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We apply perturbative renormalization-group theory to the symmetric phase of a dilute interacting Bose gas
which is trapped in a three-dimensional harmonic potential. Using Wilson’s energy-shell renormalization and
the « expansion, we derive the flow equations for the system. We relate these equations to the flow for the
homogeneous Bose gas. In the thermodynamic limit, we apply our approach to examine the transition tem-
perature of the harmonically trapped Bose gas as a function of the scattering length. The results are compared
to previous studies of the problem.
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I. INTRODUCTION

Dilute, repulsively interacting Bose gases in a three-
dimensional harmonic trap have been the focus of attention
of the theoretical physics community since the experimental
realization of Bose-Einstein condensation(BEC) in 1995
[1–3]. A vast amount of literature has been published re-
cently on this topic based on the mean-field approach. It is
however known that mean-field theory is not appropriate
near the critical temperature because the fluctuations domi-
nate the mean field in this region. This follows from applying
the so-called Ginzburg criterion[4,5] and has triggered sev-
eral attempts to go beyond mean-field theory near the critical
region by means of various renormalization-group(RG)
techniques in the homogeneous interacting Bose gas[6–12].
This recent work was added to a significant amount of exist-
ing literature on the application of RG methods to interacting
Bose gases, which was written when such systems were only
an interesting theoretical problem[13–18].

All these studies so far concern the homogeneous case;
the real challenge, however, is to apply renormalization tech-
niques to the experimentally relevant system, the trapped
Bose gas[8]. This challenge is met here for the first time, to
our knowledge, at least when we approach the transition re-
gion from above the critical temperature(symmetric phase).
In this case the theoretical treatment is simpler than in the
symmetry-broken phase and allows us to see how to apply
renormalization techniques. In particular, we shall use a
method similar to what in the homogeneous case is known as
momentum-shell renormalization[6,8,19]. In the trapped
case it is energy shells instead of momentum shells that we
will be integrating out. Of course, since we are dealing here
with a finite system, there is, strictly speaking, no phase tran-
sition [4]. However, as we approach the thermodynamic
limit, a quasi–phase transition develops, and renormalization
methods are expected to enable us to study nonuniversal
properties such as the critical temperature and its dependence
on the scattering length.

The paper is organized as follows. Section II develops the
theoretical methods necessary to apply the renormalization
procedure to the weakly interacting, trapped Bose gas. Start-
ing from a high–energy cutoff, we successively integrate out
energy shells, thus perturbatively creating an effective action

for the low-energy field. This effective action is then cast
into the form of the original action. In Sec. III, we derive the
renormalization-group equations for the chemical potential,
the interaction, and the grand-canonical thermodynamic po-
tential. We also refine our results by means of a first-order«
expansion. It is shown that, in the thermodynamic limit, the
flow equations for the chemical interaction and the interac-
tion have the same form as for a homogeneous interacting
Bose gas. All nonuniversal properties, which are due to the
presence of the harmonic trap, enter through the flow equa-
tion for the thermodynamic potential. Section IV is devoted
to the study of a particular nonuniversal property, namely,
the transition temperature and its dependence on the scatter-
ing length in the thermodynamic limit. After a short sum-
mary in Sec. V, we discuss in Appendix A how the thermo-
dynamic limit affects the relevant density of states entering
the renormalization-group equations of Sec. III. Appendix B
contains a discussion of numerical methods we used for ob-
taining the results presented in Sec. IV.

II. EFFECTIVE ACTION FOR THE LOW-ENERGY FIELD

The grand partition function for the interacting dilute
Bose gas can be expressed as a functional integral[20,21],
i.e.,

Z =E dff,f*ge−Sff,f* g. s1d

We work in aD-dimensional space, where the bosonic fields
fst ,xd and f*st ,xd depend on spatial coordinatesx
=sx1, . . . ,xDd and on the imaginary timet. The fields are
periodic int with period"b, whereb=1/kBT is the inverse
temperature andkB denotes Boltzmann’s constant. Assuming
s-wave repulsive interactions, the Euclidean action character-
izing the functional integral of Eq.s1d is

Sff,f*g =
1

"
E

0

"b

dtE dDxHf*st,xdF"
]

] t
−

"2

2m
¹2 + Vsxd

− mGfst,xd +
g

2
ufst,xdu4J , s2d

wherem is the chemical potential,m the particle mass, and
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the spatial coordinates are integrated over all space. The cou-
pling constant for the short-range, repulsive interaction po-
tential is denoted byg. For a dilute Bose gas, it has to renor-
malize to the two-bodyT matrix when all two-body
scattering processes are taken into accountf6,21,22g. Thus,
in three spatial dimensions, at zero energy and in lowest-
order perturbation theory, this coupling constant is related to
thes-wave scattering lengtha by g=4pa"2/m. An improved
relation for the scattering lengtha is discussed laterfcom-
pare with Eq.s24dg.

We assume that the interacting Bose gas is trapped in a
D-dimensional isotropic harmonic oscillator potential with
frequencyv, i.e., Vsxd= 1

2mv2x2. Furthermore, let us define
the trapping potential along each of its spatial dimensions as
Vjsxjd=mv2xj

2/2 , j =1, . . . ,D. The corresponding normalized
eigenfunctions are denoted bycnj

sxjd, nj ù0, and have
eigenenergiesEnj

+E0/D, whereEnj
="vnj andE0=D"v /2.

The D-dimensional eigenfunctions are given bycn1,. . .,nD
sxd

=cn1
sx1d¯cnD

sxDd with eigenenergiesEn+E0="vn+E0,
wheren=n1+¯ +nD.

We now wish to apply a modification of the momentum-
shell RG procedure to the trapped interacting Bose gas char-
acterized by the effective action of Eq.(2). In the homoge-
neous case the momentum-shell method has been explored
extensively[6–12]. In the case we are dealing with here, the
noninteracting Hamiltoniansg=0d derived from Eq.(2) does
not commute with the momentum operator because of the
presence of the trapping potential. We will therefore use
harmonic-oscillator eigenstates instead of momentum eigen-
states and integrate out small energy shells.

