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Complex chaos in the conditional dynamics of qubits

T. Kiss,1 I. Jex,2 G. Alber,3 and S. Vymětal2
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We analyse the consequences of iterative measurement-induced non-linearity on the dynamical
behaviour of qubits. We present a one-qubit scheme where the equation governing the time evolution
is a complex-valued non-linear map with one complex parameter. In contrast to the usual notion
of quantum chaos, exponential sensitivity to the initial state occurs here. We calculate analytically
the Lyapunov exponent based on the overlap of quantum states, and find that it is positive. We
present a few illustrative examples of the emerging dynamics.

PACS numbers: 03.67.Lx, 05.45.Mt, 42.50.Lc, 89.70.+c

Exponential sensitivity to inital conditions in nonlinear
systems, first described by Poincaré [1], is today known
as chaos. Quantum systems which are classically chaotic
generally do not show exponential sensitivity even if their
dynamics are complicated and refered to as quantum
chaos [2]. Unitarity of the evolution generally prohibits
exponential sensitivity, although rather exotic exceptions
were found [3].

Measuring a quantum system affects its dynamics. As
a result, instead of the original unitary evolution an
effective nonlinear dynamics may emerge. This phe-
nomeon was investigated extensively in quantum sys-
tems with continuous degrees of freedom which possess
a corresponding classical limit [4]. In particular, it was
demonstrated that this sensitivity is strong in dynamical
regimes in which relevant actions are large in compari-
son with Planck’s constant and the corresponding clas-
sical dynamics are chaotic. The continuously monitored
system evolves in such cases according to a stochastic
nonlinear Schrödinger equation, reflecting the fact that
measurements have non-deterministic output. Very re-
cently, Habib, Jacobs and Shizume could prove [5] that a
continuously measured classically chaotic system can be
truly chaotic even far from any classical limit. They nu-
merically calculated the Lyapunov exponent and found
that it is positive for the expectation value of the position
operator.

An alternative way of handling measurement results
is to use them as conditions and select the subensemble
according to the prescribed output, thus evoking a deter-
ministic effective dynamics for the subensemble. Condi-
tional dynamics is of considerable current interest in the
context of quantum information science for qubit sys-
tems. In quantum state purification protocols [6], for
example, such non-linear effects are exploited to guaran-
tee the unconditional security of quantum cryptographic
key distribution protocols [7]. Though basic aspects
of measurement-induced non-linear effects have already
been investigated in these systems, it is still largely un-
explored whether these effects may lead to chaos and, in
case they do, what their characteristic dynamical features
are.

In this paper we investigate the dynamical features of
iterated deterministic quantum maps which describe the
measurement-induced conditional dynamics of one- and
two qubit systems and which have been proposed recently
in the context of quantum information [8]. These qubit
systems do not have a (trivial) classical limit. The idea
that feeding results from weak measurements back into
the dynamics of an ensemble of quantum systems could
possibly lead to a novel type of quantum chaos with sen-
sitivity to initial conditions was mentioned already by
Lloyd and Slotine [11]. The present scheme is related
to this idea although it is based not on weak but on
standard strong selective measurements. The selection,
conditioned on measurement outcomes on part of the sys-
tem, can be thought of as feeding information back into
the remaining subensemble.
As a main result it will be demonstrated that even in

the simplest possible case of one-qubit systems the result-
ing dynamics of pure quantum states are governed by a
special class of non-linear maps in one complex-valued
variable. First studies of the iterative behavior of such
complex-valued non-linear maps were performed already
a century ago by Fatou [9] thus paving the way for a new
research field within non-linear dynamics [10]. There-
fore, a detailed understanding of the sensitivity of these
measurement-induced quantum maps with respect to ini-
tial states can be obtained by taking advantage of the
concepts and theorems from the so-far unrelated theory
of iterated maps with one complex variable. In order to
demonstrate the richness inherent in this ’complex chaos’
a few illustrative examples are presented.
Consider the nonlinear quantum transformation [8]:

ρ′ = Sρ , ρij
S
−→ Nρ2ij (1)

with the renormalization factor N = 1/
∑

ρ2ii. Thereby,
the matrix element squaring is defined with respect to a
prescribed orthonormal basis {|i〉}. In the special case
of qubits this deterministic non-linear map can be real-
ized by applying a controlled-not gate on a pair of equally
prepared qubits and then filtering by a measurement per-
formed on one of them [8]. By repeating the transforma-
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tion S we expect that smaller diagonal matrix elements
will tend to zero and the largest one survives, converging
to unity. In other words, pure states can be stable fixed
points of the map, leading to purification of the state.
The maximally mixed state is also a fixed point of the
map S, but it is easy to see that it is an unstable one.
Perturbing the initial state by increasing the weight of
one of the states in the mixture will lead to purification
towards that particular state.
While the squaring operator itself behaves rather sim-

ply, the dynamics become highly nontrivial if an addi-
tional local unitrary transformation, a rotation in the
qubit Hilbert space, is applied

Rρ = UρU † , (2)

with

U =

(

cosx sinx eiφ

− sinx e−iφ cosx

)

, (3)

in the prescribed basis. In this way one step of the dy-
namics reads

ρ′ = Fρ = RSρ , (4)

and repeating the transformation F leads to the discrete
conditional time-evolution we are interested in. It should
be kept in mind that each step of this particular deter-
ministic time evolution consists of a quantum mechanical
filtering process involving two qubits. As a result of this
filtering process either the target qubit or both qubits
have to be dismissed. The size of the original ensemble
decreases exponentally in time.
Let us first consider an initial pure state of the qubit.

