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Phase transition of interacting Bose gases in general power-law potentials
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We investigate the phase transition of interacting Bose gases in general power-law traps in the thermody-
namic limit. Using energy-shell renormalization and thexpansion, we evaluate the partition function for the
uncondensed gas phase within a renormalization-group framework. This approach allows a unified description
of homogeneous as well as inhomogeneous and anisotropic systems. Results for the critical temperature are
compared to mean-field theory as well as to a local-density approximation based on renormalization-group
theory for the homogeneous Bose gas. This comparison indicates the consistency of our approach. We also
make suggestions for an optimized trap design in experiments that measure the transition temperature.
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[. INTRODUCTION where most theories predict observable, yet varying, devia-

The recent realization of Bose-Einstein condensatior}ions from the mean-field resyit0,11,13,15 In view of the
(BEC) in dilute atomic vapor§1l—-3] has renewed interest in €XPerimental progress and continuing theoretical uncertain-
the quantum-statistical properties of weakly interacting Bos&'€>: further Investigations into t_he _p_hase transition of trapped
gases around the phase transition. So far, research in this arg3S€ 9ases are certainly well justified. .
has mainly focused on the spatially uniform system and, as abll?enorrt?allza?on—grodup.(RG) hmeth_o_dsl pt:o;?de_ onef pos-
key question, the dependence of its condensation temperﬁ'— e pathway for studying the critical behavior of Bose
ture T, on the atomic interactiongl]. The particular theoret- gases beyond mean-field theory. Following, in particular, the

) ) : . ork of Refs.[21,22, we have recently formulated a RG
ical challenge of this system is rooted in the fact that near th . S
transition point its behavior is dominated by long- reatment for harmonically trapped Bose gafel§ which is

" i based on energy-shell renormalization and 4dhexpansion.
wavelength critical fluctuations that cannot be treated pertu he purpose of the present paper is to generalize our ap-
batively. Because of these difficulties, a generally accepte%roach to a broader class of potentials and to apply it to the

result for the condensation temperature has emerged onf}yestigation of Bose condensation in generic power-law
very recently[5,6] and after a long and controversial debate.traps in the thermodynamic limit.

Compared to the homogeneous case, the study of conden- our motivation for this study is twofold. First of all, al-
sation in trapped Bose systems, although of immediate exhough our results for harmonically trapped ataht] com-
perimental relevance, has received considerably less attepare reasonably well with other approaches, it is necessary to
tion. Presumably, this is due to the fact that to leading ordetest our RG method in a broader context in order to better
in the atomic interaction, the shift ifi, is determined by establish its range of validity and to rule out a coincidental
mean-field effects. The shift was first calculated in Re&f, agreement. Often, and also in our case, renormalization-
and the result found there has subsequently been verified lgroup calculations contain uncontrolled approximations, so
a number of different numerical approacti8s1]] (although that their results and predictions should always be checked
this result is now generally accept¢ti?—15, there exist a carefully. For our purposes, the study of power-law traps is
few slightly [16—18 and strongly{19] deviating works in the  particularly appealing as they provide a natural interpolation
literature. In spite of the unanimity regarding the leading- between homogeneous and harmonic confinement. Further-
order behavior, the situation for larger interaction strengthsmore, both ideal23-29 and interacting[12,29-33 Bose
where effects beyond mean-field theory are expected to berases in power-law traps have been studied before, and a
come significant, is much less clear. Most studies agree thabumber of useful analytical results are already available—
similar to the homogeneous case, critical fluctuations lead te.g., for the density of states and the condensation tempera-
an increase inT, as compared to the mean-field resultture in the ideal case. In order to test our RG results for
[10,11,13,1% The quantitative extent of the increase, how-power-law traps, we compare them to mean-field theory as
ever, varies between the different works. On the other handyell as to a local-density approximation based on the RG
Ref. [9], using a variational approach with a Morse interac-description of the uniform ga@RG-LDA). The comparison
tion potential, finds an additional decreaseTin with the RG-LDA allows for a self-consistency check of our

Recently, precise experimental measurements of the shifhethod.
in T, as a function of the effective atomic interaction strength Our second motivation is to obtain a more thorough
have become availabl0], and the results can be consid- physical understanding of the dependence of the BEC phase
ered well compatible with mean-field theory. Nevertheless, itransition on the trapping potentials. In particular, we are
is interesting to note that the measured value of the correinterested in investigating the crossover between the homo-
sponding proportionality constant varies by more than 20%geneous potential, where the condensation process is domi-
from the theoretical prediction, although this difference isnated by long-range critical fluctuations, and more inhomo-
still within the experimental error range. At any rate, thegeneous potentials, where mean-field potential shape effects
experiment has entered a regime for the interaction strengtare prevalent. Furthermore, we consider more practical is-
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in the critical temperature from the ideal to the interacting D(e) de (2 )332?( T\ 52 ©)
gas or determining the conditions under which effects be- © 7 7
yond mean-field theory are most prominent. Our study also For calculations in the mean-field and local-density ap-
yields information about circumstances under which the deproximations, it is useful to convert certain spatial integra-
pendence ofT, on the effective interacting strength is par- tions according tofd®f[V(r)]=/dep(e)f(¢). In this way,
ticularly sensitive or stable with respect to variations of theisotropic and anisotropic power-law potentials can be treated
external potential. We thus expect that our results providen the same footing. The densji{s) can be regarded as the
some insight that is useful for the development of traps spe“equipotential surface area” af(r) at energys. It is given
cifically designed for observing condensation phenomena. py
The article is organized as follows. In Sec. Il, the physics
of ideal Bose gases in power-law potentials is reviewed ~ Vié;ﬁ”“ ( m 712 a2
briefly. In Sec. Ill, we introduce the RG method and describe ple) = I'(np-1/2)\ #? ’
how to extend our treatment of interacting Bose gases in . - _
isotropic harmonic trapL1] to more general trapping poten- NOte thatin the homogeneous cgge)=Vcn,dle). Equation
tials. Alternative approaches to BEC in external potentials(6) can be derived by considering the Hamiltonian
which are based on the local-density approximation, are pre- {V(r) Ipl < p
sented in Sec. IV. We discuss mean-field theory and the ap- H(p,r) = ' o
proach based on the RG theory for the homogeneous gas. *©, [pl = po,
Section V is devoted to the comparison and discussion ofyith arbitraryp,> 0. For this Hamiltonian, the semiclassical
results from our RG methoq, t_he _RG-LDA, and mea”'f'e_ldnumber of states is given 4]
theory. The presented material indicates that the renormaliza-
tion group indeed provides a consistent description of the _1ovEErR o m\T2 L,
phase transition for the systems under consideration. Section 2(e) = 6m2h3 (5 + 1/2) O\ #2 e
VI contains a short summary.
On the other hand, we have2#i)3s (e)=4mpafy<, d°r
=3mpaf§ de"B(e"), from which Eq.(6) follows.

