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We investigate the phase transition of interacting Bose gases in general power-law traps in the thermody-
namic limit. Using energy-shell renormalization and the« expansion, we evaluate the partition function for the
uncondensed gas phase within a renormalization-group framework. This approach allows a unified description
of homogeneous as well as inhomogeneous and anisotropic systems. Results for the critical temperature are
compared to mean-field theory as well as to a local-density approximation based on renormalization-group
theory for the homogeneous Bose gas. This comparison indicates the consistency of our approach. We also
make suggestions for an optimized trap design in experiments that measure the transition temperature.
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I. INTRODUCTION

The recent realization of Bose-Einstein condensation
(BEC) in dilute atomic vapors[1–3] has renewed interest in
the quantum-statistical properties of weakly interacting Bose
gases around the phase transition. So far, research in this area
has mainly focused on the spatially uniform system and, as a
key question, the dependence of its condensation tempera-
tureTc on the atomic interactions[4]. The particular theoret-
ical challenge of this system is rooted in the fact that near the
transition point its behavior is dominated by long-
wavelength critical fluctuations that cannot be treated pertu-
batively. Because of these difficulties, a generally accepted
result for the condensation temperature has emerged only
very recently[5,6] and after a long and controversial debate.

Compared to the homogeneous case, the study of conden-
sation in trapped Bose systems, although of immediate ex-
perimental relevance, has received considerably less atten-
tion. Presumably, this is due to the fact that to leading order
in the atomic interaction, the shift inTc is determined by
mean-field effects. The shift was first calculated in Ref.[7],
and the result found there has subsequently been verified by
a number of different numerical approaches[8–11] (although
this result is now generally accepted[12–15], there exist a
few slightly [16–18] and strongly[19] deviating works in the
literature). In spite of the unanimity regarding the leading-
order behavior, the situation for larger interaction strengths,
where effects beyond mean-field theory are expected to be-
come significant, is much less clear. Most studies agree that,
similar to the homogeneous case, critical fluctuations lead to
an increase inTc as compared to the mean-field result
[10,11,13,15]. The quantitative extent of the increase, how-
ever, varies between the different works. On the other hand,
Ref. [9], using a variational approach with a Morse interac-
tion potential, finds an additional decrease inTc.

Recently, precise experimental measurements of the shift
in Tc as a function of the effective atomic interaction strength
have become available[20], and the results can be consid-
ered well compatible with mean-field theory. Nevertheless, it
is interesting to note that the measured value of the corre-
sponding proportionality constant varies by more than 20%
from the theoretical prediction, although this difference is
still within the experimental error range. At any rate, the
experiment has entered a regime for the interaction strength

where most theories predict observable, yet varying, devia-
tions from the mean-field result[10,11,13,15]. In view of the
experimental progress and continuing theoretical uncertain-
ties, further investigations into the phase transition of trapped
Bose gases are certainly well justified.

Renormalization-group(RG) methods provide one pos-
sible pathway for studying the critical behavior of Bose
gases beyond mean-field theory. Following, in particular, the
work of Refs. [21,22], we have recently formulated a RG
treatment for harmonically trapped Bose gases[11] which is
based on energy-shell renormalization and the« expansion.
The purpose of the present paper is to generalize our ap-
proach to a broader class of potentials and to apply it to the
investigation of Bose condensation in generic power-law
traps in the thermodynamic limit.

Our motivation for this study is twofold. First of all, al-
though our results for harmonically trapped atoms[11] com-
pare reasonably well with other approaches, it is necessary to
test our RG method in a broader context in order to better
establish its range of validity and to rule out a coincidental
agreement. Often, and also in our case, renormalization-
group calculations contain uncontrolled approximations, so
that their results and predictions should always be checked
carefully. For our purposes, the study of power-law traps is
particularly appealing as they provide a natural interpolation
between homogeneous and harmonic confinement. Further-
more, both ideal[23–28] and interacting[12,29–33] Bose
gases in power-law traps have been studied before, and a
number of useful analytical results are already available—
e.g., for the density of states and the condensation tempera-
ture in the ideal case. In order to test our RG results for
power-law traps, we compare them to mean-field theory as
well as to a local-density approximation based on the RG
description of the uniform gas(RG-LDA). The comparison
with the RG-LDA allows for a self-consistency check of our
method.

Our second motivation is to obtain a more thorough
physical understanding of the dependence of the BEC phase
transition on the trapping potentials. In particular, we are
interested in investigating the crossover between the homo-
geneous potential, where the condensation process is domi-
nated by long-range critical fluctuations, and more inhomo-
geneous potentials, where mean-field potential shape effects
are prevalent. Furthermore, we consider more practical is-
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sues such as finding trap parameters that maximize the shift
in the critical temperature from the ideal to the interacting
gas or determining the conditions under which effects be-
yond mean-field theory are most prominent. Our study also
yields information about circumstances under which the de-
pendence ofTc on the effective interacting strength is par-
ticularly sensitive or stable with respect to variations of the
external potential. We thus expect that our results provide
some insight that is useful for the development of traps spe-
cifically designed for observing condensation phenomena.

The article is organized as follows. In Sec. II, the physics
of ideal Bose gases in power-law potentials is reviewed
briefly. In Sec. III, we introduce the RG method and describe
how to extend our treatment of interacting Bose gases in
isotropic harmonic traps[11] to more general trapping poten-
tials. Alternative approaches to BEC in external potentials,
which are based on the local-density approximation, are pre-
sented in Sec. IV. We discuss mean-field theory and the ap-
proach based on the RG theory for the homogeneous gas.
Section V is devoted to the comparison and discussion of
results from our RG method, the RG-LDA, and mean-field
theory. The presented material indicates that the renormaliza-
tion group indeed provides a consistent description of the
phase transition for the systems under consideration. Section
VI contains a short summary.

