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Phase transition of trapped interacting Bose gases and the renormalization group
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We apply perturbative renormalization-group theory to the symmetric phase of a dilute interacting Bose gas
which is trapped in a three-dimensional harmonic potential. Using Wilson’s energy-shell renormalization and
the & expansion, we derive the flow equations for the system. We relate these equations to the flow for the
homogeneous Bose gas. In the thermodynamic limit, we apply our approach to examine the transition tem-
perature of the harmonically trapped Bose gas as a function of the scattering length. The results are compared
to previous studies of the problem.
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[. INTRODUCTION for the low-energy field. This effective action is then cast

Dilute, repulsively interacting Bose gases in a three-Nnto the form of the original action. In Sec. IlI, we derive the
dimensional harmonic trap have been the focus of attentiofenormalization-group equations for the chemical potential,
of the theoretical physics community since the experimentalh€ interaction, and the grand-canonical thermodynamic po-
realization of Bose-Einstein condensati0BREC) in 1995 tential. We also refine our results by means of a first-oeder
[1-3]. A vast amount of literature has been published re€xpansion. It is shown that, in the thermodynamic limit, the
cently on this topic based on the mean-field approach. It i§low equations for the chemical interaction and the interac-
however known that mean-field theory is not appropriateion have the same form as for a homogeneous interacting
near the critical temperature because the fluctuations domBose gas. All nonuniversal properties, which are due to the
nate the mean field in this region. This follows from applying presence of the harmonic trap, enter through the flow equa-
the so-called Ginzburg criteriof#,5] and has triggered sev- tion for the thermodynamic potential. Section IV is devoted
eral attempts to go beyond mean-field theory near the criticdo the study of a particular nonuniversal property, namely,
region by means of various renormalization-gro(RG)  the transition temperature and its dependence on the scatter-
techniques in the homogeneous interacting Bosg[@as2.  ing length in the thermodynamic limit. After a short sum-
This recent work was added to a significant amount of existmary in Sec. V, we discuss in Appendix A how the thermo-
ing literature on the application of RG methods to interactingdynamic limit affects the relevant density of states entering
Bose gases, which was written when such systems were onte renormalization-group equations of Sec. Ill. Appendix B
an interesting theoretical problefh3-18§. contains a discussion of numerical methods we used for ob-

All these studies so far concern the homogeneous cas#ining the results presented in Sec. IV.
the real challenge, however, is to apply renormalization tech-
niques to the experimentally relevant system, the trapped" EFFECTIVE ACTION FOR THE LOW-ENERGY FIELD

Bose gag48]. This challenge is met here for the firsttime, to  The grand partition function for the interacting dilute

our knowledge, at least when we approach the transition reBose gas can be expressed as a functional int¢g6s21,
gion from above the critical temperatuggmmetric phase e,

In this case the theoretical treatment is simpler than in the

symmetry-broken phase and allows us to see how to apply Z:f Ao df]e‘s[‘f*‘f’*] 0
renormalization techniques. In particular, we shall use a ’ '

method similar to what in the homogeneous case is known a\% . . . L
momentum-shell renormalizatiof6,8,19. In the trapped e work in aD-dimensional space, where the bosonic fields

case it is energy shells instead of momentum shells that wg’(T’X) and ¢ (7,x) depend on S'.Oat'al coordmates
will be integrating out. Of course, since we are dealing heré X1 - Xo) and on the imaginary time. The fields are
with a finite system, there is, strictly speaking, no phase tranP€riodic in7 with period# 4, whereﬁ:}/kBT is the inverse
sition [4]. However, as we approach the thermodynamictemperature a_nle_ denote_s Boltzmann_sconstan_t. Assuming
limit, a quasi—phase transition develops, and renormalizatioff WaVe repulsive interactions, the Euclidean action character-
methods are expected to enable us to study nonuniversind the functional integral of Eq1) is
properties such as the critical temperature and its dependence 1 ("8 g h2
on the scattering length. ¢, 1= —f dq-f dPx qb*(r,x)[ﬁ— - —V2+V(x)

The paper is organized as follows. Section Il develops the filo dr 2m
theoretical methods necessary to apply the renormalization g
procedure to the weakly interacting, trapped Bose gas. Start- =i |p(rx) + 5 ()|, (2
ing from a high—energy cutoff, we successively integrate out
energy shells, thus perturbatively creating an effective actiomvhere i is the chemical potentiam the particle mass, and
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the spatial coordinates are integrated over all space. The cou-

pling constant for the short-range, repulsive interaction po- d-(7,X) = 2 E E z//nl X
tential is denoted byg. For a dilute Bose gas, it has to renor- |==e n=ny=any Nny,...Np \ﬁﬁ

malize to the two-bodyT matrix when all two-body ><71>(I n no)

scattering processes are taken into accd@rl,24. Thus, e D

in three spatial dimensions, at zero energy and in lowest- The first stage of the RG procedure is usually referred to
order perturbation theory, this coupling constant is related tas Kadanoff transformation and consists of two steps; first,
thes-wave scattering length by g=4ma#i?2/m. Animproved  an effective action for the low-energy field is derived, and
relation for the scattering length is discussed latefcom-  subsequently this effective action is cast in the form of the
pare with Eq.(24)]. original action. For this purpose we proceed to the one-loop

We assume that the interacting Bose gas is trapped in @alculation of the effective theory for the low-energy field by
D-dimensional |sotrop|c harmonic oscillator potential with integrating out the high-energy field. In analogy to the ho-
frequencyw, i.e., V(X)=3 Imw?x2. Furthermore, let us define mogeneous casd 3], we thus obtain an effective action of
the trapping potential along each of its spatial dimensions athe form
Vj(xj):mwzszlz,j =1,... D. The corresponding normalized

