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We investigate the problem of copying pure two-qubit states of a given degree of entanglement in
an optimal way. Completely positive covariant quantum operations are constructed which maximize
the fidelity of the output states with respect to two separable copies. These optimal copying processes
hint at the intricate relationship between fundamental laws of quantum theory and entanglement.
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I. INTRODUCTION

The optimal copying (cloning) of quantum states is an
elementary process of central interest in quantum infor-
mation processing [1]. As arbitrary quantum states can-
not be copied perfectly, the interesting question arises
as to which extent a quantum process can perform this
task in an optimal way. Recently, much work has
been devoted to the copying of pure quantum states
[2, 3, 4, 5, 6, 7, 8, 9, 10]. These investigations demon-
strate that the maximal fidelity which can be achieved
in an optimal copying process depends on characteristic
properties of the set of states which are to be copied.
Motivated by the important role entanglement is play-

ing in the area of quantum information processing in this
paper we address the question of copying pure entangled
two-qubit states in an optimal way. Though much work
has already been devoted to the copying of pure single
particle states, first investigations addressing the prob-
lem of copying entanglement have been performed only
recently [10]. In this latter work it was demonstrated that
entanglement cannot be copied perfectly. Thus, if one
can find a quantum operation which perfectly duplicates
entanglement of all maximally entangled qubit pairs, it
necessarily cannot respect separability of the two identi-
cal copies produced. Furthermore, for the special case of
maximally entangled two-qubit states first copying pro-
cesses were constructed which maximize the fidelity of
each two-qubit copy separately.
In this paper we address the general problem of copy-

ing pure two-qubit states of an arbitrarily given degree of
entanglement in an optimal way. In particular, we are in-
terested in constructing completely positive quantum op-
erations which do not only copy the pure entangled input
state but which also guarantee separability of the result-
ing two-qubit copies in an optimal way. Our motivation
for restricting our investigation to two-qubit input states
is twofold. Firstly, qubit states still play a dominant role
in the area of quantum information processing. Secondly,
it is expected that in this simplest case the intricate re-
lationship between entanglement and limits imposed on

quantum copying processes by the fundamental laws of
quantum theory are exposed in a particularly transparent
way.
This paper is organized as follows: In Sec. II we

briefly recapitulate the basic relation between optimal
copying processes and corresponding covariant quantum
processes which maximize the fidelity of the output states
with respect to separable copies. In Sec. III the most gen-
eral covariant quantum processes are constructed which
are consistent with the linear character of quantum maps
and which copy arbitrary pure two-qubit quantum states
of a given degree of entanglement. In Sec. IV the ad-
ditional constraints are investigated which result from
the positivity of these quantum maps. Based on these
results the parameters of the optimal copying processes
are determined. In Sec. V it is shown that these optimal
covariant quantum maps can be realized by completely
positive deterministic quantum operations. Thus, they
may be implemented by an appropriate unitary transfor-
mation and a subsequent measurement process involving
additional ancilla qubits. Basic physical properties of the
resulting optimally copied states are discussed in Sec.VI.

II. OPTIMAL COPYING OF ENTANGLED

TWO-QUBIT STATES

In this section basic connections between optimal
quantum mechanical copying processes and covariant
quantum processes are summarized and specialized to the
problem of copying pure bipartite entangled two-qubit
states in an optimal way.

In order to put the problem into perspective let us
consider two distinguishable spin-1/2 particles (qubits).
Their associated four dimensional Hilbert space H can
be decomposed into classes of pure two-qubit states Ωα
of a given degree of entanglement α (the parameter α
determines the amount of entanglement in the bipartite
system described by states from Ωα). These classes are
represented by the sets
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Ωα =
{(
U1 ⊗ U2

)(
α| ↑〉1 ⊗ | ↑ 〉2 +

√
1− α2| ↓〉1 ⊗ | ↓〉2

)∣∣∣U1, U2 ∈ SU(2)
}
. (1)

Thereby the parameter α (0 ≤ α ≤ 1) characterizes the
degree of entanglement of the pure states in a given class
Ωα and the kets | ↑〉 and | ↓〉 constitute an orthonormal
basis of the two-dimensional single-qubit Hilbert spaces
of each of the qubits (distinguished by the subscripts 1
and 2). Relation (1) takes into account that local uni-
tary operations of the form U1 ⊗ U2 are the most gen-
eral transformations which leave the degree (measure) of
entanglement α of a bipartite quantum state invariant.
Due to the symmetry relation Ωα = Ω√

1−α2 we can re-
strict our subsequent discussion to the parameter range
0 ≤ α ≤ 1/

√
2. Note that in the special case α = 0

the two-qubit state is separable whereas in the opposite
extreme case α = 1/

√
2 it is maximally entangled. Fur-

thermore, it should be noted that each class Ωα contains
an orthonormal basis of H.
We are interested in constructing quantum processes

Tα which copy an arbitrary pure two-qubit state, say
|ψ〉 ∈ Ωα, in an optimal way, i.e.

Tα : ρ0 ≡ ρin ⊗ ρref −→ ρout, (2)

with ρin = |ψ〉〈ψ| denoting the density operator of the
the input state. The resulting four-qubit output state
is denoted by ρout. The appropriately chosen two-qubit
quantum state ρref characterizes the initial state of the
copying device which is independent of the input state.
According to the fundamental laws of quantum theory
the quantum map Tα has to be linear and completely
positive [11, 12, 13].
The fidelity F = 〈ψ| ⊗ 〈ψ|ρout|ψ〉 ⊗ |ψ〉 constitutes a

convenient quantitative measure of how close an output
state ρout resembles two ideal separable copies of the orig-
inal input state ρin = |ψ〉〈ψ|. Consequently, the smallest
achievable fidelity, i.e.

L(Tα) = inf
|ψ〉∈Ωα

〈ψ| ⊗ 〈ψ|ρout|ψ〉 ⊗ |ψ〉, (3)

characterizes the quality of a copying process for a given
class of entangled input states |ψ〉 ∈ Ωα. Thus, con-
structing an optimal copying process is equivalent to
maximizing L(Tα) over all possible quantum processes.