II. IDEAL BOSE GASES IN POWER-LAW TRAPS

In this section we summarize some results about ideal
Bose gases in power-law traps. The notation follows Refs.
[12,23]. We consider a system ofN ideal bosons of massm
which are trapped in a power-law potential

Vsr d = E1U x

L1
Up

+ E2U y

L2
U l

+ E3U z

L3
Us

. s1d

We introduce the constant

h =
1

p
+

1

l
+

1

s
+

1

2
, s2d

which characterizes the potential shape, and the characteris-
tic volume

Vchar
2sh+1d/3 = 8S"2

m
Dh−1/2L1L2L3Isp,l,sd

E1
1/pE2

1/lE3
1/s , s3d

with Isp, l ,sd=Gs1/pdGs1/ldGs1/sd /pls andGsxd the gamma
function. Note that in the homogeneous casesp= l =s=`d
Vchar=8L1L2L3 and in the harmonic casesp= l =s=2d Vchar

=s2pd3/4aho
sxdaho

sydaho
szd with aho

sid the usual harmonic oscillator
length.

In the semiclassical approximation, the number of single-
particle states up to the energy« is obtained as[24]

Ss«d =
1

s2p"d3E
Hø«

d3rd3p =
Vchar

2sh+1d/3

s2pd3/2Gsh + 2d
S m

"2Dh+1

«h+1,

s4d

so that the density of states is given by

Ds«d =
dSs«d

d«
=

Vchar
2sh+1d/3

s2pd3/2Gsh + 1d
S m

"2Dh+1

«h. s5d

For calculations in the mean-field and local-density ap-
proximations, it is useful to convert certain spatial integra-
tions according toed3rf fVsr dg=ed«r̃s«dfs«d. In this way,
isotropic and anisotropic power-law potentials can be treated
on the same footing. The densityr̃s«d can be regarded as the
“equipotential surface area” ofVsr d at energy«. It is given
by

r̃s«d =
Vchar

2sh+1d/3

Gsh − 1/2d
S m

"2Dh−1/2

«h−3/2. s6d

Note that in the homogeneous caser̃s«d=Vchards«d. Equation
(6) can be derived by considering the Hamiltonian

Hsp,r d = HVsr d, upu , p0,

`, upu ù p0,

with arbitraryp0.0. For this Hamiltonian, the semiclassical
number of states is given by[24]

Ss«d =
1

6p2"3

Vchar
2sh+1d/3

Gsh + 1/2d
p0

3S m

"2Dh−1/2

«h−1/2.

On the other hand, we haves2p"d3Ss«d= 4
3pp0

3eVø« d3r
= 4

3pp0
3e0

« d«8r̃s«8d, from which Eq.(6) follows.
In the following, we wish to focus on the thermodynamic

limit, which is defined byNVchar
−2sh+1d/3=const,N, Vchar→`.

The equation of state for the ideal Bose gas above the con-
densation point is then given by[24,26]

N =E
0

`

d«Ds«d
1

ebs«−md − 1

=
1

s2pd3/2S m

"2b
Dh+1

Vchar
2sh+1d/3gh+1szd, s7d

with b the inverse temperature,m the chemical potential, and
z=expsbmd the fugacity. The Bose functions are defined by
glszd=ok=1

` zk/kl. The spatial density distribution of the gas
is determined by the relation

nsr d = lT
−3g3/2hexpfb„m − Vsr d…gj, s8d

with the thermal wavelengthlT=s2p"2b /md1/2. The condi-
tion for Bose-Einstein condensation, which follows from set-
ting z=1 in Eq.(7) or evaluatingN=ed3rnsr ,m=0d from Eq.
(8), reads[23]

N =
1

s2pd3/2S m

"2bc
0Dh+1

Vchar
2sh+1d/3zsh + 1d, s9d

with bc
0=1/kbTc

0 the inverse critical temperature andzsxd the
Riemannz function.

III. RENORMALIZATION-GROUP DESCRIPTION
OF TRAPPED BOSE GASES

In this section, we generalize our renormalization-group
description of harmonically trapped Bose gases[11] to the
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case of more general external potentials. Again, we work in
the thermodynamic limit. We start from the functional inte-
gral representation of the grand-canonical partition function
for the trapped interacting Bose gas, which is given by

Z =E dff,fpge−Sff,fpg. s10d

We consider bosonic fieldsfst ,xd andfpst ,xd that depend
on D spatial coordinatesx=sx1, . . . ,xDd and on imaginary
time t. The fields are periodic int with period "b, where
b=1/kBT is the inverse temperature andkB denotes Boltz-
mann’s constant. The Euclidean action appearing in the func-
tional integral of Eq.(10) is determined by

Sff,fpg =
1

"
E

0

"b

dtE dDxHfpst,xdF"
]

] t
−

"2

2m
¹2

+ Vsxd − mGfst,xd +
g

2
ufst,xdu4J . s11d

The short-range repulsive interaction potential between the
atoms is characterized by the coupling constantg. Its relation
to the scattering lengtha is given below[Eq. (21)]. The
external trapping potentialVsxd denotes theD-dimensional
generalization of Eq.(1). As Vsxd is separable, we can define
the sets of eigenfunctionscnj

s jdsxjd, j =1, . . . ,D, nj =1, . . . ,̀ ,

with eigenenergiesEnj

s jd for the D spatial dimensions.
We now expand the Bose fields appearing in Eq.(10) in

terms of these eigenfunctions—i.e.,

fst,xd = o
l=−`

`

o ¯o
Esn1,. . .,nDdøEL

eip0
l t

Î"b
cn1

s1dsx1d . . . cnD

sDdsxDd

3f̃sl,n1, . . . ,nDd,

with p0
l =2pl /"b the Matsubara frequencies and

f̃sl ,n1, . . . ,nDd complex-valued expansion coefficients. We
also impose a high-energy cutoff condition on the expansion
by only including those productscn1

s1dsx1d¯cnD

sDdsxDd of

eigenfunctions whose total energyEsn1, . . . ,nDd=o j Enj

s jd is
less than the cutoff energyEL="2L2/2m.