. . 1 - 1 .n

eigenfunctions are denoted by, (xj), nj=0, and have ¢ _ ¢_]=F¢.,¢_1+-Tr(InG")+-Tr{In(1-G"3)].
eigenenergieg, +Ey/D, WhereEnj:hwnj andEy=D#w/2. 2 2
The D-dimensional eigenfunctions are given Wl,...,nD(X) 3

=, (%1)" -, (Xp) With - eigenenergiesE,+Eo=hwn+Eo, g upp symbol denotes the trace in both the functional and

wheren=n;+---+np. . S .
We now wish to apply a modification of the momentum- the internal ,space dB 3. These_ latter quantities _denote the
p_are Green'’s function for the high-energy field, i.e.,

shell RG procedure to the trapped interacting Bose gas cha
acterized by the effective action of E@®). In the homoge- A A é(f) " ) 0
neous case the momentum-shell method has been explored G” (Po,Hpo) :( o h R R )
extensively[6—17. In the case we are dealing with here, the 0 B"(Po,Hno)
noninteracting Hamiltoniafg=0) derived from Eq(2) does i .
not commute with the momentum operator because of thé‘nd the self-energy for the low-energy field, i.e.,
presence of the trapping potential. We will therefore use  _ (2¢*<(AT,§()¢<(AT’;() (7,3 -(7,%) )
harmonic-oscillator eigenstates instead of momentum eigen- 2(7,X)=d| .« . .. « . . .o .
states and integrate out small energy shells. P-(1X)d(1.X)  2¢(7,X) P (7,X)

For the purpose of evaluating the partition functidn,  with
we impose a high-energy cutoff by assuming that the maxi- L »
mum value thah can take is some large intege(>1. We A ~ _ P .
define an energy shell as the shell betwagr on, andn,, B(Po.Hno) = » Hho= om VE)-p @)
where én, is an integer such thath,/n, <1. In addition,
we split the bosonic field into low-energy and high-energyThe hat indicates that these quantities are Schwinger-Fock
components denoted bg_ and ¢-, respectively, so that operatord23-25.

¢(7,X)=p-(7,X)+ P~ (7,X). Thus, the total bosonic field ex- As in the homogeneous case, we now perform an expan-
panded on eigenfunctions of the noninteracting Hamiltoniarsion of Eq.(3) up to second order i6>3. This expansion is
is particularly well justified in the context of the RG procedure

used here, because the self-energy is multiplied by the high-
" , energy propagator which is inversely proportional to the
largest energy scale of the system, the cutoff endigy,.
H7X) = Z‘MEMEn \ﬁlg ”D(X)QS(I M, -+ o), Thus an RG perturbative expansion is expected to have a
ve wider range of validity than ordinary perturbation as em-
ployed, for example, in the mean-field theory context. Fur-
where p0 27l/hpB are the Matsubara frequencies, thermore, the truncation at second order, that is at quartic
#(1,ng,....np) are the complex-valued expansion coeffi- interactions, is self-consistent with the truncation at quartic
cients, and the prime on the sum owgr ... ,np, signifies the  interactions of the original actio(®). Higher-order terms in
constraint n,=0,... Nnp=0,n;+---+ny=n. Correspond- Powers of the low-energy field are discarded exactly as in the
ingly, the Iow—energy field is homogeneous case. A further discussion of these terms that
we neglect here can be found in Ref8,12). The second-

order expansion yields
® NpA— 6hA ’

|p07-
pelr0= 2 20 2t XM, o), Trlin(1-G"3$)] = Tr[- &35 - 1(é>i>z] (5)
|==o ny,...N 2
Performing the sums over the Matsubara frequencies we find
and the high-energy field is for the first trace
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Ao B 5 ) } Energy
TG X]= | dr| d°x|¢-(r.x)|°2g
0

X S S fyEat Eglvn, 0P

n=n,-ény Ny,...Np

_,,,,_....___
T
—

(6)

and for the second trace

. an A hp
T{G™3G"3]= f drf d°x| ¢ (7,%)|*29
0

LUVN !
x 2 2 fEa+Eolyn,. I
n=ny—y Ny,...Np
(7)
where
Ey
f1(E) = 2Nge(E), : : -
s — e
1+ Nge(E) L
fo(E) = 4BNge(E)[1 +Nge(E) ]| + ————, 8
2(B) = 4BNge(B)] se(E)] 2(E-w) ® FIG. 1. Schematic for integrating out a high-energy shell.

- -1 . S Shown is a one-dimensional cut through the potential along the
and NBE(E):[eB(E H)_l] ! is the Bose-Einstein distribution. coordinate axisx;. The high-energy eigenfunctions are located
We proceed to the second step of the Kadanoff transforaroundE, > E,. In Eq. (1), the trap potentiaV; is thus negligible
mation noting that the first trace, E@), is quadratic and the  compared tcE, around the trap center. The classical turning points

second trace, EqY), is quartic in the modulus of the low- of the high-energy eigenfunctions are denoted &y and &,
energy field. Therefore, the first trace can be interpreted as @hereas the harmonic-oscillator lendttindicates the extension of

correction to the quadratic part of the original acti@, the trap center.
na ’
du-V)=-g 2 2 f(E+E)lvn, . o P Y.
n=np-ny Ny,...Np ;( m)
R GG R
and the second trace as a correction to the quartic part of 1% -
Eq. (2), Xcos{%f dy( \/Zm[Enj +Ey/D - Vj(y)] - Z)} ,
&
NA ! ]
dg=-¢> X 2 fAE,+Eo)yn, a0 (10) (11)

n:nA—é‘nA nl,. . .,nD

We observe that the correctio(®) and(lO).a_rex depen— with g::-L\y‘znﬁl and g;:L\;znju denoting the left
dent and therefore not of the form of the original acti@  and right classical turning points. Expressidr) is valid
However, in our subsequent treatment we are mainly intefin the classically allowed regiof, <x <& except for a
ested in the limit of small trapping frequencies, LBhw s o area near the turning points. In particular, near the