sues such as finding trap parameters that maximize the shift d3(e) V20t Di3 ( m>77+1 )
= = &
)

(6)

Il. IDEAL BOSE GASES IN POWER-LAW TRAPS In the following, we wish to focus on the thermodynamic
. . . o limi R : 213 _
In this section we summarize some results about idediMit, which is defined byNV . 7"""=const,N, Vgpa— .

Bose gases in power-law traps. The notation follows RefsIhe equation of state for the ideal Bose gas above the con-
[12,23. We consider a system of ideal bosons of mags  densation point is then given 4,26

which are trapped in a power-law potential o 1
N= deD(e) 75—
X p y | S eﬂ(g /J«) — 1
V() =By | —| +Ey|=—| +E3| —]| . (1) 0
L L2 L3 1 m +1 ) 3
i = 32\ 721 Vi 91(2), ()
We introduce the constant (2m)®2\ 128
1 N 1 N 1 N 1 @ with 8 the inverse temperaturg,the chemical potential, and
n= p | s 2 z=exp(Bu) the fugacity. The Bose functions are defined by

g\(20==1, Z/k*. The spatial density distribution of the gas
& determined by the relation

,f)ﬁ/ngLzLS,(p,I,S) n(r) = Ny garo{expl B = V(r) 1, (8)

m EVPEVELS S with the thermal wgvelengthT:(Zﬂﬁzﬂ/ m)l’z. The condi-
tion for Bose-Einstein condensation, which follows from set-

with I(p,1,5)='(1/p)['(1/DI'(1/s)/pls andI'(x) the gamma  ting z=1 in Eq.(7) or evaluating\=fd3n(r , »=0) from Eq.

function. Note that in the homogeneous cdpel=s=x) (8), reads[23]

Vchar:8|-1!-)2|-(3) a(n)d in the(.)harmonic cas@=1=s=2) Vinar . -

=(2m¥*aYaYa? with a' the usual harmonic oscillator :_(_) 2(77+1)/3

length. ho@ho&ho @ho N 2m2\ 7250 Venar ¢ +1), 9

In the semiclassical approximation, the number of single- . o_ . o
particle states up to the energyis obtained ag24] with 82=1/k,T? the inverse critical temperature atitk) the

Riemann{ function.

which characterizes the potential shape, and the characteri
tic volume

V2013 — 8(

char

1 zgml)/a m)\ 71
char
2(e)= WJ d*rd’p= (2mar +—2)<ﬁ) g™t Ill. RENORMALIZATION-GROUP DESCRIPTION
H=e 7 OF TRAPPED BOSE GASES
4
@ In this section, we generalize our renormalization-group
so that the density of states is given by description of harmonically trapped Bose ga$t} to the
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case of more general external potentials. Again, we work iffield ¢_. The one-loop calculation of the effective theory
the thermodynamic limit. We start from the functional inte- yields [11,35,36
gral representation of the grand-canonical partition function

for the trapped interacting Bose gas, which is given by S by ) =S, dl) + %Tr{ln[(ég)—l_i]} (12)

:J A p, ¢ 1e S04, (100 with G; the bare Green's function for the high-energy field

) o i and %, the self-energy for the low-energy field. The “Tr”
We consider bosonic fieldg(r,x) and ¢"(7,x) that depend  symbol denotes the trace in both the functional and internal
on D spatial coordinatex=(xy, ... ,Xp) and on imaginary spaces of the operators. After expanding this trace up to sec-

time 7. The fields are periodic in with period #8, where ond order inG>3.. the effective action reads
B=1/kgT is the inverse temperature akd denotes Boltz- o=

mann’s constant. The Euclidean action appearing in the func-

tional integral of Eq(10) is determined by S, ¢2) = S, ¢2) + 3TIN(G5) ] - 3Tr(Gg2)

1 ("8 0 #? -G53, (13)

9,0 = —f de dDX{ ¢*(T,X)|:ﬁ_ -—V? N 0
ﬁ 0 JT 2m ~
For the trace involving onlyG;)™%, the summation over the
+V(x) - M] ¢(7,X) + g|¢(7,x)|4} . (1)  Matsubara frequencies yields the ideal-gas result
— E -

