacked separately. Each tagged qubit is treated in-
dividually (by means of a PNS attack) whereas untagged
qubits undergo a coherent (joint) attack. In this way, on
the one hand we essentially give Eve a perfect copy of
the part of the key originating from tagged signals, while
on the other hand we give her all the power to retrieve
as much information as possible about the remaining bits
of the key. It is plausible that, for a fixed bit-error rate,
this is the most powerful attack one may consider in the
framework of the particular model for sources and detec-
tors. However, we would like to emphasize that this work
shows how incorporation of B-steps prior to one-way CSS-
based post-processing can postpone certain dark-count ef-
fects thus increasing the distances over which a secret-key
can be distributed. This result is quite general and is not
expected to change in the case of other, perhaps more
efficient and more powerful, eavesdropping strategies. In-
deed, as pointed out in references [10,12], the maximum
secure distances for WCP-based QKD are not limited by
the eavesdropping strategy under consideration but rather
by the actual detector performance and especially by the
dark-count rate. Finally, throughout this work we have
also not addressed the case of imperfect sources which
emit weak coherent pulses with nonrandom phases or
highly dimensional signals [8]. At any rate, all of these
issues depend on how well the two legitimate users know
their devices (e.g., source and detectors) and how reliably
they can characterize them by means of other, perhaps
untrusted, apparatus [35].
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