< i = 2 i .. . . .
<1.”In_th|s case,_the the{[rr:]zilhwavr(]elengttm . \,{27’% f/ms trap center it is possible to neglect the trapping potential
Em% (;(ihmparlsond th ¢ fethc F'];lrac ers Itc exTehns fn Vj(x;) in the denominator of Eq(11). Furthermore, in this
—\hlMmw OTne ground state of tne harmonic trap. There ore’region the high-energy eigenstates oscillate very rapidly

it is expected that the thermodynamic behavior is dominate n the length scale set by. Therefore, we can safely
by the properties of the interacting Bose gas in the center g pproximate each of the sqﬁares of thé cosines appearing
t_he_ trap and_bounda_ry effects are negligib_le._ln_addi_tion, thi%n Egs. (9) and (10) by their spatial averages 1/2. The
In_mt is consistent with the thermodynamic I|m|t_wh|ch We orrections in Eqs(6) and (7) now assume the forms

will concentrate on later and whete and the particle num-
ber N tend to 0 ande, respectively, such thatw® remains
constant. Thus, let us focus on the region near the center of A (2mw)P?

the trap which mean¥;(x;) <E, +Eo/D,j=1, ... D. Figure du-V)=-g ) Y pfy(E,+ EO)W (12
1 shows a schematic of the situation under consideration. We AT

now employ the JWKB approximation for the harmonic-

oscillator eigenfunction§26,27, i.e., and
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< (2mw)P'2 o 1y2-D 2
= —? = d() = LAe ") “pl(LAe™)/2-D/2]. 17
dg=-g> X p(n)fyE,+ Eo)> o 2P (13 U] (277)'3( )“pl(LAET) 1. @7
This latter factor describes all effects originating in the dis-
crete energy-level structure in the isotropic harmonic trap. In
, L the case of a homogeneous interacting Bose gas it assumes
p(n) = D - (14) g;eDc:gstant valud,=1/27 for the physically relevant case
o \/( ng + _) <nD + ‘) The effective action of Eq:3) can now be cast in the form
2 2 - . e , . .
of the original action. This is achieved by reinstating the
We note that because we are focusing on the center of theutoff for n to its original valuen,, or, equivalently, the
trap, there is no explicit dependence on the trapping potentialutoff of the modulus of the generalized momentgrof the
anymore on the right-hand sides of E@$2) and (13). We  low-energy field to its original valu&A (note that we are
can therefore interpret the right-hand side of EtR) as a  usingq for the modulus of the momentum of the low-energy
correction to the chemical potential only and skt=0. In  field as opposed tp which is the modulus of the momentum
other words, the trapping potential and consequently thef the high-energy field To this end, we rescale each com-
trapping frequency receive no nontrivial corrections and exponentq; of the momentum vectogq=(qy, ...,qp) of the

n=ny—any

where

hibit trivial scaling only. low-energy field according tqj(l):qje'. Thus, the rescaled
modulus of the momentum vector of the low-energy field
ll. RENORMALIZATION-GROUP EQUATIONS readsq(l)ZQé and it is cut off athA. This trivial rescaling
together with the demand that the effective act(@ re-
A. Derivation of the flow equations mains formally the same after each renormalization step in-

At this stage we replace the sum ovein Egs.(12) and duces the trivial scaling of the parameters of the effective
i - action, x(=xe"!, Al)=re?, u(l)=pe?,g()=ge?™" ()

(13) by an integral oven. It is well known that, as long as () m(l)=pe™, gll)=ge”
the functions we are summing over are smooth, this is &8¢ 2, #(1)=¢eP'>. We observe that all quantities scale as
satisfactory approximatiofi26,28,29, and it is particularly in the homogeneous case. In addition, we define here the
good in the regime we are considering heBéw<1 [30]. trivial scaling of the oscillator frequency(l) = we?. Conse-
We can now consider the renormalization step to be infiniquently, the trivial scaling of the oscillator length is given by
tesimal and pursue the analogy with the homogeneous calcli{l)=Le™. It is convenient to introduce the dimensionless
lation. Therefore, we shift the origin of integ_rat_ion _ovein parameters b(l):ﬁ(l)/ﬁA’M(I):BAM(I)-é(l):BAADg(l)/
Egs. (12) and (13), i.e., n—n-D/2, thus eliminating the (1), (1)=%B,w(l)=(LAe™)2 and the dimensionless cutoff
zero-point energy fron_1 the functioris andf, in Eqg. (8). energyE- = B,E,=1/2. Wewant to point out that the di-

In order to emphasize the analogy to the case of a homgpensjonless quantities(l) and M(l) scale trivially as the

geneously interacting Bose gas we introduce a ge”eralizeéjorresponding dimensional paramete&l) and u(),
momentum vectop=(py, ... ,pp) through the relation ~ - ~ ~
P=(P1, ---.Pp) g whereasG(l) scales trivially asG(l)=GeP~4'. In terms of

p? these quantities the renormalization-group equations for the
fion; = L pj=0, j=1,...D. (15 dimensionless chemical potential and the dimensionless cou-
2m pling strength are finally given by
Obviously, the modulup of this generalized momentum is dMm(l) ~
given byZwn=p?/2m. We can also define a cutoffA for a 2M(1) = 2G(Hd(Hb(HN(),

the generalized momentum vector by the relatiban,
=(AA)?/2m=E,. Correspondingly, 14 may be viewed as

i A l< iva- dG(l ~ ~
e smallet et ot proier, o v £G5Sz asoncs v
geneous case, we may parametrize the generalized mo-
mentum in terms of this cutoff and of a dimensionless LN(I)} (18)
continuous parametéraccording top/%=Ae™. Thus, dif- 2[E.-M()]J’

ferentiating Eqs(12) and (13) with respect td we obtain

. with the scaled Bose distribution
the flow equations

. N(1) = {ePDIE="MDI_ 131, (19)
“w _ _
P g(Ae™)Pd()fy(Epe?), We observe that there are two differences from the homoge-
neous RG equations.
The first difference is that the maximum number of RG
dg_ 5 . o ) steps in the trapped case is finite. This is due to the presence
d -~ — g (Ae) d(f(Ese™), (16) of the zero-point energy which has no homogeneous coun-
terpart. The number of renormalization stdpsequired to
with reach an energy scalE(p)=p?/2m=fwn is defined by
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E(p)e?’=E, and thereforé=In/E,/E(p). This means that, if 0.04 % ' ' '