The short-range repulsive interaction potential between the 2Tr[|”(Go) = ‘E _5E§E"'E . In[1 - e PEA1],
atoms is characterized by the coupling constarts relation ATOEASE(Ny- - Nip)<Ey

to the scattering lengtfa is given below[Eq. (21)]. The (14)
external trapping potentid¥(x) denotes theD-dimensional
generalization of Eql). As V(X) is separable, we can define Whereas for the other traces we obtain

the sets of elgenfunct|on$<”(x) j=1,...D,n=1,... 0,

with elgenenerg|eE(' for the D spat|al dlmenS|ons Tr[Gg 3] = 4gNge(Ey)
We now expand the Bose fields appearing in @) in he
terms of these e|genfunct|ons—| e., X . dr | d”X|p(7,X)[PA(E,, 5, X)
(15
$(7,x) = E PIREDY _wn”(xﬁ U (o)
|== E(ng,...Np) <EA\hB and
><¢(|1n11 vnD)a
with py=2ml/AB the Matsubara frequencies and THGy2Gy2]= 292{4:8NBE(EA)[1 +Nge(Ey)]
#(1,ny, ....,np) complex-valued expansion coefficients. We
also impose a high-energy cutoff condition on the expansion L1+ Nee(Ey) f f x| (7|
by only including those products); 1)(xl) zp(D)(xD) of 2(Ex - ) =
eigenfunctions whose total ener@(nl, .o.,Np)= E E A(Ey, 5E1,%), (16)

less than the cutoff enerdy, =#2A2/2m.
To evaluate the partition functio(L0) above the phase with Ngg(E)=[e#E#-1]"! the Bose-Einstein distribution.
transition, we apply a variant of the momentum-shellThe function
renormalization-group methd@4] in which we successively
integrate out thin energy shells starting at the cutoff energy

= (1) () 2
E,. To this end, the Bose fields are split into a high-energy A(E,, B4, X) T —5E§E(n En E |¢’”1 (x1) Vg (xo)|
and a low-energy part—i.e.¢(7,X)=d-(7,X)+p-(7,X), ATTEATERLTDIEEA
with an
~ @ contains a summation over the squared moduli of all wave
RCIEDS > E NG lﬂ () .. Y (XD) functions within the energy shell at point In Ref. [11],
I==o EA\=0B\<E(ny,.... '8 A(E,, 5E,,X) was evaluated for the isotropic harmonic os-
><2>(| Ny . M) cillator. However, the approach can be generalized to the

much broader class of external potenti@l$ if one focuses
The width 6E, of the high-energy shell is chosen to be smallon the thermodynami@r continuum limit. In this case, the
compared to the cutoff energs,. By integrating out the sum of Eq.(17) is dominated by highly excited wave func-
high-energy components of the Bose field in the partitiontions which we can approximate by the WKB expression
function, we obtain an effective action for the low-energy [37]
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Doy /dEgj)/dn (2m)* dé(l
Pt (x) = P [Egj)_v(j)(x)]llzl dl =(4- D)G(|) G(')Z( )Db(|)
xco{% L;) dy( V2 ED —Vi(y)] - %’)] , x{4b(I)N(I)[1 £NOY] + Z[E%%}
(18) (20)

Here, we have introduced the scaled quantitiekl)

with V)(x) the one-dimensional potential in the directipn  =Bxu(l), G(1)=B,APg()/b(1), b(l)=Be?/p,, and E-
and a” and b(” the left and right classical turning points =BxEx=1/2 with 8,=m/%?A? the cutoff temperature. The
defined byEV=V0)(@0)=vi)(b))). Expression(18) is valid function N(1)={ePWE="MD]-1}-1is the scaled Bose-Einstein
in the classically allowed reg|oaf1)<x<b(' except for a dlstnpqun. Th_e RG flow parame_téruns_flr(_)m 0 too as the
small region near the turning points. physical cutoff is lowered according tbe™ in the course of

The thermodynamic limit is characterized by the fact that"tégrating out the energy shells. The abdveependent
the length scales, over which the trapping potential changedunctions describe how the corresponding quantities change
tend to infinity. On the other hand, typical energies, Whlchd’urmg the renormallzatlpn process. The initial conditions
are relevant for the RG calculations — such as the tempera{vI (0) andb(0) are determined from the values @fand for
tures of interest or the chemical potential — and which dethe system of interest. The value 6{0) is related to the
termine the choice of the energy cutoff, remain constant. Te-wave scattering length of the atomic system according to
a first degree of approximation, we can therefore shift thg21,11
turning points appearing in the WKB expressidm®) to in-

finity and also neglect the trapping potentil)(x) in the aA = G(0)b(0) (21)

denominator. Furthermore, we make use of the fact that the 2~ '

energy shell of widthE, contains a large number of eigen- 4+ ;G(O)b(O)

functions, so that the césontributions appearing in E¢L7)

can safely be replaced by the averaged value of 1/2. The cutoff energye, should be chosen as the largest energy
Within these approximations we obtaiA(E,,5E,,X)  scale of the system so that typically0),G(0)>1 and

=(9/ E)Q(E, X)|g, 6E4, where M(0)<1. Note that Egs(20) only apply above the BEC

phase transition— i.e., for a honcondensed gas.
In previous work, we have investigated the use of ¢he