Let us denote this optimal fidelity by L̂α ≡ supTα L(Tα).
It has been shown [3, 4] that for any optimal quantum

copying process T̂α one can always find an equivalent co-
variant quantum process with the characteristic property

ρout[U1 ⊗ U2ρinU
†
1 ⊗ U †

2 ] = Uρout(ρin)U† (4)

with U = U1 ⊗ U2 ⊗ U1 ⊗ U2. Thus, this equivalent
covariant quantum process yields the same optimal fi-

delity L̂α for all possible two-qubit input states |ψ〉 ∈ Ωα.
Thereby, U1, U2 ∈ SU2 are arbitrary unitary one-qubit
transformations. A proof of this theorem is sketched in
Appendix A. This observation allows us to restrict our
further search for optimal copying processes of entangled
pure two-qubit states to covariant quantum processes
which maximize the fidelity of Eq.(3).
At this point we want to emphasize that in this work

we are concerned with optimal entanglement processes
which maximize the fidelity of Eq.(3). Thus, the covari-
ant copying processes we are looking for are designed for
producing output states of the form |ψ〉 ⊗ |ψ〉, i.e. two
separable pairs of pure entangled two-qubit states, with
the highest possible probability for all possible two-qubit
input states |ψ〉 ∈ Ωα. As we are focusing on separable
copies of the input states these processes do not neces-
sarily also maximize the fidelity F ′ of the output state
with respect to each copy separately, i.e. with respect to
F ′ = Tr{|ψ〉〈ψ| ⊗ 1ρout(|ψ〉〈ψ|)}. These latter processes
were studied in Ref.[10], for example, for the special case

of maximally entangled pure input states, i.e. α = 1/
√
2.

III. COVARIANT LINEAR QUANTUM

PROCESSES

In this section all possible covariant copying processes
are constructed which are consistent with the linear char-
acter of general quantum maps of the form of Eq.(2).
In view of the covariance condition (4) all possible

quantum maps of the form (2) can be characterized by
the output states ρout(ρin) which originate from one ar-
bitrarily chosen pure input state, say |ψ〉 = α| ↑〉1 ⊗ | ↑
〉2 +

√
1− α2| ↓〉1 ⊗ | ↓〉2 with 0 ≤ α ≤ 1/

√
2. In order to

fulfill Eq.(4) the two-qubit reference state ρref of Eq.(2)
has to be invariant under arbitrary local unitary trans-
formations of the form U1 ⊗ U2. Therefore, the initial
state of the covariant quantum map is of the form [4]

ρ0 = ρin ⊗ 1

4
1 ≡ |ψ〉〈ψ| ⊗ 1

4
1. (5)

In order to implement the covariance condition
of Eq.(4) it is convenient to decompose this quan-
tum state into irreducible two-qubit tensor operators
T (1,3)(J ′, J)KQ and T (2,4)(J ′, J)KQ [14, 15] with respect
to qubits one and three on the one hand and qubits two
and four on the other hand. Performing an arbitrary
unitary transformation of the form U1 ⊗ U2 ⊗ U1 ⊗ U2

with U1, U2 ∈ SU2, for example, a product of such tensor
operators transforms according to
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U T (1,3)(J ′
1J1)K1Q1

⊗ T (2,4)(J ′
2J2)K2Q2

U† =
∑

q1,q2

D(U1)
(K1)
q1Q1

D(U2)
(K2)
q2Q2

T (1,3)(J ′
1J1)K1q1 ⊗ T (2,4)(J ′

2J2)K2q2

with U = U1 ⊗ U2 ⊗ U1 ⊗ U2. Thereby, D(Uj) (j = 1, 2)

denote the relevant rotation operators and D(Uj)
(Kj)
qjQj

are their associated rotation matrices [15]. The quan-
tum numbers Jj , J

′
j denote the total angular momenta of

the relevant two-qubit quantum states and the parame-
ters Kj indicate the irreducible subspaces of the relevant
representations. For the sake of convenience some ba-
sic relations of these irreducible two-qubit tensor opera-

tors are summarized in Appendix B. It is apparent from
Eq.(6) that an arbitrary unitary transformation of the
form U1 ⊗U2⊗U1⊗U2 with U1, U2 ∈ SU2 mixes the pa-
rameters q1 and q2 within each irreducible representation
separately. In terms of these irreducible tensor operators
an arbitrary initial state ρ0 of the form of Eq.(5) can be
decomposed according to (compare with Eq.(B4))

ρ0 =
∑

j1,...,j4,K,Q,K′,Q′

T (1,3)(j1, j3)KQ ⊗ T (2,4)(j2, j4)K′Q′〈T (1,3)†(j1, j3)KQT
(2,4)†(j2, j4)K′Q′〉 (6)

with the expansion coefficients

〈T (1,3)†(j1, j3)KQT
(2,4)†(j2, j4)K′Q′〉 ≡ Tr

{
(T (1,3)†(j1, j3)KQ ⊗ T (2,4)†(j2, j4)K′Q′)ρ0

}
. (7)

Thereby, Tr denotes the trace over the four-qubit Hilbert
space of the system- and device qubits. In view of the
basic transformation property of Eq.(6) the most general

output state resulting from a linear and covariant quan-
tum map is given by

ρout(ρin) =
∑

j1,...,j4,K,Q,K′,Q′

α(j1, j3, j2, j4)KK′ T (1,3)(j1, j3)KQT
(2,4)(j2, j4)K′Q′〈T (1,3)†(j1, j3)KQT

(2,4)†(j2, j4)K′Q′〉.

(8)

According to the fundamental laws of quantum theory
the unknown coefficients α(j1, j3, j2, j4)KK′ are neces-
sarily restricted by the fact that ρout has to be a non-
negative operator. In particular, being a Hermitian op-
erator the output state ρout has to fulfill the relations

α(j1, j3, j2, j4)KK′ = α(j3, j1, j4, j2)
∗
KK

′ . (9)

Further restrictions on these unknown coefficients are ob-
tained from the explicit form of the input state ρ0, i.e.