To evaluate the partition function(10) above the phase
transition, we apply a variant of the momentum-shell
renormalization-group method[34] in which we successively
integrate out thin energy shells starting at the cutoff energy
EL. To this end, the Bose fields are split into a high-energy
and a low-energy part—i.e.,fst ,xd=f,st ,xd+f.st ,xd,
with

f.st,xd = o
l=−`

`

o ¯o
EL−dELøEsn1,. . .,nDdøEL

eip0
l t

Î"b
cn1

s1dsx1d . . . cnD

sDdsxDd

3f̃sl,n1, . . . ,nDd.

The widthdEL of the high-energy shell is chosen to be small
compared to the cutoff energyEL. By integrating out the
high-energy components of the Bose field in the partition
function, we obtain an effective action for the low-energy

field f,. The one-loop calculation of the effective theory
yields [11,35,36]

Seffsf,,f,
p d = Ssf,,f,

p d + 1
2TrhlnfsĜ0

.d−1 − Ŝgj, s12d

with Ĝ0
. the bare Green’s function for the high-energy field

and Ŝ the self-energy for the low-energy field. The “Tr”
symbol denotes the trace in both the functional and internal
spaces of the operators. After expanding this trace up to sec-

ond order inĜ0
.Ŝ, the effective action reads

Seffsf,,f,
p d < Ssf,,f,

p d + 1
2TrflnsĜ0

.d−1g − 1
2TrsĜ0

.Ŝd

− 1
4TrfsĜ0

.Ŝd2g. s13d

For the trace involving onlysĜ0
.d−1, the summation over the

Matsubara frequencies yields the ideal-gas result

1
2TrflnsĜ0

.d−1g = − o ¯o
EL−dELøEsn1,. . .,nDdøEL

lnf1 − e−bsEL−mdg,

s14d

whereas for the other traces we obtain

TrfĜ0
.Ŝg = 4gNBEsELd

3E
0

"b

dtE dDxuf,st,xdu2AsEL,dEL,xd

s15d

and

TrfĜ0
.ŜĜ0

.Ŝg = 2g2H4bNBEsELdf1 + NBEsELdg

+
1 + 2NBEsELd

2sEL − md JE
0

"b

dtE dDxuf,st,xdu4

AsEL,dEL,xd, s16d

with NBEsEd=febsE−md−1g−1 the Bose-Einstein distribution.
The function

AsEL,dEL,xd = o ¯o
EL−dELøEsn1,. . .,nDdøEL

ucn1

s1dsx1d ¯ cnD

sDdsxDdu2

s17d

contains a summation over the squared moduli of all wave
functions within the energy shell at pointx. In Ref. [11],
AsEL ,dEL ,xd was evaluated for the isotropic harmonic os-
cillator. However, the approach can be generalized to the
much broader class of external potentials(1) if one focuses
on the thermodynamic(or continuum) limit. In this case, the
sum of Eq.(17) is dominated by highly excited wave func-
tions which we can approximate by the WKB expression
[37]
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cn
s jdsxd =ÎdEn

s jd/dn

"p

s2md1/4

fEn
s jd − Vs jdsxdg1/4

3cosF 1

"
E

an
s jd

x

dySÎ2mfEn
s jd − Vs jdsydg −

p

4
DG ,

s18d

with Vs jdsxd the one-dimensional potential in the directionj ,
and an

s jd and bn
s jd the left and right classical turning points

defined byEn
s jd=Vs jdsan

s jdd=Vs jdsbn
s jdd. Expression(18) is valid

in the classically allowed regionan
s jdøxøbn

s jd except for a
small region near the turning points.

The thermodynamic limit is characterized by the fact that
the length scales, over which the trapping potential changes,
tend to infinity. On the other hand, typical energies, which
are relevant for the RG calculations — such as the tempera-
tures of interest or the chemical potential — and which de-
termine the choice of the energy cutoff, remain constant. To
a first degree of approximation, we can therefore shift the
turning points appearing in the WKB expression(18) to in-
finity and also neglect the trapping potentialVs jdsxd in the
denominator. Furthermore, we make use of the fact that the
energy shell of widthdEL contains a large number of eigen-
functions, so that the cos2 contributions appearing in Eq.(17)
can safely be replaced by the averaged value of 1/2.

Within these approximations we obtainAsEL ,dEL ,xd
=s] /]EdQsE,xduEL

dEL, where

QsE,xd = o ¯o
Esn1,. . .,nDdøE

ucn1

s1dsx1d ¯ cnD

sDdsxDdu2

. o ¯o
Esn1,. . .,nDdøE

s2mdD/2

s2p"dD p
j=1

D dEnj

s jd/dnj

ÎEnj

s jd

=
s2mdD/2

s2p"dD

VD

D
ED/2, s19d

with VD=2pD/2/GsD /2d the surface of aD-dimensional unit
sphere. Thus, the functionAsEL ,dEL ,xd does not depend on
x anymore. The traces(15) and (16) can therefore be inter-
preted as giving rise to small corrections to the chemical
potentialm and the coupling constantg in the effective ac-
tion Seff. The trace(14), on the other hand, yields the actual
contribution to the partition function. We can now perform
the Kadanoff transformation in which the effective action is
cast into the form of the original action and the original
cutoff is restored through a scaling transformation. This pro-
cedure leads to RG flow equations form andg, since these
quantities are readjusted after each integration over an en-
ergy shell. All these steps are explained in detail in Ref.[11].
The flow equations finally read

dMsld
dl

= 2Msld − 2G̃sld
VD

s2pdDbsldNsld,

dG̃sld
dl

= s4 − DdG̃sld − G̃sld2 VD

s2pdDbsld

3H4bsldNsldf1 + Nsldg +
1 + 2Nsld

2fE. − MsldgJ .

s20d

Here, we have introduced the scaled quantitiesMsld
=bLmsld, G̃sld=bLLDgsld /bsld, bsld=be−2l /bL, and E.