Enin IS the minimum value the energy can take, the maxi- ‘*1;:\‘ (a)
mum value of RG steps I5=\E,/Eq,. In the homogeneous AN

caseE,,,=0 and|"=o, whereas in the trapped ca&g,, 0.03 1
=Dhw/2, which results in a finite number of steps,

Ql

* 1 1
=1In— =1In .
VDBr\hw  YDQ(0)

Of course, this maximum number of steps must be consistent

with the requirement that throughout the renormalization 0.01
procedure the Bose-Einstein distribution of E§9) must

remain positive so that the particle density remains positive.

The second difference is due to the fact that in the trapped 0 : . :
case the energy spectrum is discrete. Although we replaced 01 0 01 02 03 04 05
the sum oven by an integral oven we kept the sums in the
expression fop(n) of Eq. (14) and thus retained part of the .
discrete nature of the problem. This method is also employed N (b)
in treatments of the noninteracting trapped Bose[g8s29
where it is also shown that, fd =3, the corrections due to 0.03 HEEN 1
the discreteness play a significant role only for small particle
numbers, typicallyN=<1000. The consequence of retaining i Y
the sums inp(n) is that the quantityl(l) of Eq. (17) appear- 0.02 r 1
ing in the RG equationél8) differs from the homogeneous : 3
case in two respects. First, it depends on the renormalization

(20) 0.02 f .

0.04 R TR

al

stepl whereas the corresponding homogeneous quathfity 0.01 { A
a constant, e.g., fob=3 we haved,=1/27°. Furthermore, ;
d(I) does not coincide with the density of trapped states, /YT\
whereasdy, does coincide with the density of homogeneous 0 : : : . ki
states[6,12. -0.1 0 01 02 03 04 05

M

B. Thermodynamic limit FIG. 2. Flow trajectories for finite-sized systerfsll curves

In our subsequent discussion we are particularly interand their thermodynamic limitdashegl All trajectories have been
ested in the thermodynamic limit of the RG flow equations.determined from the RG equatio(®3). They have the same initial
As mentioned above, in the case of an isotropic harmoniwvalues ofb(0)=10 657 andG(0)=1.18x 1073, but different values
trap this limit is defined by letting the trapping frequensy of M(0). For the finite-sized system ifa), we use Q(0)

tend to zero and the number of particso infinity in such 51/(|gA)2=1(r9 and M(0) between 2.119% 10° and 2.128
~ 4 . _ . . . X 107° In (b), we haveQ)(0)=10"° and M(0) between 1.X 10
a way thatNw® remains finite. It is shown in Appendix Athat 4 5 14106 In the thermodynamic limitQ(0)=0, and M(0)

iln/;hig _”n:ir: the quz:.ntlit()j/'d(l) approa%Cesﬂ;[he Consltadnt }[/r?lLtje' varies between 2.13871076 and 2.139X 10°®. The corresponding
7= in three spatial dimensions. We thus conclude that i Ta/6)) 3 i ~
the thermodynamic limit the RG flow equatio(k8) for the %_qu foraN"™/L Is 6.12x 107 The quantiyG is related toG by
trapped interacting gas assume the same form as in the hg—_Gd(l)'

mogeneous case. This is one of the main results of this work. , ) , i o

In particular, it follows that the universal critical properties 9r@M$, the trajectories were obtained for fixed initial values
are not influenced by the presence of the trap. As we will seef b, G, and(}, but differing values of the scaled chemical
below, all effects on thénonuniversglthermodynamic prop- potentialM(0). The dashed curves show representative tra-
erties that originate from the isotropic harmonic trap are conjectories for the corresponding homogeneous flow, i.e.,
tained in the flow equation for the grand thermodynamic(}(0)=0. These trajectories clearly reflect the presence of the
potential of Eq.(22) below. It involves the density of states unstable fixed point in the homogeneous flow which is in-
in the trap and therefore differs from the corresponding flowdicative of a second-order phase transition. The trapped flow
equation for a homogeneous Bose gas. of Fig. 2(a), which has a very small but finite value 6f(0),

It is also instructive to study the transition to the thermo-does not have a fixed point anymore in a strict sense, but it
dynamic limit in terms of the flow resulting from the RG stills resembles very closely the homogeneous flow. In this
equations(18). Figures 2a) and 2b) compare typical flow way, it is representative of a quasi-phase transition, which is
trajectories close to and further away from the thermody-expected for systems close to the thermodynamic limit. In
namic limit. The proximity to this limit is determined by the Fig. 2(b), Q(0) is larger by a factor of 1) and the flow now
value of Q(0)=1/(LA)? which differs by several orders of differs significantly from the homogeneous one, although
magnitude between the two plots. Within each of the dia-some characteristic features are still present. One should also
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note thatM(0) now has to be changed over a much wider dé(l) _ 5
range than irga) in order to produce the characteristic change ——=¢G(I) - G(1)?

% (|){ 1+ 2N, [b()E.]