ρ0 =
|α|2
4

{ 1√
2
T (1,3)(1, 1)10 +

3

2
T (1,3)(1, 1)00 +

1

2
T (1,3)(0, 0)00 −

1

2
T (1,3)(0, 1)1,0 +

1

2
T (1,3)(1, 0)10

}
⊗
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{ 1√
2
T (2,4)(1, 1)10 +

3

2
T (2,4)(1, 1)00 +

1

2
T (2,4)(0, 0)00 −

1

2
T (2,4)(0, 1)1,0 +

1

2
T (2,4)(1, 0)10

}
+

|β|2
4

{−1√
2
T (1,3)(1, 1)10 +

3

2
T (1,3)(1, 1)00 +

1

2
T (1,3)(0, 0)00 +

1

2
T (1,3)(0, 1)1,0 −

1

2
T (1,3)(1, 0)10

}
⊗

{−1√
2
T (2,4)(1, 1)10 +

3

2
T (2,4)(1, 1)00 +

1

2
T (2,4)(0, 0)00 +

1

2
T (2,4)(0, 1)1,0 −

1

2
T (2,4)(1, 0)10

}
+

αβ∗

8

{
−
√
2T (1,3)(1, 1)11 + T (1,3)(0, 1)11 − T (1,3)(1, 0)11

}
⊗

{
−
√
2T (2,4)(1, 1)11 + T (2,4)(0, 1)11 − T (2,4)(1, 0)11

}
+

α∗β

8

{√
2T (1,3)(1, 1)1−1 − T (1,3)(0, 1)1−1 + T (1,3)(1, 0)1−1

}
⊗

{√
2T (2,4)(1, 1)1−1 − T (2,4)(0, 1)1−1 + T (2,4)(1, 0)1−1

}
(10)

with β =
√
1− α2. Thus, according to Eq.(10) the most

general output state of Eq.(8) generally depends on 17
coefficients, namely

α(1, 1, 1, 1)11 = A1, α(1, 1, 1, 1)10 = A2,

α(1, 1, 1, 0)11 = A3, α(1, 1, 0, 0)10 = A4,

α(1, 1, 1, 1)01 = A5, α(1, 1, 1, 1)00 = A6,

α(1, 1, 1, 0)11 = A7, α(1, 1, 0, 0)00 = A8,

α(1, 0, 1, 1)11 = A9, α(1, 0, 1, 1)10 = A10,

α(1, 0, 1, 0)11 = A11, α(1, 0, 0, 0)10 = A12,

α(0, 0, 1, 1)01 = A13, α(0, 0, 1, 1)00 = A14,

α(0, 0, 1, 0)01 = A15, α(0, 0, 0, 0)00 = A16,

α(1, 0, 0, 1)11 = A17. (11)

These parameters determine all linear covari-
ant quantum processes with a Hermitian out-
put state ρout(ρin) provided the coefficients
A1, A2, A4, A5, A6, A8, A13, A14, A16 are real-valued.
The explicit form of the output state ρout(ρin) is given
in Appendix C (compare with Eq.(C1)). Proper normal-
ization of the output state requires Tr{ρout(ρin)} = 1
which implies

1

16
(9A6 + 3A8 + 3A14 +A16) = 1. (12)

IV. OPTIMAL COVARIANT COPYING

PROCESSES

In this section the special covariant quantum processes
are determined which copy pure entangled two-qubit
states of a given degree of entanglement α with the high-
est possible fidelity.

For this purpose we start from the most general out-
put state which is consistent with the linear and covari-
ant character of the copying process as determined by
Eqs.(8), (9), (12) and by an arbitrary combination of
the possible non-zero parameters A1, ..., A17 of (11). The
non-negativity of this output state on the one hand and
the optimization of its fidelity on the other hand impose
further restrictions on these parameters.

The non-negativity of the output state implies that the
inequality 〈χ|ρout(ρin)|χ〉 ≥ 0 has to be fulfilled for arbi-
trary pure four-qubit states |χ〉. As outlined in appendix
C this condition gives rise to the set of inequalities

A6 ≥ 0, A8 ≥ 0, A14 ≥ 0, A16 ≥ 0, |A1| ≤ A6,∣∣(2α2 − 1)A4

∣∣ ≤ A8,
∣∣(2α2 − 1)A13

∣∣ ≤ A14,∣∣(2α2 − 1)A2

∣∣ ≤ A6,
∣∣(2α2 − 1)A5

∣∣ ≤ A6 (13)

and

|A11|2 ≤ A16A6, |A17|2 ≤ A14A8,

A6 | (2α2 − 1)(A2 +A5) |2 ≤ (A1 +A6)
2A6 − (14)

8α2(1− α2)A2
1(A1 +A6).

In particular, in the special case A1 = A6 6= 0 the last
inequality of (14) implies

| (2α2 − 1)(A2 +A5) |≤
√
4A2

6 − 16α2(1− α2)A2
6. (15)

The fidelity F of the output state ρout(ρin) of Eq.(8)
with respect to the ideal pure two-qubit output state
|ψ〉 ⊗ |ψ〉 with |ψ〉 = α| ↑〉1 ⊗ | ↑〉2 +

√
1− α2| ↓〉1 ⊗ | ↓〉2

is given by

F ≡ 〈ψ| ⊗ 〈ψ|ρout|ψ〉 ⊗ |ψ〉 = 1

16

{
A1(1 + 2α2(1− α2)) + (2α2 − 1)2(A2 +A5) +A6(1− α2(1− α2)) + α2(1 − α2)A16 +
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6α2(1 − α2)ReA11

}
. (16)

Besides the parameter α determining the degree of entan-
glement of the input state |ψ〉 this fidelity depends on the
six parameters A1, A2, A5, A6, A11, A16. An upper bound
of this fidelity can be derived with the help of the inequal-

ities (14), (15) and with the relation A16 ≤ 16 − 9A6

which is obtained from the normalization condition (12),
i.e.