QEx= X -2 |l/fn11)(X1) (D>(XD)|2 expansion for the description of the BEC phase transition.
E(ny,...np)<E First of all, it was shown that the expansion allows us to
(2m)PP2 D dEﬂ)/dnj reconcile the differences between the flow equations derived
= > - 5 L for the homogeneous Bose gas in the symmetric and the
E(ny,.. nD)<E(27Tﬁ) j=1 \/E—(n') symmetry-broken phase, respectiv¢Bg]. Furthermore, as
: discussed if11], the e expansion yields an improved result
(2m) QDED/z (19) for the critical temperaturd, of the homogeneous gas at
~ (2ah)° D ' small scattering lengths, as well as a more plausible descrip-

tion of the behavior ofT; at large scattering lengths in har-
monically trapped gases. Technically, the expansion
amounts to expanding Eq&0) up to second order iM(l)

and E;(I). The flow equations then take the form

with Qp=27P"2/T(D/2) the surface of &-dimensional unit
sphere. Thus, the functioh(E, , 5E, ,x) does not depend on
x anymore. The traced5) and(16) can therefore be inter-

preted as giving rise to small corrections to the chemical dm()

potential » and the coupling constautin the effective ac- a - =2M() - ZG(|)(2 )Db(l){Nm(b(l)E>)
tion S;. The trace(14), on the other hand, yields the actual

contribution to the partition function. We can now perform +b(NL(b(DE-)[1 + N (b()E<)IM(1)},
the Kadanoff transformation in which the effective action is

cast into the form of the original action and the original P

cutoff is restored through a scaling transformation. This pro- d—(l) =eG(1) - G(1)2 Db(|){ 1+ Nn(b)E-)
cedure leads to RG flow equations ferand g, since these di (2m) 2E.

quantities are readjusted after each integration over an en-
ergy shell. All these steps are explained in detail in IREf]. +4b()Np(b(NE-)[1 + Nm(b(|)E>)]}, (22)
The flow equations finally read
with N,(x)=[exp(x)—1]"* a modified Bose distribution. In
D=3 dimensions, the flow equationi2) have to be inte-
amd) _ ), grated withe=4-D=1. Thee expansion is expected to be
dl ( ) applicable in the vicinity of the phase transition.
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The flow equationg20) and (22), respectively, do not ~(cr) (cr) (0) \1/2
) ! a G'“Y(0)b'“"(0) 1 T,
depend on the external trapping potentibl, and they also N o &G
coincide with the RG equations for the homogeneous gas M 4. Eé(cr)(o)b(cr)(o) V27 P(0) \ T¢
a

with periodic boundary condition®1,22. In other words, in
our scheme the renormalization pf and g becomes inde- (25)
pendent of the trapping potential in the thermodynamic limit.
This is a consequence of the approximations leading to Eqgvith A(TO) the thermal wavelength for the ideal gas at critical-
(19) in which we focus on the “bulk properties” of the sys- ity. A discussion regarding the numerical aspects of evaluat-
tem and neglect all surface effects. ing Egs.(24) and(25) can be found if11].

The properties of the trap do come into play, however, The RG approach presented above relies on a number of
when we calculate the free enerlly of the system, from essential approximations, regarding, for example, the deriva-
which, e.g., the critical temperature can be derived. Usingdive expansion, the polynomial expansion of the effective

Egs.(5) and(14), one obtains action in powers of the Bose fields, and the calculation of the
function A(E, , 5E, ,x) of Eq. (17) (for a more detailed dis-
W=-(B\/B)In Z cussion see, e.g., Refd1,36). Some of the approximations
involved are not completely systematic and controllable. One

_ A2(7,+1)V§;17£1)/3 i
(2m)320 (7 + 1)27b(0)
— —b(l)[1/2—M(l)]}

f dl e 207Dl nf1 of the main purposes of this paper is to show that in spite of

0 this unclarity the RG method provides a reliable and ad-
equate tool to study the phase transition of Bose gases. To
this end, it is important to compare results of RG calculations

A207D\207+1)/3 with other methods.

= char ~ .
B (277)3/2I‘(7]+ 1)277|(M(0)'G(0)’b(0), 7). (23)

IV. LOCAL-DENSITY APPROXIMATIONS

The expression fow is |dgntlcal to the |de§tl-gas case except  ap ajternative approach to calculating the transition tem-
that the chemical potentia¥i(l) is determined by the flow perature of the trapped Bose gas is based on the local-density
equationg20) or (22). The atomic interactions thus enter the 555-55imationLDA). In the thermodynamic limit, the char-
calculation ofW only through the renormalized chemical po- 4cteristic length scales of the trép) tend to infinity, so that
tential. The trapping potential essentially enters through it§he potential becomes locally flat at each point. Therefore,
corresponding density of states which gives rise to the expope trapped gas can locally be considered homogeneous with
nential factore 27!, The termI(M(0),G(0),b(0);7) ap-  a chemical potential of.—V(x), wherex denotes the global
pearing in Eq(23) contains the integral from the preceding chemical potential of the gas. As a consequence, the spatial
expression divided by(0); the notation is such that the de- densityn, of the trapped gas is related to the homogeneous
pendence on the initial conditions for the flow equations bedensity via
comes apparent.