: : : e . dl (2m)° 2E.

in the larget behavior of the flow trajectories, i.e., switching

from negative to positive final valuéd(l"). This is in accor-

dance with the expectation that the phase transition becomes + 4b(I)NR[b(NE-](1 + Ny[b(NE-]) (- (23
more and more smeared out, as one moves away from the

thermodynamic limit. with Qp denoting the surface of @-dimensional unit sphere

We now turn to the calculation of the grand thermody-(compare with Appendix Aand with the modified Bose dis-
namic potentialw=-4"11In Z that allows to determine all tribution Ny(x) = Ngg(x; #=0)=[exp(x) - 1]™% In the frame-
thermodynamic properties of the trapped gas. As a consevork of thee expansion one se3=4 on the right-hand side
guence of our one-loop evaluation of the effective action, inof Egs.(23). In three spatial dimensions these RG equations

the thermodynamic limit this quantity is given by have to be solved foe=1 together with the flow equation
(22) of the grand thermodynamic potential.
1(” 1 Let us finally summarize the main approximations that are
w== | di=——In[1-ePNE-MDI] (21)  contained in the renormalization-group approach outlined in
BJi=o  8QUI) the last two sections. A more thorough discussion can be

found, e.g., in Ref[12]. First of all, the treatment is only up
The factor[8Q(1)%]™! reflects the quantum-mechanical den- to one-loop order and therefore does not coincide with the
sity of states in the harmonic potential. It is convenient to€xact renormalization group. Further approximations con-
define an “intensive” dimensionless thermodynamic potenc€rn the derivative expansion, i.e., the inclusion of higher-
tial W(1)=Q(0)38,w(l) for which the scaling of the exten- order derivatives in the effective action, and the polynomial
sive potential in the thermodynamic limit is appropriately €xpansion ofSs in powers of the field. We truncated these
taken into account. Differentiating with respect to the con-éxpansions at lowest order, as we only considered the terms

tinuous variabld, we finally obtain the flow equation already present in the original action. It is known that the
inclusion of higher-order terms in these expansions can im-

6l prove the results for critical exponerj&32], but their influ-
awl) _ e In[1 - e POE--MOI], (22)  ence on nonuniversal properties has not been studied in de-
dl 8b(0) tail so far. We have also performed theexpansion only to
first order; thes expansion, however, is asymptotic, and the
We note that in the above RG equation the chemical potereXtension to higher orders may not necessarily improve the
tial depends orl and therefore, through Eq18), on the results. Finally, we are using a sharp cutoff function, but this
interaction. In other words, the interaction enters the R@S not expected to significantly influence the results on the
equation for the grand thermodynamic potential implicitly level of our approach12].
through the nontrivial scaling of the chemical potential, ~The most important approximation pertinent to the pres-
which is the main difference in the case of a trapped ideagnce of the external harmonic potential is the evaluation of
gas. In order to determine the grand thermodynamic poterthe traces of Eqg6) and(7) with the help of WKB functions

tial, we have to solve Eq$18) and (22) with initial condi- and the ensuing neglect of any renormalization of Ehe poten-

tions W(0)=0, M(0) <1, G(O):é(O)b(0)>1, b(0)>1, and tial. As a consequence, the flow equations ¥brand G co-

Q0)<1. incide with the homogeneous system in the thermodynamic
The renormalization-group equatio(&8) can be refined limit. o _

in a simple way by means of a first-order expansion Many of the approximations listed above are not system-

[19,31. This method is expected to yield better quantitative®iC, and their effects on the final results of the theory are
results in particular as far as critical properties are concernedlifficult to control. They have been studied to some extent in
For this purpose we set D=¢ in Eq. (18) and formally connection with universal properties, such as critical expo-
treat this quantity as a small parameter. We then expand sy8€nts(see, e.g., Ref48,32). In spite of these problems, the
tematically all quantities on the right-hand sides of the RG'€CeNt interest in weakly interacting Bose gases makes it

equations(18) around(M ,é):(0,0) up to second order in worthwhile to also apply RG methods to investigate nonuni-

! versal properties, such as the critical temperature.
this small parameter. Thereby, one assumes that the quanti- prop P

t!es M and.G remain of the prder of. T_hus, we expand the IV. CRITICAL TEMPERATURE

first equation of(18) up to first order inM and the second

equation of(18) up to zeroth order itM. As a consequence, Solving Eqgs(18) or (23) together with Eq(22) allows us

in the thermodynamic limit we find the modified RG equa-to determine any thermodynamic property of an interacting,
tions trapped Bose gas at and above the BEC phase transition.
First of all, let us summarize the results for the critical ex-
ponents which have been derived elsewljérad1,33 in con-

am =2M(l) - G(1) QDDb(|){2Nm[b(|)E>] nection with the study of the homogeneous flow. In the ther-
dl (2m) modynamic limit, the unstable fixed point of the flow
+ 2b(HN[b(NE-](1 + N, [b(DE-]M (1)}, equations (18) with D=3 is given by (M',G")
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=(1/12,57%/72). The critical exponent for the correlation analysis[34] for the T matrix [6]. We then compare this
length is»=0.532. Using first-ordee expansion, this fixed result to zero-energy two-body scattering with an interaction
point is shifted to the positiofM*,G")=(s/10,72/10) and  Potential V(x-x")=O(R-[x-x'#’xp/2m, ie., a finite-
its eigenvalues are given by;=2-2¢/5 and \,=—¢ with height repulsive potential of radiuR [35]. Thereby m,
e=D-4=1. As aconsequence the corresponding critical ex-=M/2 denotes the reduced mass afds a measure of the
ponent for the correlation length assumes the value potennal_ strgngth. lfkgR>1, the correspo_ndmg scattering
=1/\,=0.600 which is significantly closer to the experimen- lengtha is given bya/R=oR/(1+1oR). With the help of
tal value ofy=0.670[33]. the identificationsR=7/2A and xoR=G(0)b(0)/27?, this