F ≤ 1

16

{
A6(4− 16α2(1− α2)) + 16α2(1 − α2) + 6α2(1− α2)

√
A6(16− 9A6)

}
. (17)

This upper bound is attained provided the conditions
A16 = 16 − 9A6, A11 =

√
A6(16− 9A6) and A1 = A6 =

(A2+A5)/2 are fulfilled. Maximizing the right hand side
of Eq.(17) with respect to the single parameter A6 we
finally arrive at the inequality

F ≤ Fmax ≡ 2

9
(1− 4α2(1− α2))(1 +

√
v) +

α2(1 − α2)(1 +
√
1− v) (18)

with

v = 1− 81α4(1− α2)2

145α4(1− α2)2 − 32α2(1− α2) + 4
. (19)

This upper bound of relation (18) is reached provided
the parameters of the covariant copying process fulfill
the relations

A1 =
A2 +A5

2
= A6 ≡ Amax6 =

8

9
(1 +

√
v)

A16 = 16− 9A6, A11 =
√
A6(16− 9A6). (20)

Consistent with the inequalities (13), (14) and with
Eq.(C2) the remaining parameters of the covariant copy-
ing process which do not explicitly determine the fidelity
must be chosen in the following way

A2 −A5 = A4 = A3 = A7 = A8 = A9 = A10 =

A12 = A13 = A14 = A15 = A17 = 0.(21)

With the help of Eq.(C2) it is straightforward to check
that for these parameters the output state ρout(ρin) is a
non-negative operator.
Thus, consistent with the fundamental laws of quan-

tum theory the output state of a covariant quantum pro-
cess which copies all pure two-qubit states of the same
degree of entanglement α with the maximal fidelity Fmax
is given by Eq.(8) with the parameters (11) being deter-
mined by Eqs.(20) and (21) (compare also with Eq.(C2)).
The fidelity Fmax of this optimal covariant copying

process and its dependence on the degree of entangle-
ment α of the pure two-qubit input state is depicted in
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FIG. 1: Fidelity of the optimal covariant copying process and
its dependence on the degree of entanglement α of a pure
two-qubit input state. The fidelity varies between 0.4 and
0.5.

Fig.1. This fidelity oscillates between a minimum value

of F = 0.4 which is assumed at α =
√
1/2−

√
15/10

and a maximum value of F = 1/2 which is assumed at

α = 1/
√
2. The value α = 0 corresponds to the optimal

copying of two arbitrary (generally different) separable
qubit states. Consistent with known results on optimal
cloning of arbitrary single qubit states in this latter case
the fidelity Fmax assumes the value F = (2/3)2. From
Fig.1 it is also apparent for which degrees of entangle-
ment α it is easier to copy entangled states than separable
ones.

At this point it is worth mentioning major differ-
ences between our results and the previously published
results on the copying of maximally entangled states
of Ref. [10]. In our treatment we are interested in
obtaining two separable copies, say |ψ〉 ⊗ |ψ〉, of en-
tangled two-qubit states |ψ〉 ∈ Ωα of a given degree
of entanglement. Correspondingly, we are optimizing
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the two-pair fidelity F = 〈ψ| ⊗ 〈ψ|ρout|ψ〉 ⊗ |ψ〉, for

0 ≤ α ≤ 1/
√
2. In contrast, in Ref.[10] the optimization

of the single-pair fidelities F ′
1 = Tr{|ψ〉〈ψ| ⊗ 134ρout}

and F ′
2 = Tr{112 ⊗ |ψ〉〈ψ|ρout} was investigated for

the special case of maximally entangled input states, i.e.
α = 1/

√
2. Thus, this latter process does not simulta-

neously also optimize the separability of the copies. For
maximally entangled input states our optimized process
yields for these latter figure of merits, for example, the
values F ′

1 = F ′
2 = 0.67 which is below the optimal value

of 0.7171 presented in Ref. [10]. But, for the same value

of α = 1/
√
2 the figure of merit of Eq.(16) yields for our

optimal copying process the values Fmax = 0.5 whereas
the copying process of Ref. [10] yields the smaller value
of Fmax = 0.458 because this latter process does not op-

timize with respect to two separable copies.

V. OPTIMAL COVARIANT COPYING

PROCESSES AS COMPLETELY POSITIVE

QUANTUM OPERATIONS

In this section it is demonstrated that the covariant
optimal copying processes derived in Sec. IV are com-
pletely positive deterministic quantum operations. Thus,
they can be implemented by unitary quantum transfor-
mations with the help of additional ancilla qubits.
Using Eqs.(8), (20), (21) it is straightforward to

demonstrate that the output state of the optimal covari-
ant quantum copying process can be written in the form

ρout(|ψ〉〈ψ|) = K|ψ〉〈ψ| ⊗ 1

4
1K† ≡

∑

i,j=0,1

Kij |ψ〉〈ψ|Kij (22)

with the operators

K =
√
A1P

(1,3)
T ⊗ P

(2,4)
T +

√
A16P

(1,3)
S ⊗ P

(2,4)
S = K†,

Kij =
K

2
|i〉3 ⊗ |j〉4. (23)