The flow equationg20) or (22) can be used to describe Nir(X) = Mo T, 41 = V(X)) - (26)
the BEC phase transition as they possess a hyperbolic fixethe BEC phase transition sets in at the trap center when the
point in the limit | —c which, for D=3, is located at |gcal chemical potentialwhich there equals the global
(M,G)=(1/12,57%/72) or (M,G)=(1/10,7%/10), respec- chemical potential) reaches the critical valug.(T) of the
tively. The flow trajectories asymptotically approaching thehomogeneous gas. We note thatdepends on position only
fixed point form the critical manifold; each of these critical through the potential/(x). Thus we can invoke Eq6) to-
trajectories describes a system at the phase transition witether with Eq(26) to examine the critical temperatufg of
specific values o(")(0), G)(0), andb©(0). The transi- an interacting Bose gas. From K@) follows that the change
tion temperaturél, pertaining to a critical trajectory can be in Tc with respect to an ideal gas with the same particle
related to the particle number via the thermodynamic relatiofumber is given by

N=-dW/dM(0). In this way, the shift inT, with respect to an T\ 71 + DT (= 1/2

ideal gas with the same particle numigand the same trap- (Tg)> SUAE NV ). (27

ping potential is found as Te J dx X732 (x)
TRO\ 7+1 _\3 B . i
lc Here, fo (X) =NNnond T, e(Te) =X/ B.) denotes the dimen
T(CO) sionless “degeneracy function” pertaining to the system at

1 2T (n+ 10+ 1) the phage trans_ition. The variable= B.V(x) measures the
=- e . (29 scaled distance in energy to the trap centgr. Fron(m.we '
b(0) LKM(CO(O) G(0),b€)(0): ) see that the main influence of the trapping potential mani-
dM(0) ’ ' ’ fests itself in the weight factor”%/2, with which the degen-
eracy functionf, is multiplied under the integral and which
The scaled scattering length pertaining to the trajectory i®riginates from the densify(e) of Eq. (6). As expected, for
given by 7 close to the value 1/2 of the homogeneous system, the
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relevant integration range is concentrated ne=d, whereas In general, the mean-field critical temperature for given

for growing 7 it is extended towards largec set of system parameterssand g has to be determined nu-
The application of the LDA thus relies on an adequatemerically by solving Eq(29) for f¥F(x) and performing the

determination of the degeneracy functif(x). In the fol-  integration in Eq(27). For smallg=a/\t, however, the rela-

lowing, we discuss two different approaches: mean-fieldive changey:=1-T"" /T in the critical temperature can
theory (MFT), which has frequently been used befgeeg., be approximated as

[7,12,33), and the renormalization group. 5 5 5
tur=D1(7n)q+D'(n)g~7+Dy(n)g°+0(q), (30

A. Mean-field theory with

In MFT, the spatial density of an interacting homogeneous o
Bose gas above the condensation point is determined by the D,(7)=- 4c(77)f dxx732F (X[ £(312) = F3(X)],
relation[39] 0

MF 1 MF (31)
Mhord T, 1) = Fg3/2{eXF{IB(V« = 2UgNpor I} (28)
T -

| T o D' () = - clp)(a6mLTHATCD )
in the thermodynamic limit. Expressiai28) is identical to n-1/2
the one for the ideal homogeneous dek Eq. (8)] except
that the chemical potential is modified by the mean-field in- n+2 , o a0
teraction potential @onye(r) that is due to the atomic colli-  Da(7) = TD1(7I) - C(ﬂ)f dxX7H8F_12(X)[{(3/2)
sions. The coupling constant is given by=472a/m with 0
a the s-wave scattering length. In the mean-field theory of = F3(X) % = 16F3 5(X)[£(3/2) = F3(x) ]}, (33

interacting gases, BEC sets in wherreaches its maximum

value compatible with Eqg26) and(28). The critical chemi-  andc()=[(n+1)I'(7=-1/2){(»+1)]™". This result, which is
cal potential is thus determined hy=2Uqnye(0). This im-  discussed in more detail in R4#0], has been derived from
plies a critical degeneracy qﬂ\fF(o))\ﬁ_:g(g/z) at the trap  @n expansion of the integral appe.aring in EY) in terms of
center just as for the ideal gas. Using these relations, th@ It provides an accurate approximationtgg for all 7 and
critical degeneracy functiof!F(x) can be obtained from Eq. g=0.01. In this way it extends the previous work of Refs.

(28) by solving the implicit equation [12,32,33 which provides the expansion = only up to
linear order ing and which is adequate only for inhomoge-
fMF(x) = y = Fa0(x = 4q[£(3/2) - y]) (29)  neous potentials with sufficiently largg. Note that these
cr .

papers express the result id5(») in terms of an equivalent
Here, F,(x)=g,[exp(-x)] denotes the Bose function amd Sum representation which, however, is less convenient nu-
=a/\; the scaled interaction parameter. merically.

For the homogeneous interacting Bose gas, mean-field In Eg. (31) for Dy(7), the integrand essentially contains
theory yields the condensation conditimﬁ"oprr}\?:g(?JZ). the leading-order density modifications that are induced by
The condensation temperatuf F is thus not changed in the at.omi.c interactions — they are _describe.d by the given
comparison to the noninteracting case. The actual shifi,of combination of Bose functions — weighted with the equipo-
is completely due to nonperturbative long-wavelength fluctential surface area _of E@6). The mtegranon extends over
tuations of the Bose fields. For the harmonically trapped gaghe whole configuration space available to the Bose gas. The
however, the trapping potential effectively reduces the influ{€"m D1(7)q thus expresses the large-scale influence of the
ence of the critical fluctuationg5]. The shift in the critical ~Potential shape and the density modifications on the transi-
temperature is mainly determined by noncritical changes ifion temperature. The ter@’(7)q?” is of a very different
the overall atomic density distribution that are caused by th@rigin. It is determined by the behavior &f{"(x) within the
atomic interactions. Mean-field theory is able to calculatesmall region 8<x=<g? near the trap center. In the expression
this shift correctly to leading order in the atomic interactionsfor D,(7), the integral is to be understood as regularized with
[7]. respect to the divergencexat 0 which arises fom<<1 [40].