For the purpose of evaluating the partition function(1),
we impose a high-energy cutoff by assuming that the maxi-
mum value thatn can take is some large integernL@1. We
define an energy shell as the shell betweennL−dnL andnL,
wherednL is an integer such thatdnL /nL!1. In addition,
we split the bosonic field into low-energy and high-energy
components denoted byf, and f., respectively, so that
fst ,xd=f,st ,xd+f.st ,xd. Thus, the total bosonic field ex-
panded on eigenfunctions of the noninteracting Hamiltonian
is

fst,xd = o
l=−`

`

o
n=0

nL

o
n1. . .nD

8 eip0
l t

Î"b
cn1,. . .,nD

sxdf̃sl,n1, . . . ,nDd,

where p0
l =2pl /"b are the Matsubara frequencies,

f̃sl ,n1, . . . ,nDd are the complex-valued expansion coeffi-
cients, and the prime on the sum overn1, . . . ,nD signifies the
constraint n1ù0, . . . ,nDù0,n1+¯ +nD=n. Correspond-
ingly, the low-energy field is

f,st,xd = o
l=−`

`

o
n=0

nL−dnL

o
n1,. . .,nD

8 eip0
l t

Î"b
cn1,. . .,nD

sxdf̃sl,n1, . . . ,nDd,

and the high-energy field is

f.st,xd = o
l=−`

`

o
n=nL−dnL

nL

o
n1,. . .,nD

8 eip0
l t

Î"b
cn1,. . .,nD

sxd

3f̃sl,n1, . . . ,nDd.

The first stage of the RG procedure is usually referred to
as Kadanoff transformation and consists of two steps; first,
an effective action for the low-energy field is derived, and
subsequently this effective action is cast in the form of the
original action. For this purpose we proceed to the one-loop
calculation of the effective theory for the low-energy field by
integrating out the high-energy field. In analogy to the ho-
mogeneous case[13], we thus obtain an effective action of
the form

Seffff,,f,
* g = Sff,,f,

* g +
1

2
Trsln Ĝ.d +

1

2
Trflns1 − Ĝ.Ŝdg.

s3d

The “Tr” symbol denotes the trace in both the functional and

the internal space ofĜ.Ŝ. These latter quantities denote the
bare Green’s function for the high-energy field, i.e.,

Ĝ.sp̂0,Ĥhod = SB̂sp̂0,Ĥhod 0

0 B̂*sp̂0,Ĥhod
D ,

and the self-energy for the low-energy field, i.e.,

Ŝst̂,x̂d = gS2f,
* st̂,x̂df,st̂,x̂d f,st̂,x̂df,st̂,x̂d

f,
* st̂,x̂df,

* st̂,x̂d 2f,
* st̂,x̂df,st̂,x̂d

D ,

with

B̂sp̂0,Ĥhod =
1

ip̂0 + Ĥho

, Ĥho =
p̂2

2m
+ Vsx̂d − m. s4d

The hat indicates that these quantities are Schwinger-Fock
operatorsf23–25g.

As in the homogeneous case, we now perform an expan-

sion of Eq.(3) up to second order inĜ.Ŝ. This expansion is
particularly well justified in the context of the RG procedure
used here, because the self-energy is multiplied by the high-
energy propagator which is inversely proportional to the
largest energy scale of the system, the cutoff energy"vnL.
Thus an RG perturbative expansion is expected to have a
wider range of validity than ordinary perturbation as em-
ployed, for example, in the mean-field theory context. Fur-
thermore, the truncation at second order, that is at quartic
interactions, is self-consistent with the truncation at quartic
interactions of the original action(2). Higher-order terms in
powers of the low-energy field are discarded exactly as in the
homogeneous case. A further discussion of these terms that
we neglect here can be found in Refs.[8,12]. The second-
order expansion yields

Trflns1 − Ĝ.Ŝdg < TrF− Ĝ.Ŝ −
1

2
sĜ.Ŝd2G . s5d

Performing the sums over the Matsubara frequencies we find
for the first trace
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TrfĜ.Ŝg =E
0

"b

dtE dDxuf,st,xdu22g

3 o
n=nL−dnL

nL

o
n1,. . .,nD

8
f1sEn + E0ducn1,. . .,nD

sxdu2

s6d

and for the second trace

TrfĜ.ŜĜ.Ŝg =E
0

"b

dtE dDxuf,st,xdu42g2

3 o
n=nL−dnL

nL

o
n1,. . .,nD

8
f2sEn + E0ducn1,. . .,nD

sxdu2,

s7d

where

f1sEd = 2NBEsEd,

f2sEd = 4bNBEsEdf1 + NBEsEdg +
1 + 2NBEsEd

2sE − md
, s8d

andNBEsEd=febsE−md−1g−1 is the Bose-Einstein distribution.
We proceed to the second step of the Kadanoff transfor-

mation noting that the first trace, Eq.(6), is quadratic and the
second trace, Eq.(7), is quartic in the modulus of the low-
energy field. Therefore, the first trace can be interpreted as a
correction to the quadratic part of the original action(2),

dsm − Vd = − g o
n=nL−dnL

nL

o
n1,. . .,nD

8
f1sEn + E0ducn1,. . .,nD

sxdu2,

s9d

and the second trace as a correction to the quartic part of
Eq. s2d,

dg= − g2 o
n=nL−dnL

nL

o
n1,. . .,nD

8
f2sEn + E0ducn1,. . .,nD

sxdu2. s10d

We observe that the corrections(9) and(10) arex depen-
dent and therefore not of the form of the original action(2).
However, in our subsequent treatment we are mainly inter-
ested in the limit of small trapping frequencies, i.e.,b"v
!1. In this case, the thermal wavelengthlth=Î2p"2b /m is
small in comparison with the characteristic extensionL
=Î" /mv of the ground state of the harmonic trap. Therefore,
it is expected that the thermodynamic behavior is dominated
by the properties of the interacting Bose gas in the center of
the trap and boundary effects are negligible. In addition, this
limit is consistent with the thermodynamic limit which we
will concentrate on later and wherev and the particle num-

ber Ñ tend to 0 and̀ , respectively, such thatÑv3 remains
constant. Thus, let us focus on the region near the center of
the trap which meansVjsxjd!Enj