With the notation

|ψ〉 = N(z|0〉+ |1〉) , (5)

where the state is normalized by N = (1 + |z|2)−1/2,
the single complex parameter z describes the state of the
qubit. The transformation F maps this pure state onto
a pure state and transforms z as

z 7→ Fp(z) =
z2 + p

1− p∗z2
, (6)

where p = tanxeiφ and the star denotes complex conju-
gation. The conditional dynamics of the qubit are thus
governed by Fp(z), which is a non-linear C → C map
with one complex parameter p. A considerable difference
compared to chaotic systems in classical physics is that
the underlying space is complex, here. Even the simplest
non-linear maps of the complex plane can show intricate
dynamical structure, such as the famous Mandelbrot set.
The study of the mathematics related to maps in one
complex variable has a long history and an extensive lit-
erature, (for a review see [10]). The map (6) is a rational
function of second order polynomials, similar to the one
first studied by Fatou [9] a century ago: z 7→ z2/(z2+2).

The traditional approach to a non-linear map in one
complex variable is to divide the complex plane of the
initial values z0 into regular and irregular points forming
the Fatou and Julia sets, respectively. Regular starting
points from the Fatou set will converge to a stable cycle
(also elements of the Fatou set) when repeating the iter-
ation. Taking into account both the initial condition z0
and the complex parameter p a four dimensional param-
eter space is defined. We will select special parameter
values when studying the map in order to illustrate the
richness of its behaviour and demonstrate sensitivity to
the initial conditions.
The full dynamics induced by Eq. (6) take place on

the Riemann sphere Ĉ consisting of C together with the
point at infinity. The physical meaning of the points 0
and ∞ for z are the two basis states of the qubit, |1〉 and
|0〉, respectively. The map Fp(z) is a rational function of
degree two. A general theorem on rational maps that are
quotients of two polynomials ensures that the Julia set is
not empty. The non-vacuous Julia set is the usual con-
dition for complex valued maps to be considered chaotic.
A more subtle question is whether the map is hyperbolic,
i.e. expanding on the Julia set. The latter property is
closer to the sense how the term chaos is used for dynam-
ical systems. For rational maps of degree two this can be
decided by following the orbit of the critical points: each
orbit should converge to some attractive periodic orbit.
For definition and a review of the above properties we
suggest to consult Milnor’s book [10].
The problem simplifies considerably if the parameter

p is set to zero. The map is then the simple squaring
F0(z) = z2. This is a well-known example of a simple
Julia set formed by the unit circle in the complex plane.
If the starting point is within the unit disk, the itera-
tions converge to zero, while initial values from outside
converge to infinity. Initial points with absolute value
exactly one will not converge, but the iterations follow
an irregular path on the unit circle. In other words, the
qubit will tend to one of the basis states, except for the
equally weighted linear superposition. In the latter case
the relative phase will follow irregular dynamics. The Ju-
lia set (a circle) is one-dimensional. We use the following
definition of the Lyapunov exponent λ

λ = lim
n→∞

lim
∆(0)→0

1

n
ln

∆(n)

∆(0)
, (7)

where we choose ∆ to be the distance related to the
overlap of the two corresponding quantum states: ∆ =
1 − |〈ψ1|ψ2〉|

2. For unitary evolution this is a constant
quantity, hence the above defined Lyapunov exponent of
a closed quantum system is always zero. It is generally
not straightforward to apply this definition, since the re-
sult of the limit may depend on the path in the Hilbert
space one takes when approaching the two initial states
towards each other. Nevertheless, in our simple case we
can restrict ourself to the unit circle. On this one dimen-
sional manifold we may define the Lyapunov exponent
with respect to the phase variable by choosing both ini-
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tial states with |z| = 1. Without loss of generality we
can take z0 = 1 , z1 = eiϕ and arrive at

λϕ = lim
n→∞

lim
ϕ→0

1

n
ln

∆ϕ(n)

∆ϕ(0)
, (8)

with ∆ϕ(n) = 1
2 (1 − cos 2nϕ). The order of limits is

important and therefore, we can first let ϕ go to zero,
thus we can use the Taylor expansion of the cosine in ϕ
which leads to the result

λϕ = 2 ln 2 . (9)