=bLEL=1/2 with bL=m/"2L2 the cutoff temperature. The
functionNsld=hebsldfE.−Msldg−1j−1 is the scaled Bose-Einstein
distribution. The RG flow parameterl runs from 0 tò as the
physical cutoff is lowered according toLe−l in the course of
integrating out the energy shells. The abovel-dependent
functions describe how the corresponding quantities change
during the renormalization process. The initial conditions
Ms0d andbs0d are determined from the values ofm andb for

the system of interest. The value ofG̃s0d is related to the
s-wave scattering length of the atomic system according to
[21,11]

aL =
G̃s0dbs0d

4p +
2

p
G̃s0dbs0d

. s21d

The cutoff energyEL should be chosen as the largest energy

scale of the system so that typicallybs0d ,G̃s0d@1 and
Ms0d!1. Note that Eqs.(20) only apply above the BEC
phase transition— i.e., for a noncondensed gas.

In previous work, we have investigated the use of the«
expansion for the description of the BEC phase transition.
First of all, it was shown that the« expansion allows us to
reconcile the differences between the flow equations derived
for the homogeneous Bose gas in the symmetric and the
symmetry-broken phase, respectively[38]. Furthermore, as
discussed in[11], the« expansion yields an improved result
for the critical temperatureTc of the homogeneous gas at
small scattering lengths, as well as a more plausible descrip-
tion of the behavior ofTc at large scattering lengths in har-
monically trapped gases. Technically, the« expansion
amounts to expanding Eqs.(20) up to second order inMsld
andG̃sld. The flow equations then take the form

dMsld
dl

= 2Msld − 2G̃sld
VD

s2pdDbsldhNm„bsldE.…

+ bsldNm„bsldE.…f1 + Nm„bsldE.…gMsldj,

dG̃sld
dl

= «G̃sld − G̃sld2 VD

s2pdDbsldH1 + 2Nm„bsldE.d
2E.

+ 4bsldNm„bsldE.…f1 + Nm„bsldE.…gJ , s22d

with Nmsxd=fexpsxd−1g−1 a modified Bose distribution. In
D=3 dimensions, the flow equations(22) have to be inte-
grated with«=4−D=1. The« expansion is expected to be
applicable in the vicinity of the phase transition.
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The flow equations(20) and (22), respectively, do not
depend on the external trapping potential(1), and they also
coincide with the RG equations for the homogeneous gas
with periodic boundary conditions[21,22]. In other words, in
our scheme the renormalization ofm and g becomes inde-
pendent of the trapping potential in the thermodynamic limit.
This is a consequence of the approximations leading to Eq.
(19) in which we focus on the “bulk properties” of the sys-
tem and neglect all surface effects.

The properties of the trap do come into play, however,
when we calculate the free energyW of the system, from
which, e.g., the critical temperature can be derived. Using
Eqs.(5) and (14), one obtains

W= − sbL/bdln Z

=
L2sh+1dVchar

2sh+1d/3

s2pd3/2Gsh + 1d2h

1

bs0dE0

`

dl e−2sh+1dl lnh1

− e−bsldf1/2−Msldgj

;
L2sh+1dVchar

2sh+1d/3

s2pd3/2Gsh + 1d2h I„Ms0d,G̃s0d,bs0d;h…. s23d

The expression forW is identical to the ideal-gas case except
that the chemical potentialMsld is determined by the flow
equations(20) or (22). The atomic interactions thus enter the
calculation ofW only through the renormalized chemical po-
tential. The trapping potential essentially enters through its
corresponding density of states which gives rise to the expo-

nential factore−2sh+1dl. The termI(Ms0d ,G̃s0d ,bs0d ;h) ap-
pearing in Eq.(23) contains the integral from the preceding
expression divided bybs0d; the notation is such that the de-
pendence on the initial conditions for the flow equations be-
comes apparent.

The flow equations(20) or (22) can be used to describe
the BEC phase transition as they possess a hyperbolic fixed
point in the limit l →` which, for D=3, is located at

sM ,G̃d=s1/12,5p2/72d or sM ,G̃d=s1/10,p2/10d, respec-
tively. The flow trajectories asymptotically approaching the
fixed point form the critical manifold; each of these critical
trajectories describes a system at the phase transition with

specific values ofMscrds0d, G̃scrds0d, andbscrds0d. The transi-
tion temperatureTc pertaining to a critical trajectory can be
related to the particle number via the thermodynamic relation
N=−]W/]Ms0d. In this way, the shift inTc with respect to an
ideal gas with the same particle number(and the same trap-
ping potential) is found as

STc
sRGd

Tc
s0d Dh+1

= −
1

bs0dh+1

2hGsh + 1dzsh + 1d
]

] Ms0d
I„Mscrds0d,G̃scrds0d,bscrds0d;h…

. s24d

The scaled scattering length pertaining to the trajectory is
given by

a

lT
s0d =

G̃scrds0dbscrds0d

4p +
2

p
G̃scrds0dbscrds0d

1
Î2pbscrds0d

S Tc
s0d

Tc
sRGdD1/2

,

s25d

with lT
s0d the thermal wavelength for the ideal gas at critical-

ity. A discussion regarding the numerical aspects of evaluat-
ing Eqs.(24) and (25) can be found in[11].

The RG approach presented above relies on a number of
essential approximations, regarding, for example, the deriva-
tive expansion, the polynomial expansion of the effective
action in powers of the Bose fields, and the calculation of the
function AsEL ,dEL ,xd of Eq. (17) (for a more detailed dis-
cussion see, e.g., Refs.[11,36]). Some of the approximations
involved are not completely systematic and controllable. One
of the main purposes of this paper is to show that in spite of
this unclarity the RG method provides a reliable and ad-
equate tool to study the phase transition of Bose gases. To
this end, it is important to compare results of RG calculations
with other methods.