+E0/D , j =1, . . . ,D. Figure
1 shows a schematic of the situation under consideration. We
now employ the JWKB approximation for the harmonic-
oscillator eigenfunctions[26,27], i.e.,

cnj
sxjd =

Îv

p
s2md1/4

fEnj
+ E0/D − Vjsxjdg1/4

3cosF 1

"
E

jnj

,

xj

dySÎ2mfEnj
+ E0/D − Vjsydg −

p

4
DG ,

s11d

with jnj

,=−LÎ2nj +1 and jnj

.=LÎ2nj +1 denoting the left
and right classical turning points. Expressions11d is valid
in the classically allowed regionjnj

,øxj øjnj

. except for a
small area near the turning points. In particular, near the
trap center it is possible to neglect the trapping potential
Vjsxjd in the denominator of Eq.s11d. Furthermore, in this
region the high-energy eigenstates oscillate very rapidly
on the length scale set byL. Therefore, we can safely
approximate each of the squares of the cosines appearing
in Eqs. s9d and s10d by their spatial averages 1/2. The
corrections in Eqs.s6d and s7d now assume the forms

dsm − Vd = − g o
n=nL−dnL

nL

rsndf1sEn + E0d
s2mvdD/2

"D/2s2pdD s12d

and

FIG. 1. Schematic for integrating out a high-energy shell.
Shown is a one-dimensional cut through the potential along the
coordinate axisxj. The high-energy eigenfunctions are located
aroundEL@E0. In Eq. (11), the trap potentialVj is thus negligible
compared toEL around the trap center. The classical turning points
of the high-energy eigenfunctions are denoted byjnj

, and jnj

.,
whereas the harmonic-oscillator lengthL indicates the extension of
the trap center.
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dg= − g2 o
n=nL−dnL

nL

rsndf2sEn + E0d
s2mvdD/2

"D/2s2pdD , s13d

where

rsnd = o
n1,. . .,nD

8 1

ÎSn1 +
1

2
D¯ SnD +

1

2
D . s14d

We note that because we are focusing on the center of the
trap, there is no explicit dependence on the trapping potential
anymore on the right-hand sides of Eqs.(12) and (13). We
can therefore interpret the right-hand side of Eq.(12) as a
correction to the chemical potential only and setdV=0. In
other words, the trapping potential and consequently the
trapping frequency receive no nontrivial corrections and ex-
hibit trivial scaling only.

III. RENORMALIZATION-GROUP EQUATIONS

A. Derivation of the flow equations

At this stage we replace the sum overn in Eqs.(12) and
(13) by an integral overn. It is well known that, as long as
the functions we are summing over are smooth, this is a
satisfactory approximation[26,28,29], and it is particularly
good in the regime we are considering here,b"v!1 [30].
We can now consider the renormalization step to be infini-
tesimal and pursue the analogy with the homogeneous calcu-
lation. Therefore, we shift the origin of integration overn in
Eqs. (12) and (13), i.e., n→n−D /2, thus eliminating the
zero-point energy from the functionsf1 and f2 in Eq. (8).

In order to emphasize the analogy to the case of a homo-
geneously interacting Bose gas we introduce a generalized
momentum vectorp=sp1, . . . ,pDd through the relation

"vnj =
pj

2

2m
, pj ù 0, j = 1, . . . ,D. s15d

Obviously, the modulusp of this generalized momentum is
given by "vn=p2/2m. We can also define a cutoff"L for
the generalized momentum vector by the relation"vnL

=s"Ld2/2m=EL. Correspondingly, 1/L may be viewed as
the smallest length in our problem, i.e.,L−1!lth or equiva-
lently bL!b with bL=m/"2L2=1/2EL. As in the homo-
geneous case, we may parametrize the generalized mo-
mentum in terms of this cutoff and of a dimensionless
continuous parameterl according top/"=Le−l. Thus, dif-
ferentiating Eqs.s12d and s13d with respect tol we obtain
the flow equations

dm

dl
= − gsLe−ldDdsldf1sELe−2ld,

dg

dl
= − g2sLe−ldDdsldf2sELe−2ld, s16d

with

dsld =
2D/2

s2pdD sLLe−ld2−DrfsLLe−ld2/2 − D/2g. s17d

This latter factor describes all effects originating in the dis-
crete energy-level structure in the isotropic harmonic trap. In
the case of a homogeneous interacting Bose gas it assumes
the constant valuedh=1/2p2 for the physically relevant case
of D=3.

The effective action of Eq.(3) can now be cast in the form
of the original action. This is achieved by reinstating the
cutoff for n to its original valuenL, or, equivalently, the
cutoff of the modulus of the generalized momentumq of the
low-energy field to its original value"L (note that we are
usingq for the modulus of the momentum of the low-energy
field as opposed top which is the modulus of the momentum
of the high-energy field). To this end, we rescale each com-
ponent qj of the momentum vectorq=sq1, . . . ,qDd of the
low-energy field according toqjsld=qje

l. Thus, the rescaled
modulus of the momentum vector of the low-energy field
readsqsld=qel and it is cut off at"L. This trivial rescaling
together with the demand that the effective action(3) re-
mains formally the same after each renormalization step in-
duces the trivial scaling of the parameters of the effective
action, xsld=xe−l, tsld=te−2l, msld=me2l ,gsld=ges2−Ddl ,bsld
=be−2l ,fsld=feDl/2. We observe that all quantities scale as
in the homogeneous case. In addition, we define here the
trivial scaling of the oscillator frequency,vsld=ve2l. Conse-
quently, the trivial scaling of the oscillator length is given by
Lsld=Le−l. It is convenient to introduce the dimensionless