Thereby, P
(a,b)
T =

∑
M=0,±1

|1 M〉〈1 M | ⊗ |1 M〉〈1 M | and

P
(a,b)
S = |00〉〈00| ⊗ |00〉〈00| are projection operators onto

the triplet and singlet subspaces of qubits a and b and
|J M〉 denote the corresponding (pure) two-qubit quan-
tum states with total angular momentum quantum num-
bers J and magnetic quantum numbers M . The states
{|i〉3; i = 0, 1} and {|j〉4; j = 0, 1} denote orthonormal
basis states in the one-qubit Hilbert spaces of qubits three
and four, respectively. According to Eqs.(22) and (23)
the four Kraus operators [11] Kij (i, j = 0, 1) charac-
terize a quantum operation which acts on the two input
qubits one and two and which depends on their degree of
entanglement α. These Kraus operators map two-qubit
states into four-qubit states and they fulfill the complete-

ness relation

∑

i,j=0,1

K†
ijKij = 112 (24)

where 112 denotes the unit operator in the Hilbert space
of qubits one and two. Thus, Eq.(22) describes a de-
terministic quantum operation [11, 12, 13] acting on the
two input-qubits which are to be copied in an optimal
way. In addition, the Kraus representation of Eq.(22)
demonstrates that the optimal covariant copying pro-
cesses considered so far are completely positive quantum
maps [11, 13].
Alternatively, the quantum operation of Eq.(22) may

also be implemented by an associated unitary transfor-
mation U which involves two additional ancilla-qubits.
Denoting orthonormal basis states of these additional
ancilla-qubits by {|α〉5 ⊗ |β〉6;α, β = 0, 1} this unitary
transformation U can be choosen so that it fulfills the
relation

U |ψ〉12 ⊗ |0〉3456 =
∑

i,j=0,1

(
K

2
|ψ〉12 ⊗ |i〉3 ⊗ |j〉4

)
⊗ |i〉5 ⊗ |j〉6, (25)

for example, with |0〉3456 = |0〉3 ⊗ |0〉4 ⊗ |0〉5 ⊗ |0〉6.
Thereby, the subscripts of the state vectors label the
qubits they are referring to and the bracket of Eq.(25)

indicates that the Kraus operators act on the system-
and device-qubits only. Due to the completeness rela-
tion (24) the linear transformation of Eq.(25) preserves
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scalar products, i.e. 3456〈0|⊗12〈ψ|U †U |Φ〉12⊗|0〉3456 =12

〈ψ|Φ〉12. Thus, it can be completed to a unitary transfor-
mation acting on the six-qubits constituted by the sys-
tem, the device-, and the two ancilla-qubits [13]. Accord-
ingly, the optimal covariant copying process of Eq.(22)

can be realized also with the help of this unitary transfor-
mation U in the following way: In a first step one applies
the transformation U to the intial state |ψ〉12 ⊗ |0〉3456 of
the system-, device- and ancilla-qubits, i.e.

U |ψ〉12 ⊗ |0〉3456 3456〈0| ⊗12 〈ψ|U † =
∑

i,j,i′,j′=0,1

Kij |ψ〉12 ⊗ |i〉5 ⊗ |j〉6 6〈j′| ⊗5 〈i′| ⊗12 〈ψ|K†
i′j′ . (26)

In a second step one measures the ancilla-qubits in the
orthogonal basis {|α〉5 ⊗ |β〉6;α, β = 0, 1} without se-
lection of the measurement results. This non-selective
measurement [12] yields the output state ρout(|ψ〉〈ψ|) of
Eq.(22).

VI. PROPERTIES OF OUTPUT STATES

In this section the degree of entanglement and statis-
tical correlations of the output states produced by the
optimal covariant copying processes are discussed.
As the process of copying of an arbitrary pure en-

tangled two-qubit state is not perfect the original and
the copy will exhibit characteristic entanglement fea-
tures and statistical correlations. Convenient measures
for quantifying these properties are the concurrences [16]
and the indices of correlation [17] of the subsystems.
Let us consider a two-qubit state described by a density

operator ρ. Its concurrence is defined in terms of the
decreasing set of eigenvalues , say {λ1 ≥ λ2 ≥ λ3 ≥ λ4},
of the operator

R = ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy). (27)

Thereby,

σy =

(
0 −i
i 0

)
(28)

denotes the Pauli spin operator and the star-symbol (∗)
denotes complex conjugation. In terms of these eigenval-
ues the concurrence of the quantum state ρ is defined by
the relation [16]

C(ρ) = max
{
0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
. (29)

According to this definition the values of the concurrence
are confined to the interval [0, 1] with C(ρ) = 0 and
C(ρ) = 1 corresponding to a separable and a maximally
entangled two-qubit state.
A convenient measure for quantifying bipartite statis-

tical correlations of a quantum state ρ is its index of
correlation I(ρ) [17]. It is defined by the relation

I(ρ) = S(ρa) + S(ρb)− S(ρ); (30)

with S(ρa), S(ρb), and S(ρ) denoting the von Neumann-
entropies of subsystems a, b and of the whole system.
The corresponding reduced density operators of the sub-
systems are denoted by ρj = Tri6=j(ρ) with j = a, b.
Correspondingly, the index of correlation I(ρ) vanishes
for all uncorrelated (factorizable) states and it attains its
largest value for maximally entangled pure states (with

α = 1/
√
2). Let us now investigate entanglement and

statistical correlations of the output state ρout(ρin) with
respect to the first and the second qubit, with respect to
the first and third qubit and with respect to qubits one
and two on the one hand and qubits three and four on
the other hand.

A. Entanglement and statistical correlations of

qubits one and two

Let us consider first of all a two-qubit input state of the
form ρin = |ψ〉〈ψ| with |ψ〉 ∈ Ωα. Both its concurrence
as well as its index of correlation are given by

C(ρin) = 2|α
√
1− α2|, (31)

I(ρin) = −2
{
|α|2 ln |α|2 + |β|2 ln |β|2

}
(32)

with β =
√
1− α2. The corresponding reduced density

operator ρ
(1,2)
out of qubits one and two after an optimal

covariant copying process can be determined easily from
Eqs.(8), (11),(20), and (21). In particular, its concur-
rence, for example, is given by

C(ρ
(1,2)
out ) =

1

16
max {0, (4|αβ|+ 1)(2A6 +A11)− 8} .