In the following, however, we wish to focus our attention expression can be mapped onto E2fl). In this way, we can
on the dependence of the critical temperature on the interagelate the interaction used in E(R) to scattering between
tion strength in the thermodynamic limit. The numerical in- quasihard spheres, and/2A is interpreted as the sphere
vestigation of critical properties requires us to find the criti-radius.
cal flow trajectories in the(M,G,b) space, i.e., those As emphasized in Sec. Il B, in the thermodynamic limit
trajectories that asymptotically reach the fixed point for the flow equationg18) and(23) reduce to the equations of
— o0, In Appendix B, we briefly comment on strategies for an interacting homogeneou_s gas. _Thus, all e_ffects originating
accomplishing this task. There exists a continuous family offom the presence of the isotropic harmonic trap are con-
different critical trajectories, the so-called critical manifold, tained in the flow equatio(22) for the dimensionless inten-
and each trajectory can be assigned a specific value féive thermodynamic potentigi(l). As W(1) only depends on

aNY/L, i.e., a suitably normalized scattering length, as weM(l), but not onG(l), the particle interactions affect the ther-
see below. Scanning the different critical trajectories thugnodynamic properties only through the nontrivial scaling of
allows us to explore a wide range of scattering lengths. Théhe dimensionless chemical potentisl(l). In the special
thermodynamic potential at criticality is then determined  case of negligible interaction, i.65(1)=0, M(l) scales trivi-
by integrating Eq.(22) along a critical trajectory. Thereby, ally, i.e.,M(1)=M(0)e?, so that Eqs(18) and(22) reproduce
the initial and final values [M(0),G(0),b(0)] and all thermodynamic properties of a noninteracting Bose gas in
[M(I5),G(ly),b(l;)] of the trajectory need to be pushed suffi- &N isotropic harmonic trap within the framework of a grand
ciently outwards so that the calculation ¥f is converged. canonical ensemble. _ o N
Typically, this requirement implies that one has to choose For ~a given critical trajectory with initial conditions
M(0)<1 and é(O)b(O),b(0)>1. In this way, it is ensured [M(0),G(0),b(0)], the calculation of the cqrresponc.ii.ng criti-
that the cutoffA corresponds to the largest energy in the_Cal temperaturd prqceeds as follows. With _the critical tra-
. - ~4/6 jectory, we associate the scaled particle numteer

problem, and relevant physical quantities suchadi/’®/L - i
and the critical temperature become cutoff independent. = ~?W/dM(0)lp0 G0 =2°N. A way to accurately calculate

Applying this procedure, it turns out, however, that for the this quantity numerically is outlined in Appendix B. An ideal
largest scattering lengths shown in the figures below, converyas with the same value s£Q°N has a critical temperature
gence ofW cannot be achieved even if the initial conditions T? that is determined by3,ksTo=[s{(3)]*® with {(x) the
are pushed very far outwards. The results thus become somRiemann¢ function [30]. The ratioTC/TS can thus be ex-
what cutoff dependent. To explain this behavior, we argugyressed as
that in this regime our RG model effectively describes a gas
of hard spheres. We then attribute the cutoff dependence to TCITS: {(3)Y3(sY3h). (25)
the fact that for strong interactions, the critical temperature ] ) ] ]
no longer depends only on the scattering length, but is alsh) our subsequent discussion we want to investigate the de-
sensitive to finer details of the potential. To establish the?endence of the critical temperature on thwave scattering
connection to a hard-sphere gas, we note that the bare twéngth of the interacting Bose gas. From Ea4) we find
body scattering length pertaining to a set of given initial that a_partlcul_arly convenient measure for the scattering
conditions is obtained from the flow equation fgl)  length is the dimensionless parameter
=g(1)e®2" in the limit of zero temperature and zero chemi- ~
_cal pptential._ The quantitg(l) charact_er_izes thg renormal- aNYe/L = st/6qA = gl/6 G(0)b(0) _ (26)
ized interaction strength, after the trivial scaling has been 4 +—(~3(0)b(0)
removed. ldentifying thes-wave scattering lengta with the ™ .
renormalized interaction strengffji(cc) according tog(e)

=4mafi?/m we obtain the relation For each critical trajectory, we calculafe/ TS andaNY6/L,
- and in this way we obtain the dependence of the critical
__ G(0)b(0) temperature on the scattering length.
ah=—— (24) : ; . _
~ Figure 3 summarizes our main numerical results for the
4m+—G(0)b(0) critical temperature. Figure(8 shows the RG calculations

according to Eqs(23) (bold curve and (18) (dashedl to-
for D=3. This latter relation for the zero-energyvave scat- gether with the mean fieldMF) approximation36] (dotted
tering length is in agreement with the Lippmann-Schwingerand the predictions of Ref37] (dot-dashey [38] (dot-dot-
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1 ' ' ' the limit of smalla. The numerical coefficien€’ is about

7% smaller thanC. Although the RG calculation does not
coincide exactly with mean field, this result gives a clear
indication for the validity of our RG description of the
trapped Bose gas. As to the remaining discrepancy, the very
different approaches in the RG and MF treatments make a
direct comparison of the influence of the various approxima-
tions rather difficult. We might speculate that RG slightly
overestimates the effects of critical fluctuations, because the

nontrivial renormalization oM andG is the same as in the
0 . ‘ ‘ homogeneous case. Intuitively, one could expect that the
.95 )
0 0.01 0.02 0.03 0.04 presence of the trap would somehow reduce this effect. On
aN1/o/L the other hand, it should also be kept in mind that the accu-
I . . . . racy of the MF result itself is not known exactly, although it

g is certainly a very good approximation.

®) For somewhat largeaNY®/L, we find from Fig. 3a) that
the RG curves are close to the result of R&8], whereas
the prediction of Ref[37] is halfway between MF and RG.
In Ref. [37], a nonperturbative analytical second-order result
is derived, whereas Ref38] is based on a mean-field ap-
0.8t n . proach where critical fluctuations are included by modifying
the critical degeneracy. Figuréa also shows results of two
Hartree-Fock-Bogoliubov(HFB) calculations [39]. The
. ‘ . . . HFB-Popov data are relatively close to MF, whereas
0'70 01 02 03 04 05 06 07 HFB-G2 is near the RG results. The comparison between the
AN different approaches, which are displayed in Fi@)3gives
further support to the validity of our RG method.