parameters bsld=bsld /bL ,Msld=bLmsld ,G̃sld=bLLDgsld /
bsld ,Vsld="bLvsld=sLLe−ld−2, and the dimensionless cutoff
energyE.;bLEL=1/2. Wewant to point out that the di-
mensionless quantitiesbsld and Msld scale trivially as the
corresponding dimensional parametersbsld and msld,
whereasG̃sld scales trivially asG̃sld=G̃esD−4dl. In terms of
these quantities the renormalization-group equations for the
dimensionless chemical potential and the dimensionless cou-
pling strength are finally given by

dMsld
dl

= 2Msld − 2G̃slddsldbsldNsld,

dG̃sld
dl

= s4 − DdG̃sld − G̃sld2dsldbsldH4bsldNsldf1 + Nsldg

+
1 + 2Nsld

2fE. − MsldgJ , s18d

with the scaled Bose distribution

Nsld = hebsldfE.−Msldg − 1j−1. s19d

We observe that there are two differences from the homoge-
neous RG equations.

The first difference is that the maximum number of RG
steps in the trapped case is finite. This is due to the presence
of the zero-point energy which has no homogeneous coun-
terpart. The number of renormalization stepsl required to
reach an energy scaleEspd;p2/2m="vn is defined by
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Espde2l =EL and thereforel =lnÎEL /Espd. This means that, if
Emin is the minimum value the energy can take, the maxi-
mum value of RG steps isl* =ÎEL /Emin. In the homogeneous
caseEmin=0 and l* =`, whereas in the trapped caseEmin
=D"v /2, which results in a finite number of steps,

l* = ln
1

ÎDbL"v
= ln

1
ÎDVs0d

. s20d

Of course, this maximum number of steps must be consistent
with the requirement that throughout the renormalization
procedure the Bose-Einstein distribution of Eq.s19d must
remain positive so that the particle density remains positive.

The second difference is due to the fact that in the trapped
case the energy spectrum is discrete. Although we replaced
the sum overn by an integral overn we kept the sums in the
expression forrsnd of Eq. (14) and thus retained part of the
discrete nature of the problem. This method is also employed
in treatments of the noninteracting trapped Bose gas[28,29]
where it is also shown that, forD=3, the corrections due to
the discreteness play a significant role only for small particle

numbers, typicallyÑø1000. The consequence of retaining
the sums inrsnd is that the quantitydsld of Eq. (17) appear-
ing in the RG equations(18) differs from the homogeneous
case in two respects. First, it depends on the renormalization
stepl whereas the corresponding homogeneous quantitydh is
a constant, e.g., forD=3 we havedh=1/2p2. Furthermore,
dsld does not coincide with the density of trapped states,
whereasdh does coincide with the density of homogeneous
states[6,12].

B. Thermodynamic limit

In our subsequent discussion we are particularly inter-
ested in the thermodynamic limit of the RG flow equations.
As mentioned above, in the case of an isotropic harmonic
trap this limit is defined by letting the trapping frequencyv

tend to zero and the number of particlesÑ to infinity in such

a way thatÑv3 remains finite. It is shown in Appendix A that
in this limit the quantitydsld approaches the constant value
1/2p2 in three spatial dimensions. We thus conclude that in
the thermodynamic limit the RG flow equations(18) for the
trapped interacting gas assume the same form as in the ho-
mogeneous case. This is one of the main results of this work.
In particular, it follows that the universal critical properties
are not influenced by the presence of the trap. As we will see
below, all effects on the(nonuniversal) thermodynamic prop-
erties that originate from the isotropic harmonic trap are con-
tained in the flow equation for the grand thermodynamic
potential of Eq.(22) below. It involves the density of states
in the trap and therefore differs from the corresponding flow
equation for a homogeneous Bose gas.

It is also instructive to study the transition to the thermo-
dynamic limit in terms of the flow resulting from the RG
equations(18). Figures 2(a) and 2(b) compare typical flow
trajectories close to and further away from the thermody-
namic limit. The proximity to this limit is determined by the
value of Vs0d=1/sLLd2 which differs by several orders of
magnitude between the two plots. Within each of the dia-

grams, the trajectories were obtained for fixed initial values

of b, G̃, andV, but differing values of the scaled chemical
potentialMs0d. The dashed curves show representative tra-
jectories for the corresponding homogeneous flow, i.e.,
Vs0d=0. These trajectories clearly reflect the presence of the
unstable fixed point in the homogeneous flow which is in-
dicative of a second-order phase transition. The trapped flow
of Fig. 2(a), which has a very small but finite value ofVs0d,
does not have a fixed point anymore in a strict sense, but it
stills resembles very closely the homogeneous flow. In this
way, it is representative of a quasi-phase transition, which is
expected for systems close to the thermodynamic limit. In
Fig. 2(b), Vs0d is larger by a factor of 103, and the flow now
differs significantly from the homogeneous one, although
some characteristic features are still present. One should also

FIG. 2. Flow trajectories for finite-sized systems(full curves)
and their thermodynamic limit(dashed). All trajectories have been
determined from the RG equations(18). They have the same initial

values ofbs0d=10 657 andG̃s0d=1.18310−3, but different values
of Ms0d. For the finite-sized system in(a), we use Vs0d
;1/sLLd2=10−9 and Ms0d between 2.1195310−6 and 2.128
310−6. In (b), we haveVs0d=10−6 and Ms0d between 1.4310−6

and 2.1310−6. In the thermodynamic limit,Vs0d=0, and Ms0d
varies between 2.1387310−6 and 2.1391310−6. The corresponding

value foraÑ1/6/L is 6.12310−3. The quantityḠ is related toG̃ by

Ḡ=G̃dsld.
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note thatMs0d now has to be changed over a much wider
range than in(a) in order to produce the characteristic change
in the large-l behavior of the flow trajectories, i.e., switching
from negative to positive final valuesMsl*d. This is in accor-
dance with the expectation that the phase transition becomes
more and more smeared out, as one moves away from the
thermodynamic limit.