IV. LOCAL-DENSITY APPROXIMATIONS

An alternative approach to calculating the transition tem-
perature of the trapped Bose gas is based on the local-density
approximation(LDA ). In the thermodynamic limit, the char-
acteristic length scales of the trap(1) tend to infinity, so that
the potential becomes locally flat at each point. Therefore,
the trapped gas can locally be considered homogeneous with
a chemical potential ofm−Vsxd, wherem denotes the global
chemical potential of the gas. As a consequence, the spatial
densityntr of the trapped gas is related to the homogeneous
density via

ntrsxd = nhom„T,m − Vsxd…. s26d

The BEC phase transition sets in at the trap center when the
local chemical potential(which there equals the global
chemical potentialm) reaches the critical valuemcsTd of the
homogeneous gas. We note thatntr depends on position only
through the potentialVsxd. Thus we can invoke Eq.(6) to-
gether with Eq.(26) to examine the critical temperatureTc of
an interacting Bose gas. From Eq.(9) follows that the change
in Tc with respect to an ideal gas with the same particle
number is given by

S Tc

Tc
s0dDh+1

=
zsh + 1dGsh − 1/2d

E dx xh−3/2fcrsxd
. s27d

Here, fcrsxd=lT
3nhomsTc,mcsTcd−x/bcd denotes the dimen-

sionless “degeneracy function” pertaining to the system at
the phase transition. The variablex=bcVsxd measures the
scaled distance in energy to the trap center. From Eq.(27) we
see that the main influence of the trapping potential mani-
fests itself in the weight factorxh−3/2, with which the degen-
eracy functionfcr is multiplied under the integral and which
originates from the densityr̃s«d of Eq. (6). As expected, for
h close to the value 1/2 of the homogeneous system, the
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relevant integration range is concentrated nearx=0, whereas
for growing h it is extended towards largerx.

The application of the LDA thus relies on an adequate
determination of the degeneracy functionfcrsxd. In the fol-
lowing, we discuss two different approaches: mean-field
theory (MFT), which has frequently been used before(e.g.,
[7,12,32]), and the renormalization group.

A. Mean-field theory

In MFT, the spatial density of an interacting homogeneous
Bose gas above the condensation point is determined by the
relation [39]

nhom
MF sT,md =

1

lT
3g3/2hexpfbsm − 2U0nhom

MF dgj s28d

in the thermodynamic limit. Expression(28) is identical to
the one for the ideal homogeneous gas[cf. Eq. (8)] except
that the chemical potential is modified by the mean-field in-
teraction potential 2U0nMFsr d that is due to the atomic colli-
sions. The coupling constant is given byU0=4p"2a/m with
a the s-wave scattering length. In the mean-field theory of
interacting gases, BEC sets in whenm reaches its maximum
value compatible with Eqs.(26) and(28). The critical chemi-
cal potential is thus determined bym=2U0nMFs0d. This im-
plies a critical degeneracy ofntr

MFs0dlT
3=zs3/2d at the trap

center just as for the ideal gas. Using these relations, the
critical degeneracy functionfcr

MFsxd can be obtained from Eq.
(28) by solving the implicit equation

fcr
MFsxd ; y = F3/2„x − 4qfzs3/2d − yg…. s29d

Here, Flsxd=glfexps−xdg denotes the Bose function andq
=a/lT the scaled interaction parameter.

For the homogeneous interacting Bose gas, mean-field
theory yields the condensation conditionnhom

MF lT
3=zs3/2d.

The condensation temperatureTc
sMFd is thus not changed in

comparison to the noninteracting case. The actual shift ofTc
is completely due to nonperturbative long-wavelength fluc-
tuations of the Bose fields. For the harmonically trapped gas,
however, the trapping potential effectively reduces the influ-
ence of the critical fluctuations[15]. The shift in the critical
temperature is mainly determined by noncritical changes in
the overall atomic density distribution that are caused by the
atomic interactions. Mean-field theory is able to calculate
this shift correctly to leading order in the atomic interactions
[7].

For sufficiently inhomogeneous traps, mean-field theory
thus yields quantitatively accurate results. For general
power-law potentials, even in the quasihomogeneous limit
h→0.5, MFT is useful as it provides at least a first approxi-
mation against which we can compare our other results. The
mean-field theory of condensation in power-law potentials
has been studied by several authors before[12,23,32,33].
However, these papers do not provide a complete coverage
of the problem(in particular, the quasihomogeneous regime
is not discussed properly), which gives an additional incen-
tive to reconsider this question.

In general, the mean-field critical temperature for given
set of system parametersh and q has to be determined nu-
merically by solving Eq.(29) for fcr

MFsxd and performing the
integration in Eq.(27). For smallq=a/lT, however, the rela-
tive changetMF=1−Tc

sMFd /Tc
s0d in the critical temperature can

be approximated as

tMF = D1shdq + D8shdq2h + D2shdq2 + osq2d, s30d

with

D1shd = − 4cshdE
0

`

dxxh−3/2F1/2sxdfzs3/2d − F3/2sxdg,

s31d

D8shd = − cshds16pdhGsh + 1/2dGs− hd
h − 1/2

, s32d

D2shd =
h + 2

2
D1

2shd − cshdE
0

`

dxxh−3/2h8F−1/2sxdfzs3/2d

− F3/2sxdg2 − 16F1/2
2 sxdfzs3/2d − F3/2sxdgj, s33d

andcshd=fsh+1dGsh−1/2dzsh+1dg−1. This result, which is
discussed in more detail in Ref.[40], has been derived from
an expansion of the integral appearing in Eq.(27) in terms of
q. It provides an accurate approximation oftMF for all h and
q&0.01. In this way it extends the previous work of Refs.
[12,32,33] which provides the expansion oftMF only up to
linear order inq and which is adequate only for inhomoge-
neous potentials with sufficiently largeh. Note that these
papers express the result forD1shd in terms of an equivalent
sum representation which, however, is less convenient nu-
merically.