The positive Lyapunov exponent indicates that exponen-
tially fast separation takes place in the Hilbert space of
the system.
Non-zero fixed values of p are expected to lead to quali-

tatively different dynamics. The corresponding Julia sets
can possess highly non-trivial structures. By solving the
nth order eigenvalue equation F ◦n

p (z) = z (where F ◦n(z)
denotes n times repeated action of F ), one can find
various-order periodic cycles {z1, z2, . . . , zn}, (zi 6= zj).
The stability of a cycle can then be determined by eval-
uating the multiplier λ = F ′

p(z1)F
′
p(z2) . . . F

′
p(zn). If the

absolute value of this multiplier is smaller then unity, the
fixed point is attractive. If it is greater than unity it is
repelling, while for |λ| = 1 it is neutral. Those neutral pe-
riodic cycles for which λ is a root of unity, and for which
no iterate of the map is the identity are called parabolic.
A rational map of degree two can have at most two cycles
which are attracting or neutral [10]. While the first order
fixed points are given by a third order equation, in gen-
eral the period-n fixed points would require the solution
of a polynomial equation of order 2n + 1. The critical
points zc of a map, where F ′(zc) = 0, play a special role
in the theory of non-linear maps. For the map Fp the
two critical points are zc1 = 0 and zc2 = ∞, independent
of p. The orbits of the two critical points characterize
a rational map to a large extent [12]. By checking the
convergence of their orbit to an attracting periodic cycle,
one can decide whether the map is hyperbolic. Moreover,
all attractive and parabolic cycles can be found in this
way.
Physically speaking, the parameter p describes the ro-

tation of the qubit state |ψ〉. Setting the parameter to
p = 1 corresponds to a rotation of π/4 that transforms,
for example, the basis states into their equal superposi-
tions. This is a symmetric situation with respect to the
basis states. The orbit of one critical point, zc2 = ∞, is
part of the attractive cycle {−1,∞}. The other critical
point zc1 = 0 follows the orbit 0 7→ 1 7→ ∞ and thus
lands on the same periodic cycle. Therefore the only sta-
ble cycle for this map is the fixed point {−1,∞}. This
also proves that the map is hyperbolic [10]. Numerical
calculation of the Julia set for quadratic rational maps
is difficult. There are no general algorithms to compute
it. Here we can simply apply the criterion of convergence
to the stable cycle when plotting the Julia set in Fig.(1)
for p = 1. Dark points converge fast, gray points slower,

FIG. 1: The Julia set for the non-linear map (6). The pa-
rameter is set to p = 1. Grayscale indicates how fast the map
converges to the stable cycle {−1,∞} (dark – fast, gray – slow
convergence, white – no convergence).

FIG. 2: (Color online) The complex parameter space p of the
non-linear map (6), with the initial state being the critical
point z0 = 0. Colors indicate the length of attractive cycles.
White corresponds to no convergence.

white points do not converge. The complicated (fractal)
structure of the Julia set reflects the sensitivity of the
dynamics to the initial state: a change in the initial state
may alter the dynamics from regular to chaotic and this
can occur on arbitrarily small scales.
The family of maps with varying values of p ∈ C may

possess fixed cycles of various length, but only at most
two of them can be attractive. The critical points con-
verge to these attractive cycles, if their orbit is convergent
at all [10]. Fig. (2) depicts the complex plane of p-values
with colors showing the length of the stable periodic cy-
cle starting from the critical point z0 = 0. The lower half
plane is not shown, since it is a mirror image of the upper
one. The attractive periodic cycles are visualized for a
fixed real value of p in Fig. (3) by showing the absolute
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FIG. 3: Iterations of the non-linear map (6) for purely imag-
inary p with the initial state being the critical point z0 = 0.
After 104 iterations the absolute values of z for the next 50
steps are shown.

value of z after several iterations starting from z0 = 0.
While the single qubit case well serves the purpose of

rigorously demonstrating the presence of complex chaos,
two qubit systems with conditional dynamics are of con-
siderable practical interest for quantum state purifica-
tion. As the mathematical form of the procedure of pu-
rification is similar in essence to the single-qubit case we
expect also similar dynamical properties for two-qubit
systems. In particular, parameter ranges and initial
states should exist for which purification protocols ex-
hibit true chaos. In order to address this question let
us consider the following iteration acting on two-qubit
states [8]

ρ′ = Fρ = R1R2Sρ . (10)

Thereby, S is the element squaring defined in Eq. (1)
with the index i running from 1 to 4 through the elements
of the product basis of the qubits {|j〉|k〉}, (j, k = 0, 1)
and the rotation Rm acts on the mth qubit, with pa-
rameters xm , φm as defined in Eqs. (2,3). Now, the
parameters of the two (local) complex rotations span C2,
and the initial state can be any valid two-qubit density
operator. Obviously, this is an even much larger param-
eter space to explore, which includes the one-qubit pure
states as a special case. Our numerical simulations in-
dicate that meta-stable purification can occur here. An
initial state with some deviation from a target pure state
is being purified though several iterations, but then sud-
denly stability is lost and chaos sets in [13].

As an application, one could try to exploit the sensi-
tivity of the system and use it as a Schrödinger micro-
scope [11]. Tuning into a regime where a few iterations
amplify initial small differences of states one could dis-
tinguish states exponentially fast. The cost paid is the
exponential size of the equally prepared systems needed.
To understand the general conditions which allow expo-
nential sensitivity to initial states would be of use for any
protocol applying measurement conditioned selection.
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