We now turn to the calculation of the grand thermody-
namic potentialw=−b−1 ln Z that allows to determine all
thermodynamic properties of the trapped gas. As a conse-
quence of our one-loop evaluation of the effective action, in
the thermodynamic limit this quantity is given by

w =
1

b
E

l=0

`

dl
1

8Vsld3lnf1 − e−bsldfE.−Msldgg. s21d

The factorf8Vsld3g−1 reflects the quantum-mechanical den-
sity of states in the harmonic potential. It is convenient to
define an “intensive” dimensionless thermodynamic poten-
tial Wsld=Vs0d3bLwsld for which the scaling of the exten-
sive potentialw in the thermodynamic limit is appropriately
taken into account. Differentiating with respect to the con-
tinuous variablel, we finally obtain the flow equation

dWsld
dl

=
e−6l

8bs0d
lnf1 − e−bsldfE.−Msldgg. s22d

We note that in the above RG equation the chemical poten-
tial depends onl and therefore, through Eq.s18d, on the
interaction. In other words, the interaction enters the RG
equation for the grand thermodynamic potential implicitly
through the nontrivial scaling of the chemical potential,
which is the main difference in the case of a trapped ideal
gas. In order to determine the grand thermodynamic poten-
tial, we have to solve Eqs.s18d and s22d with initial condi-

tions Ws0d=0, Ms0d!1, Gs0d=G̃s0dbs0d@1, bs0d@1, and
Vs0d!1.

The renormalization-group equations(18) can be refined
in a simple way by means of a first-order« expansion
[19,31]. This method is expected to yield better quantitative
results in particular as far as critical properties are concerned.
For this purpose we set 4−D=« in Eq. (18) and formally
treat this quantity as a small parameter. We then expand sys-
tematically all quantities on the right-hand sides of the RG

equations(18) aroundsM ,G̃d=s0,0d up to second order in
this small parameter. Thereby, one assumes that the quanti-

ties M andG̃ remain of the order of«. Thus, we expand the
first equation of(18) up to first order inM and the second
equation of(18) up to zeroth order inM. As a consequence,
in the thermodynamic limit we find the modified RG equa-
tions

dMsld
dl

= 2Msld − G̃sld
VD

s2pdDbsldh2NmfbsldE.g

+ 2bsldNmfbsldE.gs1 + NmfbsldE.gdMsldj,

dG̃sld
dl

= «G̃sld − G̃sld2 VD

s2pdDbsldH1 + 2NmfbsldE.g
2E.

+ 4bsldNmfbsldE.gs1 + NmfbsldE.gdJ . s23d

with VD denoting the surface of aD-dimensional unit sphere
(compare with Appendix A) and with the modified Bose dis-
tribution Nmsxd;NBEsx;m=0d=fexpsxd−1g−1. In the frame-
work of the« expansion one setsD=4 on the right-hand side
of Eqs.(23). In three spatial dimensions these RG equations
have to be solved for«=1 together with the flow equation
(22) of the grand thermodynamic potential.

Let us finally summarize the main approximations that are
contained in the renormalization-group approach outlined in
the last two sections. A more thorough discussion can be
found, e.g., in Ref.[12]. First of all, the treatment is only up
to one-loop order and therefore does not coincide with the
exact renormalization group. Further approximations con-
cern the derivative expansion, i.e., the inclusion of higher-
order derivatives in the effective action, and the polynomial
expansion ofSeff in powers of the field. We truncated these
expansions at lowest order, as we only considered the terms
already present in the original action. It is known that the
inclusion of higher-order terms in these expansions can im-
prove the results for critical exponents[8,32], but their influ-
ence on nonuniversal properties has not been studied in de-
tail so far. We have also performed the« expansion only to
first order; the« expansion, however, is asymptotic, and the
extension to higher orders may not necessarily improve the
results. Finally, we are using a sharp cutoff function, but this
is not expected to significantly influence the results on the
level of our approach[12].

The most important approximation pertinent to the pres-
ence of the external harmonic potential is the evaluation of
the traces of Eqs.(6) and(7) with the help of WKB functions
and the ensuing neglect of any renormalization of the poten-

tial. As a consequence, the flow equations forM and G̃ co-
incide with the homogeneous system in the thermodynamic
limit.

Many of the approximations listed above are not system-
atic, and their effects on the final results of the theory are
difficult to control. They have been studied to some extent in
connection with universal properties, such as critical expo-
nents(see, e.g., Refs.[8,32]). In spite of these problems, the
recent interest in weakly interacting Bose gases makes it
worthwhile to also apply RG methods to investigate nonuni-
versal properties, such as the critical temperature.

IV. CRITICAL TEMPERATURE

Solving Eqs.(18) or (23) together with Eq.(22) allows us
to determine any thermodynamic property of an interacting,
trapped Bose gas at and above the BEC phase transition.
First of all, let us summarize the results for the critical ex-
ponents which have been derived elsewhere[6,31,33] in con-
nection with the study of the homogeneous flow. In the ther-
modynamic limit, the unstable fixed point of the flow

equations (18) with D=3 is given by sM* ,G̃*d
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=s1/12,5p2/72d. The critical exponent for the correlation
length isn=0.532. Using first-order« expansion, this fixed

point is shifted to the positionsM* ,G̃*d=s« /10,«p2/10d and
its eigenvalues are given byl1=2−2« /5 and l2=−« with
«;D−4=1. As aconsequence the corresponding critical ex-
ponent for the correlation length assumes the valuen
=1/l1=0.600 which is significantly closer to the experimen-
tal value ofn=0.670[33].