FIG. 3. Scaled critical temperatuf’iac/Tg as a function of the In Fig. 3b), we have extended our RG calculations to
interaction parameteaN*/L for the harmonically trapped Bose larger values oBNY6/L. As mentioned above, faaN/6/L
gas.(a) and(b) display different ranges of values faN"/L. Bold larger than, approximately, 0.3, the quantitative results be-
curves: RG result aftes expansion according to Eq&3), dashed:  come somewhat cutoff dependent. The quantitative behavior
RG result withoute expansion according to Eqg¢l8), dotted:  of the curves, however, does not change. We now observe a
mean-field approximatiofB6]. In (a), further predictions from the  profound difference between the treatments without and with
Iit.erature are shown, viz., E¢5.1) of Ref. [37] (dot-dashed curye . expansion. The former predicts an increaseTngTg for
Fig. 1 of Ref.[38] (dot-dot-dashed curyeand DQS-Popov and |5ger scattering lengths, whereas the latter indicates a de-
DQS-G2(full and open circlesaccording to Fig. &) of Ref.[39].  rea5e. On physical reasons, the second behavior appears to

dashegi and[39] (open and closed circlgsWe first of all e more plausible, as for large particle interaction, an inhibi-
note that both RG results, which match rather closely for thdion of Bose-Einstein condensation is expected. On these
values ofaNY6/L shown in Fig. 8a), lie above the MF ap- grounds, thes expansion seems to be more reliable. Further
proximation. This is generally expéctQGB] as the critical SuPPort for the reliability of our results can be drawn from

fluctuations, which are neglected in the MF theory, should€ Study of the homogeneous system. As we briefly show in
lead to an increase iM,. the following, there the calculations for large scattering

In the limit of al~\11’6/L—>0, mean-field theory predicts a lengths agree qualitatively with other studies.

linear relationship between the shift in the critical tempera- The results for the RG treatment of themogeneous-

ture and the scattering length, i.d,/T0=1 Calds/L with teracting Bose gas are shown in Fig. 4. In this case, the
A A St I h i i i i li in-
C=1.33[36]. In the derivation of th|§ result, it is assumed relevant thermodynamic potentidhon is obtained from in

. . tegrating(6,
that only a small fraction of the atoms take part in the con- g 96,9

densation process so that critical fluctuations can be ne- dWhor 1
glected(see, e.g., Ref$36,37,40). To lowest order irg, the al = m
shift in T, is exclusively due to the fact that the atomic in-
teractions change the density profile of the gas at the con- . =~ I
densation pointas compared to the ideal cas€he shift can %h?rr]iafhteﬁfnggwni\%iul?n%st fg]fl (Ilf) 323)66(12 da(rf8)s tllrleglvee:_
thus be calculated from the local-density approximation an i\>// V. In Ei 4yth ttering | g i led ,t thp bi
the lowest-order virial expansion for the atomic den§ay)]. €. 9. =, Ihe scatlering iength IS scaled 1o el,gu ¢
Corrections due to critical effects are expected to influenctl,p(i;[3 _of the particle density np’. so that an,
the shift only in higher order im [37,4Q. =S;0nG(0)b(0)/[47+2G(0)b(0) /7] with  Shom=—Whom
Our RG approach also yields a linear relation between théM |0 G0 The scaled critical temperature is obtained
shift in the critical temperature and the scattering length irfrom T./To=[£(3/2)/syoml?%/270(0). Together with the

0.96 | T T

09F T 1

Te /T

e In[1 - POEMOI - (27)
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the modified flow equation for the grand thermodynamic po-

137 e tential. From the flow equations, we have calculated the tran-
sition temperature as a function of the scattering. The results

were compared to previous studies of the problem. In future

oo 12| work, we plan to extend the methods presented here to more
S general potential shapes in order to assess the general appli-
e e cablity of our approach.
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result for symmetry-broken pha$@. APPENDIX A

results for the symmetric phase we also display the calcu- In this appendix, we discuss a method for calculating the

lation for the symmetry-broken phase as described in Ref?jrzsézamsgr::?d(%ggfg (314? ‘I;l t?ealrl]rgltﬁof Ege”?ltﬁz_
[9]. For smallany® it was established in Ref9] that the ps, I.e3 phio—0.

computaion n the ymmetry broken phase redcts a in£225, e diference betueer, e nergy evls of e b
ear dependence of the critical temperature ani.e., P

_ 3 - . sums in Eq.(14) by integrals. Furthermore, in the limit of
TC_/T(C’—Carﬁ ’ .W'th c 34 For the symmtr|c phase. large values ofn the dominant contribution to Eq.14)
without and withe expansion, we also find an approxi-