(33)
The corresponding index of correlation can also be evalu-
ated easily. Due to the inherent symmetry of the optimal
covariant copying process the reduced density operators
of qubits one and two on the one hand and qubits three
and four on the other hand are equal. Therefore, all re-
sults obtained for the system-qubits one and two are also
valid for the device-qubits three and four.
In Fig.2 the concurrence of the quantum states of

qubits one and two before and after the optimal covari-
ant copying process are depicted. The concurrence of
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FIG. 2: The dependence of the concurrence of the quantum
states of qubits one and two before (solid line) and after
(dashed line) the optimal covariant copying process on the
degree of entanglement α. α = 0 and α = 1/

√
2 correspond

to the limits of a separable and a maximally entangled pure
two-qubit input state.

the pure input state increases smoothly from its mini-
mum value zero at α = 0 to its maximum value of unity
at α = 1/

√
2. The corresponding values of the output

states with respect to qubits one and two exhibit a rather
different behavior. First of all, it is apparent that a min-
imum degree of entanglement αmin = 0.231 of the pure
input state ρin is required in order to achieve also an en-
tanglement between qubits one and two in the resulting
output state. Secondly, the concurrence of the output
state saturates at a rather moderate value around 0.3 at
which it becomes almost independent of the value of α.
Thirdly, the maximum entanglement between qubits one
and two is not achieved exactly for maximally entangled
initial states with α = 1/

√
2 but for values slightly below.

However, this difference is very small.

The corresponding indices of correlations and their de-
pendence on the degree of entanglement of input and out-
put states are depicted in Fig.3. In contrast to the con-
currence the index of correlation of the output state in-
creases smoothly with increasing values of α and reaches
its maximum exactly at α = 1/

√
2. Similar to the case of

the concurrence there is a considerable drop of the index
of correlation of the copied pair in comparison with its
original.

B. Correlation of the first and third qubit

In view of the structure of the input state ρ0 of
Eq.(5) the entanglement and statistical correlation be-
tween qubits one and three vanish. The concurrence of
the reduced density operator of the output state of the
optimal covariant copying process with respect to these
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FIG. 3: Indices of correlations of input and output states
with respect to qubits one and two and their dependence on
the degree of entanglement α of the pure input state. As in
the case of concurrence the correlations saturate at a rather
moderate level.
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FIG. 4: Concurrence of the output state of an optimal co-
variant copying process with respect to qubits one and three
and its dependence on the degree of entanglement α of the
pure two-qubit input state. For α ≥ 0.241 the concurrence
vanishes.

qubits is given by

C
(out)
13 =

1

4
max{0, | − 4 + 3A6| − 3A6α

√
1− α2}. (34)

This concurrence and the corresponding index of corre-
lation of the output state and their dependence on the
degree of entanglement α of the input state are depicted
in Figs.4 and 5. Characteristically, the concurrence de-
creases linearly from its maximum value at α = 0 until
it vanishes for α ≥ 0.241. Contrary to the concurrence
the index of correlation depends smoothly on the degree
of entanglement α of the pure input state. Furthermore,
it decreases up to the value α ≈ 0.421 where it assumes
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FIG. 5: Index of correlation of the output state of an optimal
covariant copying process with respect to qubits one and three
and its dependence on the degree of entanglement α of the
pure two-qubit input state.
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FIG. 6: Index of correlation of the output state of an optimal
covariant copying process with respect to qubits one and two
and qubits three and four and its dependence on the degree
of entanglement α of the pure two-qubit input state.

a minimum. For degrees of entanglement α ≥ 0.421 it
increases monotonically and reaches a local maximum at
α = 1/

√
2 which corresponds to a maximally entangled

pure input state.

C. Correlation between two copies

Finally, let us discuss the statistical correlations of the
output state with respect to qubits one and two on the
one hand and qubits three and four on the other hand.
Its dependence on the degree of entanglement α of the
pure two-qubit input state is depicted in Fig.6. Char-
acteristically, one notices two maxima and two minima.
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FIG. 7: Negativity of the output state of an optimal covariant
copying process and its dependence on the degree of entan-
glement α of the pure two-qubit input state. The negativity
is for all values of α positive a hence the outputs states are
always entangled.

The local minimum at α =
√
1/2−

√
15/10 corresponds

to the optimal covariant copying process with the small-
est fidelity of the output copies (compare with Fig.1).
The global maximum corresponds to the copying of max-
imally entangled pure input states with α = 1/

√
2.

To conclude our discussion of entanglement and corre-
lations let us consider the negativity of the output state
ρout(ρin). This quantity allows to decide whether a quan-
tum state contains free entanglement or not. The defi-
nition of the negativity of a quantum state starts from
the observation, that the partial transpose of a separa-
ble state always yields a positive density operator. The
negativity is defined by the sum of absolute values of the
negative eigenvalues of the partially transposed density
operator [18]. In Fig.7 the negativity of the output state
is depicted. Thereby, the four-qubit output state is con-
sidered as a bipartite state with respect to the system-
qubits one and two and the device-qubits three and four.
The dependence of this negativity on the degree of entan-
glement α of the input states resembles the corresponding
dependence of the correlation function presented in Fig.6.
Fig.7 illustrates several interesting features: Firstly, the
output state is entangled for all values of α. Secondly,
the global minimum of the negativity coincides with the

point of worst copying, i.e. with α =
√
1/2−

√
15/10.

The maximum at the point α = 1/
√
2 indicates that the

copying of maximally entangled states results in a maxi-
mally entangled output state.