In the following, however, we wish to focus our attention
on the dependence of the critical temperature on the interac-
tion strength in the thermodynamic limit. The numerical in-
vestigation of critical properties requires us to find the criti-

cal flow trajectories in thesM ,G̃,bd space, i.e., those
trajectories that asymptotically reach the fixed point forl
→`. In Appendix B, we briefly comment on strategies for
accomplishing this task. There exists a continuous family of
different critical trajectories, the so-called critical manifold,
and each trajectory can be assigned a specific value for

aÑ1/6/L, i.e., a suitably normalized scattering length, as we
see below. Scanning the different critical trajectories thus
allows us to explore a wide range of scattering lengths. The
thermodynamic potentialW at criticality is then determined
by integrating Eq.(22) along a critical trajectory. Thereby,

the initial and final values fMs0d ,G̃s0d ,bs0dg and

fMsl fd ,G̃sl fd ,bsl fdg of the trajectory need to be pushed suffi-
ciently outwards so that the calculation ofW is converged.
Typically, this requirement implies that one has to choose

Ms0d!1 and G̃s0dbs0d ,bs0d@1. In this way, it is ensured
that the cutoffL corresponds to the largest energy in the

problem, and relevant physical quantities such asaÑ1/6/L
and the critical temperature become cutoff independent.

Applying this procedure, it turns out, however, that for the
largest scattering lengths shown in the figures below, conver-
gence ofW cannot be achieved even if the initial conditions
are pushed very far outwards. The results thus become some-
what cutoff dependent. To explain this behavior, we argue
that in this regime our RG model effectively describes a gas
of hard spheres. We then attribute the cutoff dependence to
the fact that for strong interactions, the critical temperature
no longer depends only on the scattering length, but is also
sensitive to finer details of the potential. To establish the
connection to a hard-sphere gas, we note that the bare two-
body scattering length pertaining to a set of given initial
conditions is obtained from the flow equation forg̃sld
=gsldesD−2dl in the limit of zero temperature and zero chemi-
cal potential. The quantityg̃sld characterizes the renormal-
ized interaction strength, after the trivial scaling has been
removed. Identifying thes-wave scattering lengtha with the
renormalized interaction strengthg̃s`d according to g̃s`d
=4pa"2/m we obtain the relation

aL =
G̃s0dbs0d

4p +
2

p
G̃s0dbs0d

s24d

for D=3. This latter relation for the zero-energys-wave scat-
tering length is in agreement with the Lippmann-Schwinger

analysisf34g for the T matrix f6g. We then compare this
result to zero-energy two-body scattering with an interaction
potential Vsx−x8d=QsR− ux−x8ud"2k0

2/2mr, i.e., a finite-
height repulsive potential of radiusR f35g. Thereby mr
=m/2 denotes the reduced mass andk0 is a measure of the
potential strength. Ifk0R@1, the corresponding scattering
length a is given bya/R=k0R/ s1+k0Rd. With the help of

the identificationsR=p /2L and k0R=G̃s0dbs0d /2p2, this
expression can be mapped onto Eq.s24d. In this way, we can
relate the interaction used in Eq.s2d to scattering between
quasihard spheres, andp /2L is interpreted as the sphere
radius.

As emphasized in Sec. III B, in the thermodynamic limit
the flow equations(18) and (23) reduce to the equations of
an interacting homogeneous gas. Thus, all effects originating
from the presence of the isotropic harmonic trap are con-
tained in the flow equation(22) for the dimensionless inten-
sive thermodynamic potentialWsld. As Wsld only depends on

Msld, but not onG̃sld, the particle interactions affect the ther-
modynamic properties only through the nontrivial scaling of
the dimensionless chemical potentialMsld. In the special

case of negligible interaction, i.e.,G̃sld=0, Msld scales trivi-
ally, i.e.,Msld=Ms0de2l, so that Eqs.(18) and(22) reproduce
all thermodynamic properties of a noninteracting Bose gas in
an isotropic harmonic trap within the framework of a grand
canonical ensemble.

For a given critical trajectory with initial conditions

fMs0d ,G̃s0d ,bs0dg, the calculation of the corresponding criti-
cal temperatureTc proceeds as follows. With the critical tra-
jectory, we associate the scaled particle numbers

=−]W/]Ms0dubs0d,G̃s0d=V3Ñ. A way to accurately calculate
this quantity numerically is outlined in Appendix B. An ideal

gas with the same value ofs=V3Ñ has a critical temperature
Tc

0 that is determined bybLkBTc
0=fszs3dg1/3 with zsxd the

Riemannz function [30]. The ratioTc/Tc
0 can thus be ex-

pressed as

Tc/Tc
0 = zs3d1/3/ss1/3bd. s25d

In our subsequent discussion we want to investigate the de-
pendence of the critical temperature on thes-wave scattering
length of the interacting Bose gas. From Eq.s24d we find
that a particularly convenient measure for the scattering
length is the dimensionless parameter

aÑ1/6/L = s1/6aL = s1/6 G̃s0dbs0d

4p +
2

p
G̃s0dbs0d

. s26d

For each critical trajectory, we calculateTc/Tc
0 andaÑ1/6/L,

and in this way we obtain the dependence of the critical
temperature on the scattering length.

Figure 3 summarizes our main numerical results for the
critical temperature. Figure 3(a) shows the RG calculations
according to Eqs.(23) (bold curve) and (18) (dashed) to-
gether with the mean field(MF) approximation[36] (dotted)
and the predictions of Refs.[37] (dot-dashed), [38] (dot-dot-
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dashed), and [39] (open and closed circles). We first of all
note that both RG results, which match rather closely for the
values ofaÑ1/6/L shown in Fig. 3(a), lie above the MF ap-
proximation. This is generally expected[38] as the critical
fluctuations, which are neglected in the MF theory, should
lead to an increase inTc.

In the limit of aÑ1/6/L→0, mean-field theory predicts a
linear relationship between the shift in the critical tempera-
ture and the scattering length, i.e.,Tc/Tc

0=1−CaÑ1/6/L with
C<1.33 [36]. In the derivation of this result, it is assumed
that only a small fraction of the atoms take part in the con-
densation process so that critical fluctuations can be ne-
glected(see, e.g., Refs.[36,37,40]). To lowest order ina, the
shift in Tc is exclusively due to the fact that the atomic in-
teractions change the density profile of the gas at the con-
densation point(as compared to the ideal case). The shift can
thus be calculated from the local-density approximation and
the lowest-order virial expansion for the atomic density[37].
Corrections due to critical effects are expected to influence
the shift only in higher order ina [37,40].