mately linear behavior with constan®=1.0 and 1.4, re- C?Q:(?;;{g%g%'gsﬂl’ ++-Np>1 s0 that we obtain the ap-
spectively. To put these results into perspective, we not&
that Refs.[41,42] predict a value ofC~1.3 which is re- !
garded as the best current estimpt8] (for detailed over- J dn P(n):J dnf dny---dnp
views of the work on homogeneous systems see, e.g.,
Refs.[40,44-48). — —
i i i ; =2°] dVng---dinp.
It is also of interest to consider the regime of large scat- 1 D
tering lengths. In the symmetry-broken phase, the calculation _ _ _
predicts a monotonous increase Bf with the scattering Here we have converted the constrained integral aygyr
length, a behavior which is probably unphysical. Remark=1,....D and the integration ovem into an unconstrained
ably, however, both curves for the symmetric phase show #tegration ovem; and then changed variables ta;. Next
maximum and a subsequent decrease in the critical temperae define the vector=(yny,...,Vnp) which fulfills r?
ture. The location and in particular the height of the maxima=n;+---+np=n. This implies that
are somewhat cutoff dependent, but altogether they do not 1 Q
differ too strongly from the results displayed in Rpf7]. As sz dv’E---dv’FD= b= QDrD_ldr:f D214
outlined above, we attribute the cutoff dependence to the fact 2 2
tr;at in thr']s rgglmﬁ our RIC__S mo?el effectwel;r/] d_etscrlb(;:‘_s a g?%vhereQD=2wD’2/F(D/2) is the surface of ®-dimensional
of guasihard Spheres. ror strong enough intéractions .hﬁnit sphere andl(x) denotes the Gamma function. The factor
critical temperature cannot be parametrized by the scatterlng D - . : ;
. ; /2° is due to the fact that the integration variables take only
length alone, but also depends on the finer details of the . . ? :
. . : ositive values. We have thus derived the main result
potential. Varying the cutoff, e.g., amounts to changing the®
radius of the hard spheres. Qp nP2-1
p(n) = -5

which is valid in the limitn—c. For D=3 we have(ls

We have applied Wilson’s momentum-shell renormal-=4m and p(n=2mn, so that in the limit Q()
ization-group technique to the harmonically trapped interact=1/(LAe™)?>1 the quantityd(l) of Eq. (17) reduces to
ing Bose gas. By integrating out small energy shells in thghe resultd,=1/27% and the RG equation&l8) reduce to
partition function and applying the expansion, we have the ones for a homogeneous interacting Bose gas in the
obtained flow equations for the thermodynamic variables. Irabsence of a trap. Figure 5 shows a diagranp(@i) to-
the thermodynamic limit, the flow equations for the chemicalgether with the approximations2/n. It is also possible to
potential and the interaction potential reduce to the correcompute numerically the next-order correction in the
sponding relations for the homogeneous interacting Boshigh-n expansion, 2-Vn—5.701, vhich is almost indiscern-
gas. The presence of the trap becomes manifest only throughle from the exact result, except neax0 (see inset

I

\nl...nD

V. SUMMARY AND CONCLUSIONS
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G ~
— =fg(M,G),
o = feM.8)
then the deviationg,X(l) obey the differential equations
afy
d<5M|v|) oM 4G (5MM)
di\syG/ | ofs 9 |\ 564G
0 : IM 4G
0 l . 0o 40 80 5
0 200 400~ 600 800 1000 with the initial conditionss,M(0)=1 and 8,,G(0)=0. The

matrix of partial derivatives has to be evaluated along the
FIG. 5. Numerical calculation op(n) of Eq. (14) (full curve)  original flow trajectory. Writing Eq.(22) symbolically as

and approximations 2Vn (dashegl and 2m/n—5.701(dotted. dW()/dI=F(M), the required derivative=dW/M(0) is fi-
nally obtained from
APPENDIX B d/ oW\ oF
In this appendix, we briefly discuss some of our numerical a( P M(O)) = PIVRL

methods. We first describe how we determine the derivative
$=dW/IM(0)|y0) G0 Which is required to calculate the in the limit |—c. The initial condition is ¢W(I=0)

quantitiesTC/Tg and aNYé/L of Egs. (25) and (26), respec- 1M |p0) 30)=0. We have verified that the results from this

tively. From these quantities, we obtain Figs. 3 and 4 showmethod agree with the finite differencing scheme in regimes

ing the dependence of the critical temperature on the scatteWDere the latter is applicable, e.g., for larger values of

ing length. aN"®/L. _ _ - _ o
A straightforward approach would consist in using finite Ve now outline how to find the critical trajectories, i.e.,
differences, i.e., AW/ IM(0)|n0) 50 =[W(M(0)+ M, b(0), those trajectories that asymptotically reach the fixed point. A

~ ~ : i systematic and reliable way to determine the critibHl0)
G(0))-W(M(0),b(0),G(0))]/ oM with M(0) the chemical

potential for which the derivative is required adlll a small for given [G(0),b(0)] consists in propagating trajectories

variation. However, this method turns out to not produceW'th increasingM(0), starting fromM(0)=0. For these tra-

well-defined results, in particular for small values of JSCtONIeS M(| ) — e initially. However, for a large
enough M(0)=M,, one eventually findsM(l —»)—1/2.

aN'/L. Therefore, we apply a scheme which is closely re-The crossover between these two opposite behaviors occurs
lated to the method of linear stability analysis frequentlyat the critical trajectory. The critica¥(0) is thus bracketed
used in the theory of dynamical systef§]. In this scheme, py 0 andM, and can now be found, e.g., via bisection. An-
one propagates the flow trajectory, from whié{{M(0)) is  other method, which is computationally more efficient but
calculated, along with an infinitesimal linear deviation from works well only for smaller scattering lengths, is based on
the initial conditions. backward propagation from the nontrivial fixed point. To this
To be specific, we consider the evolution of quantitiesend, one first finds the critical manifold of the fixed point in
SyX(1) with X,Y=M or G. These guantities are to be inter- the linearization approxim~ation. For a givdiil;) <1 and
preted ass,X(1)=8X(1)/ 5Y(0), i.e., they describe the change starting from point§M(I;),G(Iy)] on this critical manifold,
SX(l) of a flow trajectory if the initial condition is changed Vvery near the fixed point, we propagate the thermodynamic
infinitesimally by 8Y(0). If we write the flow equationg18)  limit of Eqgs. (18) or (23) backwards up to a valuk=l; for
or (23) symbolically as which G(l;) is sufficiently large so that it is ensured that
aA <1. In this way we find the initial conditions of a critical

trajectory[M(l,),G(1;),b(l))]. Further critical trajectories are
am = fM(M,é), computed by repeating the above procedure using different
dl values ofb(l;).
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