In Eq. (31) for D1shd, the integrand essentially contains
the leading-order density modifications that are induced by
the atomic interactions — they are described by the given
combination of Bose functions — weighted with the equipo-
tential surface area of Eq.(6). The integration extends over
the whole configuration space available to the Bose gas. The
term D1shdq thus expresses the large-scale influence of the
potential shape and the density modifications on the transi-
tion temperature. The termD8shdq2h is of a very different
origin. It is determined by the behavior offcr

MFsxd within the
small region 0øx&q2 near the trap center. In the expression
for D2shd, the integral is to be understood as regularized with
respect to the divergence atx=0 which arises forh,1 [40].
The term quadratic inq is most important aroundh=1 where
it counterbalances the divergence of the termD8shdq2h. It is
of minor significance, however, regarding the qualitative as-
pects of the behavior oftMF. In the following dicussion, we
thus focus on the first two terms in the expansion(30).

B. Renormalization-group theory

In renormalization-group theory, the degeneracy function
of a homogeneous Bose gas with thermodynamic parameters

Ms0d, G̃s0d, andbs0d is given by
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fRG
„Ms0d,G̃s0d,bs0d… ; nhom

RG lT
3

= −Î 2

p
b3/2s0d

]

] Ms0d

3I„Ms0d,G̃s0d,bs0d;h = 1/2….

s34d

Given a critical trajectory with initial conditions

(Mcrs0d ,G̃crs0d ,bcrs0d), we obtain from Eq.(34) the critical
degeneracy pertaining to the corresponding value ofq

=a/lT=G̃crs0dbcrs0d / f4p+2G̃crs0dbcrs0d /pg [cf. Eq. (25)].
The critical degeneracy function is thus given by

fcr
RGsxd = fRG

„Mcrs0d − x/bcrs0d,G̃crs0d,bcrs0d…. s35d

This expression follows from the relationbLfm−Vsxdg
=Ms0d−x/bcrs0d. Note that all flow trajectories used for the
evaluation of fcr

RG have the same interaction parameterq
=a/lT. The comparison between the RG-LDA and the RG
theory of Sec. III provides an important consistency check
for our methods. If they are to be reliable, the results should
not be too different.

In Ref. [13] a variant of the mean-field approach of Sec.
IV A was proposed that allows us to include in a simple way
the influence of critical fluctuations on the condensation tem-
perature in the trap. It is based on the assumption that the
main effect of these fluctuations is to lower the critical de-
generacyfcrs0d, at which condensation sets in at the trap
center. The further behavior offcrsxd, however, is still mod-
eled with the help of the mean-field LDA expressions(26)
and (28) with a suitably chosen criticalm. The main diffi-
culty in the implementation of this approach consists of
course in determining the modified critical degeneracy. We
choose the value obtained from the RG description of the
homogeneous interacting gas at a givenq=a/lT. As this is
also the critical degeneracy used in the RG-LDA, the com-
parison between the two methods allows us to assess how
sensitive the results are with regard to the different approxi-
mations to the behavior of the functionfcrsxd.

V. NUMERICAL RESULTS

In this section, we discuss numerical results for the criti-
cal temperatureTc determined according to the different
methods outlined in Secs. III and IV. As to the RG calcula-
tions, we focus on the« expansion for the reasons indicated
in Sec. III, but we comment on respective results obtained
from the flow equations(20) whenever appropriate.

Figure 1 shows the shift in the critical temperaturet
=Tc/Tc

0−1 (relative to the critical temperatureTc
0 of an ideal

gas with the same particle number) as a function of the po-
tential shape parameterh for fixed values ofq=a/lT. We
compare results from the« expansion(bold curves) to the
mean-field LDA(dashed). The value ofq=10−2 in Fig. 1(b)
is in the regime of current experiments[20], whereasq
=10−5 [Fig. 1(a)] is more of interest for theoretical studies.

First of all, we observe that the RG results reproduce very
well the qualitative behavior of the critical temperature pre-

dicted by mean-field theory—for example, the minimum in
the tshd graphs. As MFT can be trusted as a first approxima-
tion, this observation clearly indicates the general validity of
our RG approach. In particular, it shows that the agreement
for the harmonic oscillator found previously[11] was not
merely a coincidence. We also see that the RG results always
predict a higher critical temperature than MFT. Such an in-
crease was previously reported in studies of the harmonic
oscillator [10,13,15] and can be attributed to the remaining
influence of critical long-wavelength fluctuations. It should
also be mentioned that — as discussed in Ref.[11] — the
RG results for the homogeneous case(h=0.5) agree well
with the most accurate calculations currently available[5,6].

For largeh and smallq, the MFT approach is supposed to
become more and more accurate as the effect of critical fluc-
tuations is diminished. In fact, our RG results approach MFT
in this limit. However, ath=2, for example, which corre-
sponds to the harmonic oscillator potential, there is still a
small difference in the shifts(about 7%) which seems to
persist even in the limit ofq→0. This difference might in-
dicate that the RG slightly overestimates the influence of
critical fluctuations[11]; on the other hand, the accuracy of
the MFT is not known precisely, as well.

For the parameter values shown in Fig. 1, the difference
between the RG results with and without« expansion is al-
ways much smaller than the distance to the MFT values.
Differences between the RG calculations become more pro-
nounced asq grows; at fixedq, they are largest aroundh
=0.5 and then decrease rapidly.

A further interesting aspect of Fig. 1 concerns the fact that
one can distinguish between different regimes in the behav-
ior of Tc as the potential shape parameterh is varied. The
region of largeh can be characterized as “inhomogeneous.”
There, the shift inTc is well described by the first term
D1shdq of the mean-field expression(30) (compare with the
dotted curves in Fig. 1). As explained in Sec. IV A, the shift
is thus essentially determined by the global shape of the
external trapping potential and the large-scale atomic density
distribution in the presence of the interactions. Effects be-
yond first-order mean-field theory, such as critical fluctua-
tions, only play a minor role as long asq is not too large. The
inhomogeneous regime begins after the minimum in thetshd
curves, approximately.

