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Abstract. We discuss the application of the momentum-shell renormalization group

method to the interacting homogeneous Bose gas in the symmetric and in the

symmetry-broken phases. It is demonstrated that recently discussed discrepancies

are artifacts of not taking proper care of infrared divergencies appearing at finite

temperature. If these divergencies are taken into account and treated properly by

means of the ε-expansion, the resulting renormalization group equations and the

corresponding universal properties are identical in the symmetric and the symmetry-

broken phases.

PACS numbers: 03.75.Hh,05.30.Jp,64.60.Ak

1. Introduction

Renormalization techniques have been employed for the study of interacting Bose gases

near the critical temperature, because in this temperature regime the fluctuations

dominate the mean field. The bulk of this work was written before the experimental

realization of Bose-Einstein condensation (BEC) in ultracold atomic gases [1, 2, 3, 4, 5,

6, 7, 8]. It was shown that only at zero temperature the quantum nature of the three-

dimensional Bose gas differentiates it from a three-dimensional two-component classical

field theory. At any finite temperature the Bose gas converges to the classical theory as

the fixed point of the renormalization group (RG) equations is approached.

Therefore the calculation of the universal properties of the Bose gas can be

performed in the same way as for a classical theory, that is through the ε-expansion

where ε = 4 − D and D is the number of spatial dimensions, e.g. [9, 10, 11, 12]. In

D = 3, although the results of the expansion up to second order in ε are in remarkable

agreement with experimental values of critical exponents (measured in He4 experiments,

but due to universality applicable in the case of Bose gases as well [13]), higher-order

results diverge from the experimental values. The reason is that the ε-expansion is

asymptotic, as first noted in [14], and to obtain meaningful results when higher orders

in ε are included, one has to make use of resummation techniques, see e.g. [15]. This way

critical exponents have been calculated up to fifth order in [16, 17, 18, 19, 20, 21, 22], see

also for corrections [23, 24] and improvements [25]. However, the results thus obtained
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are sensitive to the way the resummation is performed and consequently somewhat

ambiguous, see e.g. [26].

An alternative method is to calculate the universal properties perturbatively as

series of powers of g∗ (g∗ being the infrared stable fixed point for the interaction g)

directly in D = 3, as first suggested in [27]. These series are then truncated to order

g∗L where L is the number of loops in which the calculation is performed. Though this

method is fundamentally less satisfactory than the ε-expansion, see e.g. [15], it can be

used in the regime of small but non-zero chemical potential. It has been employed for

the calculation of critical exponents up to seventh order in g∗ for N = 0, 1, 2, 3 [28,29,26]

and for arbitrary N [30, 31] where N is the number of components of the vector field.

The series in g∗ are again asymptotic and have to be resummed. There is in general

agreement with the corresponding ε-expansion results. We will be referring to this

technique as the direct method.

After the experimental realization of BEC in ultracold atomic gases [32, 33, 34],

because of the renewed interest in these systems, a new generation of papers on the

renormalization of Bose gases appeared. Starting with [35], a series of papers relied

on the so-called momentum-shell approach [36, 37, 38, 39]. In this method, momentum

shells around the cutoff are successively integrated out directly at D = 3 according to

Wilson’s method, but unlike in the direct method no expansion of the critical exponents

over g∗ is performed.

This apparently new method, when applied in the symmetric (normal) phase, yields

universal results which, when compared to experimental values, are worse than even the

first-order ε-expansion results. However, when the momentum-shell method is applied

to the symmetry-broken phase, it yields results which are far better than the first-

order ε-expansion and, in fact, as good as the results of the second-order ε-expansion.

Based on this observation, it was assumed that the reliability of the momentum-shell

method increases when it is used in the symmetry-broken phase, and a calculation of

non-universal properties (for example transition temperature versus scattering length)

from the symmetry-broken phase RG equations was attempted. For this reason, one

may now wonder if applying the ε-expansion or the direct method in the symmetry-

broken rather than in the symmetric phase as is usually done would improve the results

of these methods.

Here we show that the distinction introduced by the momentum-shell method

of [35, 36, 37, 38, 39] between RG methods applied in the symmetric and the symmetry-

broken phases is an artifact of not taking care of the infrared divergence which appears

at finite temperature in the interacting Bose gas theory. When this divergence is taken

into account and treated properly, as in a classical theory, by means of the ε-expansion,

the RG equations and the resulting universal properties are identical in the symmetric

and in the symmetry-broken phases.

Furthermore, even if one focuses on the regime of small but non-zero chemical

potential, where the direct method applies, the use of the direct method in the

symmetry-broken rather than the symmetric phase deteriorates the results instead of
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improving them.