For sufficiently inhomogeneous traps, mean-field theoryl'he term quadratic iq is most important aroung=1 where
thus yields quantitatively accurate results. For generait counterbalances the divergence of the t@nin)g?”. It is
power-law potentials, even in the quasihomogeneous limibf minor significance, however, regarding the qualitative as-
n— 0.5, MFT is useful as it provides at least a first approxi-pects of the behavior df,e. In the following dicussion, we
mation against which we can compare our other results. Thehus focus on the first two terms in the expansid).
mean-field theory of condensation in power-law potentials
has been studied by several authors befd2,23,32,3R
However, these papers do not provide a complete coverage o ]
of the problem(in particular, the quasihomogeneous regime _In renormalization-group theory, the degeneracy function
is not discussed propedlywhich gives an additional incen- Of @ homogeneous Bose gas with thermodynamic parameters
tive to reconsider this question. M(0), G(0), andb(0) is given by

B. Renormalization-group theory
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fRE(M(0),G(0),b(0)) = nRS\3 1

— _ E 3/2 J _
B \/;b (O)aM(O)

X1(M(0),G(0),b(0); 7= 1/2). L i
(34) 05 1 1.5 2 25 05 1 1.5 2 25
n n

(@) | (b)

Given a critical trajectory with initial conditions

(MCV(O)'GCT(O)’bCF(Q)),’ we obtain from Eq(34.) the critical — ; fiyeq g=a/ \y=10"° (a) and 102 (b). Bold curves: RG results
degenerflcy pertaining t°~ the corresponding valuegof with & expansion. Dashed curves: mean-field LDA. Dotted curves:
=a/Ny=G¢(0)b(0)/[47+2G(0)b,(0)/ 7] [cf. Eqg. (25)]. linear mean-field approximatioB,(7)q [cf. Egs.(30) and(31)].

The critical degeneracy function is thus given by

FIG. 1. Relative shift of critical temperature as a function gf

dicted by mean-field theory—for example, the minimum in
fRE(x) = fRE(M /(0) - X/bg(0), Ger(0), b (). (35)  thet(n) graphs. As MFT can be trusted as a first approxima-
tion, this observation clearly indicates the general validity of
This expression follows from the relatioB\[x—-V(X)]  our RG approach. In particular, it shows that the agreement
=M(0)-x/b,(0). Note that all flow trajectories used for the for the harmonic oscillator found previous[L1] was not
evaluation off?rG have the same interaction parametgr merely a coincidence. We also see that the RG results always
=alNy. The comparison between the RG-LDA and the RGpredict a higher critical temperature than MFT. Such an in-
theory of Sec. Il provides an important consistency checkcrease was previously reported in studies of the harmonic
for our methods. If they are to be reliable, the results shouldscillator[10,13,15% and can be attributed to the remaining
not be too different. influence of critical long-wavelength fluctuations. It should
In Ref. [13] a variant of the mean-field approach of Sec.also be mentioned that — as discussed in REf] — the
IV A was proposed that allows us to include in a simple wayRG results for the homogeneous casg=0.5 agree well
the influence of critical fluctuations on the condensation temwith the most accurate calculations currently availgblé].
perature in the trap. It is based on the assumption that the For largen and smallg, the MFT approach is supposed to
main effect of these fluctuations is to lower the critical de-become more and more accurate as the effect of critical fluc-
generacyf.(0), at which condensation sets in at the traptuations is diminished. In fact, our RG results approach MFT
center. The further behavior df,(x), however, is still mod- in this limit. However, aty=2, for example, which corre-
eled with the help of the mean-field LDA expressiq@$)  sponds to the harmonic oscillator potential, there is still a
and (28) with a suitably chosen criticgle. The main diffi-  small difference in the shift¢about 7% which seems to
culty in the implementation of this approach consists ofpersist even in the limit of— 0. This difference might in-
course in determining the modified critical degeneracy. Welicate that the RG slightly overestimates the influence of
choose the value obtained from the RG description of theeritical fluctuations[11]; on the other hand, the accuracy of
homogeneous interacting gas at a givgra/\. As this is  the MFT is not known precisely, as well.
also the critical degeneracy used in the RG-LDA, the com- For the parameter values shown in Fig. 1, the difference
parison between the two methods allows us to assess hobetween the RG results with and withauexpansion is al-
sensitive the results are with regard to the different approxiways much smaller than the distance to the MFT values.
mations to the behavior of the functidp.(x). Differences between the RG calculations become more pro-
nounced agy grows; at fixedq, they are largest aroung
=0.5 and then decrease rapidly.
A further interesting aspect of Fig. 1 concerns the fact that
In this section, we discuss numerical results for the criti-one can distinguish between different regimes in the behav-
cal temperatureT, determined according to the different ior of T, as the potential shape parameigis varied. The
methods outlined in Secs. Il and IV. As to the RG calcula-region of largen can be characterized as “inhomogeneous.”
tions, we focus on the expansion for the reasons indicated There, the shift inT. is well described by the first term
in Sec. lll, but we comment on respective results obtainedD,(7)q of the mean-field expressiqB80) (compare with the
from the flow equation$20) whenever appropriate. dotted curves in Fig.)LAs explained in Sec. IV A, the shift
Figure 1 shows the shift in the critical temperature is thus essentially determined by the global shape of the
=T,/ Tg—l (relative to the critical temperatuf@ of anideal external trapping potential and the large-scale atomic density
gas with the same particle numbers a function of the po- distribution in the presence of the interactions. Effects be-
tential shape parametey for fixed values ofg=a/\;. We  yond first-order mean-field theory, such as critical fluctua-
compare results from the expansion(bold curve$ to the  tions, only play a minor role as long ads not too large. The
mean-field LDA(dashegl The value ofq=1072 in Fig. 1(b) inhomogeneous regime begins after the minimum int¢he
is in the regime of current experimenfg0], whereasq curves, approximately.
=107° [Fig. 1(a)] is more of interest for theoretical studies. In the region to the left of and around the minimum,
First of all, we observe that the RG results reproduce venphysical effects at low energies near the potential minimum
well the qualitative behavior of the critical temperature pre-play an essential role in the behavior of the critical tempera-