In the region to the left of and around the minimum,
physical effects at low energies near the potential minimum
play an essential role in the behavior of the critical tempera-

FIG. 1. Relative shiftt of critical temperature as a function ofh
at fixed q=a/ lT=10−5 (a) and 10−2 (b). Bold curves: RG results
with « expansion. Dashed curves: mean-field LDA. Dotted curves:
linear mean-field approximationD1shdq [cf. Eqs.(30) and (31)].
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ture. Partially, these effects can still be described within
mean-field theory—i.e., by the termD8shdq2h of Eq. (30),
which together withD1shdq provides an excellent approxi-
mation to the exact mean-field result for small values ofq,
such as in Fig. 1(a) [40]. The termD8shdq2h on its own gives
rise to the increase in the mean-field shifttshd, as h ap-
proaches 0.5 from the right[compare the dashed and dotted
curves in Fig. 1(a)]. As stated at the end of Sec. IV A, the
term reflects the behavior of the critical degeneracyf scrd

MF at
small x—i.e., for low energies near the trap center. On the
other hand, as it is apparent from Fig. 1, in the “low-energy
regime,” effects beyond mean-field theory are also much
more prominent. These effects are included in the RG theory.
They are mainly due to critical fluctuations which occur near
the trap center where the actual phase transition sets in.

For growing interaction strengthq, the crossover between
the two different regimes becomes less pronounced. On the
one hand, the significance of effects beyond mean field is
increased in general; on the other hand, in the mean-field
expression(30) higher-order terms become important which
are less straightforward to interpret.

In experiments with ultracold atomic Bose gases, only the
mean-field shift of the critical temperature has been identi-
fied unambiguously so far[20]. In harmonic traps(i.e., h
=2), which were used in these experiments, effects beyond
MFT are small and therefore hard to detect. For further ex-
perimental studies in this direction, it would be desirable to
optimize the trapping potentials to make the effects in ques-
tion most pronounced. Our results provide some guidance in
this direction as they show that anharmonic traps withh less
than 2 might be suitable for this purpose. First of all, we note
from Eq.(9) that, at fixed particle number and trap sizeVchar,
the condensation temperature rises with decreasingh. Let us
now consider the case of Fig. 1(b) with q=10−2, which is a
typical experimental value. If one trusted MFT, a trap withh
around 1 would be favorable, as there the MFT shift inTc is
largest. However, MFT may no longer be applicable for such
traps. In order to detect the influence of critical fluctuations,
traps withh around 0.75 should be used as there the differ-
ence between RG theory and MFT is found to be maximum
and about 2.4 times the amount ath=2. Finally, RG theory
alone predicts the shift inTc to be biggest aroundh=1.5;
however, the difference toh=2 is not very large.

It should not be too difficult in practice to engineer traps
with h less than 2. A trap which is harmonic in one or two
spatial dimensions and quasihomogeneous in the remaining
one(s) would haveh<1 or 1.5, respectively. Such traps can
be manufactured with current technology.

Figure 2 depicts the relative shiftt in the critical tempera-
ture as a function ofa/lT

0 for various values ofh (note the
scaling ofa with lT

0, the thermal wavelength pertaining to
the ideal gas). These results were obtained with the« expan-
sion of Sec. III. In the figure, the calculations are extended
up to large values ofa/lT

0. It turns out that fora/lT
0 exceed-

ing, approximately, 0.1, the numerical results fort become
dependent on the cutoffL used in the integration of the flow
equations. In Ref.[11], we have discussed this cutoff depen-
dence. It was shown that our RG model can be interpreted as
describing a gas of hard-sphere bosons with a finite-height

repulsive interaction potential. If the interaction parameter
a/lT

0 becomes large enough, the critical temperature no
longer depends only on the scattering lengtha, but is also
sensitive to finer details of the interaction. A change in the
cutoff, for example, corresponds to a variation of the hard-
sphere radius. In spite of the cutoff dependence of the quan-
titative results, the qualitative behavior of the curves is not
affected, so that we focus here on these qualitative aspects.

In particular, we wish to point out two aspects of Fig. 2
that might be relevant to experimental studies. Recently,
much effort has been invested in calculations ofTc for small
scattering lengths in the homogeneous Bose gas, a problem
which is of significant theoretical relevance[4]. From the
inset in Fig. 2(as well as from Fig. 1), we can see that, for
small a/lT

0, the critical temperature is very sensitive to de-
viations from an exactly homogeneous trapping potential
(note that here the cutoff dependence of the RG results is not
an issue). For example, going fromh=0.5 to 0.6 (which
corresponds to anr30 potential) leads to a drop inTc instead
of an increase. For accurate experimental measurements of
the critical temperature of homogeneous Bose gases, this
sensitivity on the trapping potential might thus be a serious
obstacle in the range of smalla/lT

0.
On the other hand, if we focus on the qualitative behavior

at large scattering lengths, we observe features that are much
less susceptible to variations of the potential shape. In par-
ticular, for h up to about 1.0, the critical temperature as a
function of a/lT

0 displays a pronounced maximum whose
position changes only little withh. We note that the position
and height of the maximum agree qualitatively with the the-
oretical results of[41]. Furthermore, in the experiment[42],
that studied the phase transition in the4He-Vycor system, a
maximum in the condensation temperature was found at a
value of a/lT

0 that is consistent with Fig. 2. The present
results indicate that the location of this maximum might in
fact not be too sensitive on the details of the external poten-
tial. We find the height of the maximum to depend more
strongly on the potential, however, and it should be noted
that the value measured in[42] is much larger than the the-
oretical results.