Our RG approach also yields a linear relation between the
shift in the critical temperature and the scattering length in

the limit of small a. The numerical coefficientC8 is about
7% smaller thanC. Although the RG calculation does not
coincide exactly with mean field, this result gives a clear
indication for the validity of our RG description of the
trapped Bose gas. As to the remaining discrepancy, the very
different approaches in the RG and MF treatments make a
direct comparison of the influence of the various approxima-
tions rather difficult. We might speculate that RG slightly
overestimates the effects of critical fluctuations, because the

nontrivial renormalization ofM andG̃ is the same as in the
homogeneous case. Intuitively, one could expect that the
presence of the trap would somehow reduce this effect. On
the other hand, it should also be kept in mind that the accu-
racy of the MF result itself is not known exactly, although it
is certainly a very good approximation.

For somewhat largeraÑ1/6/L, we find from Fig. 3(a) that
the RG curves are close to the result of Ref.[38], whereas
the prediction of Ref.[37] is halfway between MF and RG.
In Ref. [37], a nonperturbative analytical second-order result
is derived, whereas Ref.[38] is based on a mean-field ap-
proach where critical fluctuations are included by modifying
the critical degeneracy. Figure 3(a) also shows results of two
Hartree-Fock-Bogoliubov (HFB) calculations [39]. The
HFB-Popov data are relatively close to MF, whereas
HFB-G2 is near the RG results. The comparison between the
different approaches, which are displayed in Fig. 3(a), gives
further support to the validity of our RG method.

In Fig. 3(b), we have extended our RG calculations to

larger values ofaÑ1/6/L. As mentioned above, foraÑ1/6/L
larger than, approximately, 0.3, the quantitative results be-
come somewhat cutoff dependent. The quantitative behavior
of the curves, however, does not change. We now observe a
profound difference between the treatments without and with
« expansion. The former predicts an increase inTc/Tc

0 for
larger scattering lengths, whereas the latter indicates a de-
crease. On physical reasons, the second behavior appears to
be more plausible, as for large particle interaction, an inhibi-
tion of Bose-Einstein condensation is expected. On these
grounds, the« expansion seems to be more reliable. Further
support for the reliability of our results can be drawn from
the study of the homogeneous system. As we briefly show in
the following, there the calculations for large scattering
lengths agree qualitatively with other studies.

The results for the RG treatment of thehomogeneousin-
teracting Bose gas are shown in Fig. 4. In this case, the
relevant thermodynamic potentialWhom is obtained from in-
tegrating[6,9]

dWhom

dl
=

1

2p2bs0d
e−3l lnf1 − e−bsldfE.−Msldgg, s27d

whereas the flow equations forMsld andG̃sld are still given
by the thermodynamic limit of Eqs.s23d and s18d, respec-
tively. In Fig. 4, the scattering length is scaled to the cubic
root of the particle density np, so that anp

1/3

=shom
1/3 G̃s0dbs0d / f4p+2G̃s0dbs0d /pg with shom=−]Whom

/]Mubs0d,G̃s0d. The scaled critical temperature is obtained
from Tc/Tc

0=fzs3/2d /shomg2/3/2pbs0d. Together with the

FIG. 3. Scaled critical temperatureTc/Tc
0 as a function of the

interaction parameteraÑ1/6/L for the harmonically trapped Bose

gas.(a) and(b) display different ranges of values foraÑ1/6/L. Bold
curves: RG result after« expansion according to Eqs.(23), dashed:
RG result without« expansion according to Eqs.(18), dotted:
mean-field approximation[36]. In (a), further predictions from the
literature are shown, viz., Eq.(5.1) of Ref. [37] (dot-dashed curve),
Fig. 1 of Ref. [38] (dot-dot-dashed curve), and DQS-Popov and
DQS-G2(full and open circles) according to Fig. 6(b) of Ref. [39].
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results for the symmetric phase we also display the calcu-
lation for the symmetry-broken phase as described in Ref.
f9g. For smallanp

1/3 it was established in Ref.f9g that the
computation in the symmetry-broken phase predicts a lin-
ear dependence of the critical temperature ona; i.e.,
Tc/Tc

0=Canp
1/3, with C<3.4. For the symmetric phase

without and with« expansion, we also find an approxi-
mately linear behavior with constantsC=1.0 and 1.4, re-
spectively. To put these results into perspective, we note
that Refs.f41,42g predict a value ofC<1.3 which is re-
garded as the best current estimatef43g sfor detailed over-
views of the work on homogeneous systems see, e.g.,
Refs. f40,44–46gd.

It is also of interest to consider the regime of large scat-
tering lengths. In the symmetry-broken phase, the calculation
predicts a monotonous increase ofTc with the scattering
length, a behavior which is probably unphysical. Remark-
ably, however, both curves for the symmetric phase show a
maximum and a subsequent decrease in the critical tempera-
ture. The location and in particular the height of the maxima
are somewhat cutoff dependent, but altogether they do not
differ too strongly from the results displayed in Ref.[47]. As
outlined above, we attribute the cutoff dependence to the fact
that in this regime our RG model effectively describes a gas
of quasihard spheres. For strong enough interactions the
critical temperature cannot be parametrized by the scattering
length alone, but also depends on the finer details of the
potential. Varying the cutoff, e.g., amounts to changing the
radius of the hard spheres.