VII. CONCLUSION

We investigated the copying of pure entangled two-
qubit states of a given degree of entanglement. Optimiz-
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ing these processes with respect to two separable copies
we identified the optimal covariant and completely posi-
tive copying processes for all possible degrees of entangle-
ment. It was demonstrated that the fidelity of the result-
ing output states with respect to separable copies varies
between the values of 0.4 and 0.5. In particular, this lat-
ter value characterizes the optimal copying of maximally
entangled two-qubit states. In the special case of factor-
izable input states we obtain the already known value of
4/9. We investigated correlation properties and the en-
tanglement of the resulting output states. We want to
point out that the presented approach which is based on
an analysis of the irreducible tensor components of the
input state may be generalized also to more complex sit-
uations, such as the copying of N entangled pairs to M
pairs. Work along these lines is in progress.
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APPENDIX A: OPTIMAL COPYING

PROCESSES AND COVARIANT QUANTUM

MAPS

The proof that any optimal quantum copying process

T̂α of the form (2) can be represented by a corresponding
covariant quantum map of the form of Eq.(4) with the
same fidelity is similar to the proof given by Werner in
the context of optimal cloning of arbitrary d-dimensional
quantum states [4]. The only major difference concerns
the group operations which connect all possible pure in-
put states. In our case this group involves all unitary

transformations of the form U1 ⊗U2 with Uj ∈ SU2. For
the sake of completeness we briefly outline the main steps
involved in this proof.

Let us start from the definition of the optimal fidelity
of our copying process which is given by

L̂α = sup
Tα

L(Tα) = sup
Tα





inf
|ψ〉∈Ωα

〈ψ| ⊗ 〈ψ|ρout|ψ〉 ⊗ |ψ〉︸ ︷︷ ︸
Zψ




.

(A1)
The functions Zψ are continuous. Largest lower bounds
(infima) of a set of continuous functions yield upper semi-
continuous functions. In a finite dimensional Hilbert
space the set of admissible quantum operations Tα is
closed, and bounded. Therefore it constitutes a com-
pact set. However, an upper semicontinuous function on
a compact set must acquire its maximum. Let us denote

this maximum T̂α. Thus

L̂α = sup
Tα

L(Tα) = L(T̂α). (A2)

For an arbitrary admissible quantum copying map Tα
its average T̃α over all group operations is defined by

T̃α(ρ) =

∫
dU1dU2U∗⊗2Tα (UρU∗)U⊗2 (A3)

with U = U1 ⊗ U2. Thereby, dU1dU2 denotes the
normalized left invariant Haar measure of the group
SU(2)×SU(2). The map T̃α is again an admissible copy-

ing map, which fulfills the covariance condition (4). If T̃α
denotes the average of the optimal copying process T̂α,
then for every pure state |ψ〉 ∈ Ωα we find

〈ψ| ⊗ 〈ψ|T̃α(|ψ〉〈ψ|)|ψ〉 ⊗ |ψ〉 =
∫
dU1dU2〈ψU | ⊗ 〈ψU |T̃α (|ψU 〉〈ψU |) |ψU 〉 ⊗ |ψU 〉 ≥

∫
dU1dU2L(T̂α) = L̂α(A4)

with |ψU 〉 = U|ψ〉. Because the lefthand side of the in-
equality is independent of |ψ〉 ∈ Ωα, it is also valid for

L(T̃α), i.e.

L(T̃α) ≥ L̂α. (A5)

But from the definition of L̂α we know that L(T̃α) ≤ L̂α.
Thus, we conclude that

L(T̃α) = L̂α (A6)

and we can restrict our search for optimal copying pro-
cesses to covariant ones.

APPENDIX B: IRREDUCIBLE TENSOR

OPERATORS

A set of irreducible tensor operators T (a,b)(J1J2)KQ
for two quantum systems a and b with respect to the
rotation group is defined by [14, 15]
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T (a,b)(Ja, Jb)KQ =
∑

MaMb

(−1)Ja−Ma
√
2K + 1

(
Ja Jb K
Ma −Mb −Q

)
|JaMa〉 ⊗ 〈JbMb| (B1)

with the ket (bra) |JM〉 (〈JM |) denoting eigenstates of
the total angular momentum operator of both quantum
systems. Thereby the total angular momentum quantum
number and the magnetic quantum number are denoted

by J and M . In Eq.(B1) we have introduced the 3j-
symbol whose orthogonality and completeness relations
imply the corresponding relations

Tr[T (a,b)(Ja, Jb)KQT
(a,b)(J ′

a, J
′
b)

†
K′Q′ ] = δJaJ′

a
δJbJ′

b
δKK′δQQ′ . (B2)

Thereby, Tr denotes the trace over the Hilbert spaces of
quantum systems a and b. The irreducible tensor opera-
tors of Eq.(B1) are special cases of complete orthogonal
sets of operators with simple transformation properties

with respect to a particular group. In the case of Eq.(B1)
it is the group of rotations of the quantum systems a and
b and the simple transformation property is given by

UT (a,b)(JaJb)KQU† =
∑

q

T (a,b)(JaJb)KqD(U)
(K)
qQ . (B3)

with U = U ⊗ U .
As the tensor operators of Eq.(B1) form a complete set

any operator ρ in the Hilbert space of particles a and b
can be decomposed according to

ρ =
∑

JaJbKQ

〈
T (a,b)(JaJb)

†
KQ

〉
T (a,b)(JaJb)KQ (B4)

with
〈
T (a,b)(JaJb)

†
KQ

〉
= Tr

{
ρ T (a,b)(JaJb)

†
KQ

}
, (B5)

T (a,b)(JaJb)
†
KQ = (−1)Ja−Jb+Q T (a,b)(JbJa)K−Q.

With the help of these relations and the condition U1 ⊗
U2ρrefU

†
1 ⊗ U †

2 = ρref which has to be fulfilled by any

covariant quantum process it is straightforward to proof
the general form of the output state of Eq.(8).