FIG. 2. Relative shiftt of the critical temperature as a function
of a/lT

0 for h=0.5,0.6,0.75,1.0,1.5, and 2.0(from top to bottom).
Shown is the RG calculation with« expansion.
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Finally, we remark that there is a qualitative difference
between the RG results with and without« expansion, which
appears at larger values ofh and a/lT

0. For h=2.0, for ex-
ample, the RG result without« expansion keeps increasing
almost linearly after a certain value ofa/lT

0. Besides the
arguments mentioned in Sec. III, this behavior, which is
probably unphysical, provides another reason that leads us to
prefer the« expansion[11].

In Fig. 3, we compare the RG approach of Sec. III to the
RG local-density approximation described in Sec. IV B. All
RG calculations make use of the« expansion. Figures
3(a)–3(c) show the relative shiftt in the critical temperature
as a function ofa/lT

0 for various values ofh, whereas(d)
depictstshd for q=a/lT=10−3. From these results we con-
clude that the two RG methods agree very well for values of
h up to about 1.25. Figures 3(a) and 3(b) are drawn for
different ranges of values fora/lT

0 in order to emphasize that
this agreement holds on all scales ofa/lT

0 up to 0.1.
Going to larger values ofh, however, we find that the two

methods soon start to deviate appreciably from each other
[Figs. 3(c) and 3(d)]. The reason for these discrepancies is
due to some deficiencies of the« expansion. As noted in Sec.
III, the « expansion is expected to be valid in the vicinity of
the phase transition. When applying the LDA at increasingly
large h, however, the behavior of the degeneracy function
fcr
RG at values ofx far away from the phase transition be-

comes more and more relevant[cf. Eq. (27)]. In this region
of largex, the« expansion ceases to be applicable. An indi-
cation of this failure is the fact that, forx→`, fcr

RG does not
converge towards the correct asymptotic form: i.e., the de-
generacy function of the ideal gas. In fact, if we artificially
modify fcr

RG to behave correctly at largex, the agreement of
the RG-LDA method with the RG approach is considerably
improved.

From these results we conclude that the RG method of
Sec. III is consistent with the RG-LDA, as long as the latter
requires the degeneracy function only in the vicinity of the
phase transition. This restriction on the applicability of the
RG-LDA has to be expected from the nature of the« expan-
sion. Nevertheless, the very good agreement at smallh pro-
vides further evidence for the reliability of the RG approach
of Sec. III. We note that although this method also applies
the « expansion, it only makes use of the properties of criti-
cal trajectories, so we expect it to be accurate for largerh as
well.

In this context, it is instructive to compare the RG-LDA
results with the modified mean-field method of Ref.[13] that

was discussed at the end of Sec. IV B. In our context, this
method amounts to using a degeneracy function that coin-
cides with fcr

RG at x=0, but whose further behavior is calcu-
lated from MFT. We see from Figs. 3(b) and 3(c) that this
approach strongly deviates from the RG-LDA results even at
small h (a similar behavior was also found ath=0.75). This
shows that the local-density calculations sensitively depend
on the details of the degeneracy function and that an agree-
ment between the RG-LDA and RG methods cannot be ex-
pecteda priori.

Finally, it should be mentioned that without the« expan-
sion, fcr

RG indeed assumes the correct asymptotic form forx
→`. In this case, the RG-LDA agrees better with the RG
method at larger values ofh; at smallh, however, the be-
havior is not as well reproduced as with the« expansion.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have investigated the phase transition of
interacting Bose gases in general power-law traps in the ther-
modynamic limit. To this end, we have compared various
theoretical approaches. Our main focus was on evaluating
the partition function above the transition point with the help
of the renormalization group. Applying a modification of
Wilson’s momentum-shell renormalization and the« expan-
sion, we derived flow equations for the chemical potential
and the interaction constant that do not depend on the spe-
cific trapping potential. The properties of the trap enter only
into the flow equation for the free energy. Our RG approach
allows a unified description of homogeneous and quasihomo-
geneous as well as strongly inhomogeneous Bose gases.

The RG approach was applied to calculate the transition
temperature of the trapped interacting Bose gas. We com-
pared the RG results to mean-field theory as well as to a
local-density approximation based on the RG description of
the homogeneous Bose gas. MFT is expected to be quantita-
tively reliable only for sufficiently inhomogeneous
potentials—e.g., harmonic traps—but it yields a useful first
approximation also for quasihomogeneous systems. MFT
and RG results were found to be in good qualitiative agree-
ment. The comparison between MFT and RG allowed us to
assess the influence of long-wavelength critical fluctuations
on the transition temperature and their dependence on the
trapping potential. The nonperturbative critical fluctuations
are properly accounted for in the RG theory, but neglected in
MFT. Furthermore, we were able to identify different re-

FIG. 3. Comparison between the RG method of Sec. III and RG-LDA.(a)–(c) display the relative shiftt of the critical temperature as a
function ofa/lT

0 for h=0.75(a), h=1.2 (b), andh=2.0 (c). (d) showstshd for q=10−3. Bold curves: RG method of Sec. III. Dotted curves:
RG-LDA. Dashed curves: MFT. Dot-dashed curves: modified MFT according to[13]. All RG calculations use the« expansion.
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gimes in the behavior of the critical temperature as the po-
tential shape is varied. We distinguished a regime near the
homogeneous limit, where effects at low energies near the
potential minimum are essential, and an inhomogeneous re-
gime, where the transition temperature is determined by the
overall behavior of the external trapping potential. Based on
the analysis of our results forTc, we also made some sug-
gestions for optimizing the trap design in experiments that
study the transition temperature.

The RG-based local-density approximation was found to
agree well with our main RG method provided the potentials
are not too inhomogeneous. These results show the self-
consistency of the RG approach and provide further evidence
for the reliability of the method presented. Deviations of the
RG-LDA for more strongly inhomogeneous potentials could

be traced back to the fact that in these cases the« expansion
is no longer applicable.

Finally, we want to point out that all our results equally
apply to isotropic as well as anisotropic potentials. In the
thermodynamic limit they are all essentially characterized by
the shape parameterh.
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