V. SUMMARY AND CONCLUSIONS

We have applied Wilson’s momentum-shell renormal-
ization-group technique to the harmonically trapped interact-
ing Bose gas. By integrating out small energy shells in the
partition function and applying the« expansion, we have
obtained flow equations for the thermodynamic variables. In
the thermodynamic limit, the flow equations for the chemical
potential and the interaction potential reduce to the corre-
sponding relations for the homogeneous interacting Bose
gas. The presence of the trap becomes manifest only through

the modified flow equation for the grand thermodynamic po-
tential. From the flow equations, we have calculated the tran-
sition temperature as a function of the scattering. The results
were compared to previous studies of the problem. In future
work, we plan to extend the methods presented here to more
general potential shapes in order to assess the general appli-
cablity of our approach.
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APPENDIX A
In this appendix, we discuss a method for calculating the

constrained sumrsnd of Eq. (14) in the limit of large quan-
tum numbers and wide traps, i.e.,n@1 andb"v→0. In this
case, the difference between the energy levels of the har-
monic oscillator vanishes and we can therefore replace the
sums in Eq.(14) by integrals. Furthermore, in the limit of
large values ofn the dominant contribution to Eq.(14)
comes from valuesn1, . . . ,nD@1 so that we obtain the ap-
proximate relation

E dn rsnd=E dnE8
dn1 ¯ dnD

1
În1 ¯ nD

= 2DE dÎn1 ¯ dÎnD.

Here we have converted the constrained integral overnj , j
=1, . . . ,D and the integration overn into an unconstrained
integration overnj and then changed variables toÎnj. Next
we define the vectorr =sÎn1, . . . ,ÎnDd which fulfills r2

=n1+¯ +nD=n. This implies that

2DE dÎn1 ¯ dÎnD = 2D 1

2DE VDrD−1dr=E VD

2
nsD/2d−1dn,

whereVD=2pD/2/GsD /2d is the surface of aD-dimensional
unit sphere andGsxd denotes the Gamma function. The factor
1/2D is due to the fact that the integration variables take only
positive values. We have thus derived the main result

rsnd =
VD nsD/2d−1

2
,

which is valid in the limit n→`. For D=3 we haveV3
=4p and rsnd=2pÎn, so that in the limit Vsld
=1/sLLe−ld2@1 the quantitydsld of Eq. s17d reduces to
the resultdh=1/2p2 and the RG equationss18d reduce to
the ones for a homogeneous interacting Bose gas in the
absence of a trap. Figure 5 shows a diagram ofrsnd to-
gether with the approximation 2pÎn. It is also possible to
compute numerically the next-order correction in the
high-n expansion, 2pÎn−5.701, which is almost indiscern-
ible from the exact result, except nearn=0 ssee insetd.

FIG. 4. Scaled critical temperatureTc/Tc
0 as a function of the

interaction parameteranp
1/3 for the homogeneousBose gas. Bold

curve: RG result after« expansion according to Eqs.(23), dashed:
RG result without« expansion according to Eqs.(18), dotted: RG
result for symmetry-broken phase[9].
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APPENDIX B
In this appendix, we briefly discuss some of our numerical

methods. We first describe how we determine the derivative
s=]W/]Ms0dubs0d,G̃s0d which is required to calculate the

quantitiesTc/Tc
0 andaÑ1/6/L of Eqs. (25) and (26), respec-

tively. From these quantities, we obtain Figs. 3 and 4 show-
ing the dependence of the critical temperature on the scatter-
ing length.

A straightforward approach would consist in using finite
differences, i.e., ]W/]Ms0dubs0d,G̃s0d<fW(Ms0d+dM ,bs0d ,

G̃s0d)−W(Ms0d ,bs0d ,G̃s0d)g /dM with Ms0d the chemical
potential for which the derivative is required anddM a small
variation. However, this method turns out to not produce
well-defined results, in particular for small values of

aÑ1/6/L. Therefore, we apply a scheme which is closely re-
lated to the method of linear stability analysis frequently
used in the theory of dynamical systems[48]. In this scheme,
one propagates the flow trajectory, from whichW(Ms0d) is
calculated, along with an infinitesimal linear deviation from
the initial conditions.

To be specific, we consider the evolution of quantities

dYXsld with X,Y=M or G̃. These quantities are to be inter-
preted asdYXsld=dXsld /dYs0d, i.e., they describe the change
dXsld of a flow trajectory if the initial condition is changed
infinitesimally bydYs0d. If we write the flow equations(18)
or (23) symbolically as

dM

dl
= fMsM,G̃d,

dG̃

dl
= fG̃sM,G̃d,

then the deviationsdYXsld obey the differential equations

d

dl
SdMM

dMG̃
D =1

] fM

] M

] fM

] G̃

] fG̃

] M

] fG̃

] G̃
2SdMM

dMG̃
D

with the initial conditionsdMMs0d=1 anddMG̃s0d=0. The
matrix of partial derivatives has to be evaluated along the
original flow trajectory. Writing Eq.s22d symbolically as
dWsld /dl=FsMd, the required derivatives=]W/]Ms0d is fi-
nally obtained from

d

dl
S ] Wsld

] Ms0dD =
] F

] M
dMM

in the limit l →`. The initial condition is ]Wsl =0d
/]Mubs0d,G̃s0d=0. We have verified that the results from this
method agree with the finite differencing scheme in regimes
where the latter is applicable, e.g., for larger values of
aÑ1/6/L.

We now outline how to find the critical trajectories, i.e.,
those trajectories that asymptotically reach the fixed point. A
systematic and reliable way to determine the criticalMs0d
for given fG̃s0d ,bs0dg consists in propagating trajectories
with increasingMs0d, starting fromMs0d=0. For these tra-
jectories Msl →`d→−` initially. However, for a large
enough Ms0d=M1, one eventually findsMsl →`d→1/2.
The crossover between these two opposite behaviors occurs
at the critical trajectory. The criticalMs0d is thus bracketed
by 0 andM1 and can now be found, e.g., via bisection. An-
other method, which is computationally more efficient but
works well only for smaller scattering lengths, is based on
backward propagation from the nontrivial fixed point. To this
end, one first finds the critical manifold of the fixed point in
the linearization approximation. For a givenbsl fd!1 and

starting from pointsfMsl fd ,G̃sl fdg on this critical manifold,
very near the fixed point, we propagate the thermodynamic
limit of Eqs. (18) or (23) backwards up to a valuel = l i for
which G̃sl id is sufficiently large so that it is ensured that
aL,1. In this way we find the initial conditions of a critical

trajectoryfMsl id ,G̃sl id ,bsl idg. Further critical trajectories are
computed by repeating the above procedure using different
values ofbsl fd.
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