APPENDIX C: POSITIVITY CONSTRAINTS

We start from the most general form of the output
state of the linear and covariant quantum map defined
by Eqs.(8) and (11). Due to the covariance condition (4)
this output state can be decomposed into a direct sum of
density operators according to

ρout(ρin) = M1 ⊕M2 ⊕M3 ⊕M4 ⊕M5 (C1)
with

M1 = [(2α2 − 1)(A2 +A5) +A1 +A6]|11; 11〉〈11; 11|+A6|10; 10〉〈10; 10|+A8|10; 00〉〈10; 00|+A16|00; 00〉〈00; 00|+
A14|00; 10〉〈00; 10|+ [(1− 2α2)(A2 +A5) +A1 +A6]|00; 1− 1〉〈00; 1− 1|+ 2α

√
1− α2[A1|11; 11〉〈10; 10|+

A1|10; 10〉〈11; 11|]− 2α
√
1− α2[A3|11; 11〉〈10; 00|+A∗

3|10; 00〉〈11; 11|] +
2α

√
1− α2[A11[|11; 11〉〈00; 00|+A∗

11|00; 00〉〈11; 11|]− 2α
√
1− α2[A9[|11; 11〉〈00; 10|+A∗

9|00; 10〉〈11; 11|] +
(2α2 − 1)[A7|10; 10〉〈10; 00|+A∗

7|10; 00〉〈10; 10|] + [A11|10; 10〉〈00; 00|+A∗
11|00; 00〉〈10; 10|] +
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(2α2 − 1)[A10|10; 10〉〈00; 10|+A∗
10|00; 10〉〈10; 10|] + 2α

√
1− α2[A1|10; 10〉〈00; 1− 1|+A1|00; 1− 1〉〈10; 10|] +

(2α2 − 1)[A12|10; 00〉〈00; 00|+A∗
12|00; 00〉〈10; 00|] + [A17|10; 00〉〈00; 10|+A∗

17|00; 10〉〈10; 00|] +
2α

√
1− α2[A∗

3|10; 00〉〈00; 1− 1|+A3|00; 1− 1〉〈10; 00|] + (2α2 − 1)[A∗
15|00; 00〉〈00; 10|+A15|00; 10〉〈00; 00|] +

2α
√
1− α2[A∗

11|00; 00〉〈00; 1− 1|+A11|00; 1− 1〉〈00; 00|] +
2α

√
1− α2[A∗

9|00; 10〉〈00; 1− 1|+A9|00; 1− 1〉〈00; 10|],
M2 = [(2α2 − 1)A4 +A8)]|11; 00〉〈11; 00|+ [−(2α2 − 1)A5 +A6)]|10; 1− 1〉〈10; 1− 1|+

[−(2α2 − 1)A13 +A14)]|00; 1− 1〉〈00; 1− 1|+ [(2α2 − 1)A2 +A6)]|11; 10〉〈11; 10|+
2α

√
1− α2[A∗

3|11; 00〉〈10; 1− 1|+A3|10; 1− 1〉〈11; 00|]−
2α

√
1− α2[A17|11; 00〉〈00; 1− 1|+A∗

17|00; 1− 1〉〈11; 00|] + [(2α2 − 1)A∗
7 +A∗

3)]|11; 00〉〈11; 10|+
[(2α2 − 1)A7 +A3)]|11; 10〉〈11; 00|+ [(2α2 − 1)A10 −A9]|10; 1− 1〉〈00; 1− 1|+
[(2α2 − 1)A∗

10 −A∗
9]|00; 1− 1〉〈10; 1− 1|+ 2α

√
1− α2[A1|10; 1− 1〉〈11; 10|+A1|11; 10〉〈10; 1− 1|]−

2α
√
1− α2[A∗

9|00; 1− 1〉〈11; 10|+A9|11; 10〉〈00; 1− 1|],
M3 = [−(2α2 − 1)A4 +A8)]|1− 1; 00〉〈1− 1; 00|+ [(2α2 − 1)A5 +A6)]|10; 11〉〈10; 11|+

[(2α2 − 1)A13 +A14)]|00; 11〉〈00; 11|+ [−(2α2 − 1)A2 +A6)]|1− 1; 10〉〈1− 1; 10| −
2α

√
1− α2[A∗

3|1− 1; 00〉〈10; 11|+A3|10; 11〉〈1− 1; 00|]−
2α

√
1− α2[A17|1− 1; 00〉〈00; 11|+A∗

17|00; 11〉〈1− 1; 00|] + [(2α2 − 1)A∗
7 −A∗

3]|1− 1; 00〉〈1− 1; 10|+
[(2α2 − 1)A7 −A3]|1− 1; 10〉〈1− 1; 00|+
[(2α2 − 1)A10 +A9]|10; 11〉〈00; 11|+ [(2α2 − 1)A∗

10 +A∗
9]|00; 11〉〈10; 11|+

2α
√
1− α2[A1|10; 11〉〈1− 1; 10|+A1|1− 1; 10〉〈10; 11|] +

2α
√
1− α2[A∗

9|00; 11〉〈1− 1; 10|+A9|1− 1; 10〉〈00; 11|],
M4 = [(2α2 − 1)(A2 −A5)−A1 +A6]|11; 1− 1〉〈11; 1− 1|,
M5 = [(2α2 − 1)(−A2 +A5)−A1 +A6]|1− 1; 11〉〈1− 1; 11|. (C2)

Thereby, the basis states |JM ; J ′M ′〉 involve eigenstates
of the total angular momenta of qubits one and three
on the one hand and qubits two and four on the other
hand, i.e. |JM ; J ′M ′〉 = |JM〉(1,3) ⊗ |J ′M ′〉(2,4) with
(J,M) and (J ′,M ′) denoting the relevant total angular
momentum and magnetic quantum numbers.
The non-negativity of the output state (C2) necessar-

ily implies that all diagonal matrix elements have to be
non-negative. The resulting constraints give rise to the
inequalities (13). Furthermore, for appropriately chosen
pure states |χ〉 the relation 〈χ|ρout(ρin)|χ〉 ≥ 0 yields the

inequalities (14), i.e.

|χ〉 = a|10; 10〉+ b|00; 00〉 → | A11 |2≤ A16A6,

|χ〉 = a|10; 00〉+ b|00; 10〉 → | A17 |2≤ A14A8,

|χ〉 = a|11; 11〉+ b|00; 1− 1〉+ c|10; 10〉
→ A6 | (2α2 − 1)(A2 +A5) |2≤ (A1 +A6)

2A6 −
8α2(1− α2)A2

1(A1 +A6) (C3)

with a, b and c denoting arbitrary complex-valued coef-
ficients.
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