V. NUMERICAL RESULTS
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ture. Partially, these effects can still be described within
mean-field theory—i.e., by the term’(#)g?? of Eq. (30),
which together withD4(#%)q provides an excellent approxi-
mation to the exact mean-field result for small valuesgof
such as in Fig. @8) [40]. The termD’(5)g%” on its own gives
rise to the increase in the mean-field shify), as » ap-
proaches 0.5 from the riglitompare the dashed and dotted
curves in Fig. 1a)]. As stated at the end of Sec. IV A, the
term reflects the behavior of the critical degeneraﬁﬁg at

small x—i.e., for low energies near the trap center. On the
other hand, as it is apparent from Fig. 1, in the “low-energy 01 |
regime,” effects beyond mean-field theory are also much
more prominent. These effects are included in the RG theory. —0-2
They are mainly due to critical fluctuations which occur near
the trap center where the actual phase transition sets in.

For growing interaction strengip the crossover between
the two different regimes becomes less pronounced. On the
one hand, the significance of effects beyond mean field ig,
increased in general; on the other hand, in the mean-field
expression(30) higher-order terms become important which repulsive interaction potential. If the interaction parameter
are less straightforward to interpret. a/)x? becomes large enough, the critical temperature no

In experiments with ultracold atomic Bose gases, only thdonger depends only on the scattering lengihbut is also
mean-field shift of the critical temperature has been identisensitive to finer details of the interaction. A change in the
fied unambiguously so faj20]. In harmonic trapgi.e., »  cutoff, for example, corresponds to a variation of the hard-
=2), which were used in these experiments, effects beyondphere radius. In spite of the cutoff dependence of the quan-
MFT are small and therefore hard to detect. For further extitative results, the qualitative behavior of the curves is not
perimental studies in this direction, it would be desirable toaffected, so that we focus here on these qualitative aspects.
optimize the trapping potentials to make the effects in ques- In particular, we wish to point out two aspects of Fig. 2
tion most pronounced. Our results provide some guidance ithat might be relevant to experimental studies. Recently,
this direction as they show that anharmonic traps witless  much effort has been invested in calculationggfor small
than 2 might be suitable for this purpose. First of all, we notescattering lengths in the homogeneous Bose gas, a problem
from Eq.(9) that, at fixed particle number and trap s\¢g,,  Which is of significant theoretical relevan¢é]. From the
the condensation temperature rises with decreaginget us  inset in Fig. 2(as well as from Fig. }, we can see that, for
now consider the case of Fig(t) with qg=102, which is a  smalla/)\3, the critical temperature is very sensitive to de-
typical experimental value. If one trusted MFT, a trap with  viations from an exactly homogeneous trapping potential
around 1 would be favorable, as there the MFT shifTins  (note that here the cutoff dependence of the RG results is not
largest. However, MFT may no longer be applicable for suchan issug¢ For example, going fromy=0.5 to 0.6 (which
traps. In order to detect the influence of critical fluctuations,corresponds to art® potentia) leads to a drop i, instead
traps with » around 0.75 should be used as there the differof an increase. For accurate experimental measurements of
ence between RG theory and MFT is found to be maximunthe critical temperature of homogeneous Bose gases, this
and about 2.4 times the amountst 2. Finally, RG theory sensitivity on the trapping potential might thus be a serious
alone predicts the shift iff; to be biggest around)=1.5; obstacle in the range of smaih?.
however, the difference tg=2 is not very large. On the other hand, if we focus on the qualitative behavior

It should not be too difficult in practice to engineer trapsat large scattering lengths, we observe features that are much
with # less than 2. A trap which is harmonic in one or two less susceptible to variations of the potential shape. In par-
spatial dimensions and quasihomogeneous in the remainirtgcular, for » up to about 1.0, the critical temperature as a
ongs) would haven=1 or 1.5, respectively. Such traps can function of a/)\$ displays a pronounced maximum whose
be manufactured with current technology. position changes only little withy. We note that the position

Figure 2 depicts the relative shtifin the critical tempera- and height of the maximum agree qualitatively with the the-
ture as a function oa/)\$ for various values ofy (note the oretical results of41]. Furthermore, in the experimeft2],
scaling ofa with A%, the thermal wavelength pertaining to that studied the phase transition in thee-\ycor system, a
the ideal gap These results were obtained with thexpan- maximum in the condensation temperature was found at a
sion of Sec. llIl. In the figure, the calculations are extendedralue of a/x? that is consistent with Fig. 2. The present
up to large values i/ \9. It turns out that fora/\2 exceed-  results indicate that the location of this maximum might in
ing, approximately, 0.1, the numerical results fodpecome fact not be too sensitive on the details of the external poten-
dependent on the cutoff used in the integration of the flow tial. We find the height of the maximum to depend more
equations. In Ref{11], we have discussed this cutoff depen- strongly on the potential, however, and it should be noted
dence. It was shown that our RG model can be interpreted d@bat the value measured [A2] is much larger than the the-
describing a gas of hard-sphere bosons with a finite-heightretical results.

0 0.05 0.1 0.15 0.2
a/Ad
FIG. 2. Relative shift of the critical temperature as a function

a/\% for 7=0.5,0.6,0.75,1.0,1.5, and 2om top to botton.
hown is the RG calculation with expansion.
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FIG. 3. Comparison between the RG method of Sec. Il and RG-L@A{(c) display the relative shift of the critical temperature as a
function ofa/)\$ for =0.75(a), =1.2(b), and»=2.0(c). (d) showst(z) for q=1073. Bold curves: RG method of Sec. Ill. Dotted curves:
RG-LDA. Dashed curves: MFT. Dot-dashed curves: modified MFT accordif$3o All RG calculations use the expansion.

Finally, we remark that there is a qualitative differencewas discussed at the end of Sec. IV B. In our context, this
between the RG results with and witheuéxpansion, which  method amounts to using a degeneracy function that coin-
appears at larger values gfand a/)\% For »=2.0, for ex-  cides withf?,G at x=0, but whose further behavior is calcu-
ample, the RG result without expansion keeps increasing lated from MFT. We see from Figs(1® and 3c) that this
almost linearly after a certain value af/\}. Besides the approach strongly deviates from the RG-LDA results even at

arguments mentioned in Sec. lll, this behavior, which issmall  (a similar behavior was also found at0.75. This
probably unphysical, provides another reason that leads us thows that the local-density calculations sensitively depend
prefer thee expansior{11]. on the details of the degeneracy function and that an agree-

In Fig. 3, we compare the RG approach of Sec. Il to they,ant petween the RG-LDA and RG methods cannot be ex-
RG local-density approximation described in Sec. IV B. All pecteda priori.

RG calculations make use of the expansion. Figures Finally, it should be mentioned that without theexpan-
3(a)—3(c) show the relative shift in the critical temperature sion. fR% indeed assumes the correct asvmptotic formxfor
as a function ofa/>\$ for various values ofy, whereasd) rer ymptotic
depictst(7) for q=a/A;=103. From these results we con- —oo, In this case, the RG—.LDA agrees better with the RG
clude that the two RG methods agree very well for values o et_hoo_l at larger values of; at small 7 however, the be-
7 Up to about 1.25. Figures(® and 3b) are drawn for avior is not as well reproduced as with thexpansion.
different ranges of values f@r/k? in order to emphasize that
this agreement holds on all scalesaﬂ?\? up to 0.1. VI. SUMMARY AND CONCLUSIONS

Going to larger values of,, however, we find that the two
methods soon start to deviate appreciably from each other In this paper, we have investigated the phase transition of
[Figs. 3c) and 3d)]. The reason for these discrepancies isinteracting Bose gases in general power-law traps in the ther-
due to some deficiencies of teeexpansion. As noted in Sec. modynamic limit. To this end, we have compared various
I, the £ expansion is expected to be valid in the vicinity of theoretical approaches. Our main focus was on evaluating
the phase transition. When applying the LDA at increasinglythe partition function above the transition point with the help
large », however, the behavior of the degeneracy functionof the renormalization group. Applying a modification of
fRC at values ofx far away from the phase transition be- Wilson’s momentum-shell renormalization and thexpan-
comes more and more relevdief. Eq. (27)]. In this region  sion, we derived flow equations for the chemical potential
of largex, the e expansion ceases to be applicable. An indi-and the interaction constant that do not depend on the spe-
cation of this failure is the fact that, for— oo, f?rG does not cific trapping potential. The properties of the trap enter only
converge towards the correct asymptotic form: i.e., the deinto the flow equation for the free energy. Our RG approach
generacy function of the ideal gas. In fact, if we artificially allows a unified description of homogeneous and quasihomo-
modify f3° to behave correctly at large the agreement of geneous as well as strongly inhomogeneous Bose gases.
the RG-LDA method with the RG approach is considerably The RG approach was applied to calculate the transition
improved. temperature of the trapped interacting Bose gas. We com-

From these results we conclude that the RG method opared the RG results to mean-field theory as well as to a
Sec. Il is consistent with the RG-LDA, as long as the latterlocal-density approximation based on the RG description of
requires the degeneracy function only in the vicinity of thethe homogeneous Bose gas. MFT is expected to be quantita-
phase transition. This restriction on the applicability of thetively reliable only for sufficiently inhomogeneous
RG-LDA has to be expected from the nature of thexpan-  potentials—e.g., harmonic traps—but it yields a useful first
sion. Nevertheless, the very good agreement at sinptio-  approximation also for quasihomogeneous systems. MFT
vides further evidence for the reliability of the RG approachand RG results were found to be in good qualitiative agree-
of Sec. lll. We note that although this method also appliesment. The comparison between MFT and RG allowed us to
the & expansion, it only makes use of the properties of criti-assess the influence of long-wavelength critical fluctuations
cal trajectories, so we expect it to be accurate for lasgas  on the transition temperature and their dependence on the
well. trapping potential. The nonperturbative critical fluctuations

In this context, it is instructive to compare the RG-LDA are properly accounted for in the RG theory, but neglected in
results with the modified mean-field method of Réf3] that MFT. Furthermore, we were able to identify different re-
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gimes in the behavior of the critical temperature as the pobe traced back to the fact that in these caseg teepansion
tential shape is varied. We distinguished a regime near this no longer applicable.
homogeneous limit, where effects at low energies near the Finally, we want to point out that all our results equally
potential minimum are essential, and an inhomogeneous repply to isotropic as well as anisotropic potentials. In the
gime, where the transition temperature is determined by thghermodynamic limit they are all essentially characterized by
overall behavior of the external trapping potential. Based 0Rhe shape parameter.
the analysis of our results for,, we also made some sug-
gestions for optimizing the trap design in experiments that
study the transition temperature. ACKNOWLEDGMENTS
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