2. Derivation of RG equations

The partition function of the homogeneous s-wave interacting Bose gas is

Z(µ, β, V, g) ≡ Tre−β(Ĥ−µN̂) =
∫

δ[φ, φ∗]e−S[φ,φ∗] (1)

with the Euclidean action

S[φ, φ∗] =
1

h̄

∫ h̄β

0
dτ

∫

V
dDx

{

φ∗(τ,x)

[

h̄
∂

∂τ
− h̄2

2m
∇2 − µ

]

φ(τ,x) +
g

2
|φ(τ,x)|4

}

. (2)

We give an outline of the basic steps of the renormalization procedure. More details

can be found in, e.g., [35, 37, 39].

In order to implement the first step of the RG procedure (Kadanoff transformation),

we split the field φ(x) into a long-wavelength component φ<(x) (slow field) and a short-

wavelength component δφ>(x) (fast field). The fast field involves Fourier components

which are contained only in an infinitesimally thin shell in momentum space of thickness

Λe−l ≤ |p| ≤ Λ near the momentum cutoff Λ, whereas the slow field has all its Fourier

components in the sphere whose center is at the origin of the momentum space and

whose radius is Λe−l.

We now perform the one-loop calculation of the effective theory of the slow field.

We integrate out the fast field and expand the resulting effective action in powers of g

keeping up to order g2. This perturbative effective action is equal to the original action

(2) (with the field φ replaced by the slow field φ<) plus two additional terms. The first of

these additional term is proportional to g and therefore quadratic in the modulus of the

slow field. The second additional term is proportional to g2 and quartic to the modulus

of the slow field. The effective Lagrangian of this theory can be cast in the form of

the original Lagrangian because the additional terms produced by the integration over

the fast fields have such a form that they can be considered as corrections to µ and g.

Thus, after one infinitesimal integration, the chemical potential and the interaction in

the effective action are

µ′ = µ+ dµ = µ− gdD

∫

δVp

dp pD−1f1[β, E(p)− µ],

g′ = g + dg = g − g2dD

∫

δVp

dp pD−1f2[β, E(p)− µ] (3)

where E(p) = p2/2m and

f1(β, E) = 2N(βE) + 1,

f2(β, E) =
1 + 2N(βE)

2E
+ 4βN(βE)[1 +N(βE)] (4)

with the Bose-Einstein distribution N(x) = 1/(ex − 1). The density of states dD can be

expressed in terms of the surface ΩD of a unit hypersphere in D dimensions according

to

dD =
1

(2π)D
ΩD with ΩD =

2πD/2

Γ(D/2)
. (5)
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The infinitesimal momentum shell which is integrated out is denoted by δVp. We note

that the integration procedure has no effect on the inverse temperature or the slow field,

i.e.,

β ′ = β, φ′

< = φ<. (6)

Now the only remaining difference between the form of the effective action and that of

the original action is that in the original action the momentum of the field is integrated

from 0 to the momentum cutoff Λ whereas in the effective action the momentum of the

slow field |q′| is integrated from 0 to Λe−l. This difference is eliminated by a trivial

rescaling of the momentum |q(l)| = |q′|el which induces a trivial rescaling of the rest of

the parameters of the effective action,

µ(l) = µ′e2l, g(l) = g′e(2−D)l, β(l) = βe−2l, φ<(l) = φ<e
Dl/2. (7)

In terms of the rescaled parameters, equations (3) assume the form

µ(l) = e2lµ− e2lgdD

∫ Λ

Λe−l

dp pD−1f1[β, E(p)− µ],

g(l) = e(2−D)lg − e(2−D)lg2dD

∫ Λ

Λe−l

dp pD−1f2[β, E(p)− µ]. (8)

The system of (8) becomes autonomous if one solves it together with

β(l) = e−2lβ. (9)

We perform the integrations in (8) over the infinitesimal momentum shell δVp and keep

terms only up to first order in l, i.e.,

µ(l) = µ+ 2µl− gdDΛ
Df1[β, E(Λ)− µ]l,

g(l) = g + (2−D)gl− g2dDΛ
Df2[β, E(Λ)− µ]l. (10)

Repeating the above procedure of integrating out shells of high-momentum and

rescaling, we find the RG equations for the chemical potential and the interaction,

dµ(l)

dl
= 2µ(l)− g(l)dDΛ

Df1[β(l), E(Λ)− µ(l)],

dg(l)

dl
= (2−D)g(l)− g(l)2dDΛ

Df2[β(l), E(Λ)− µ(l)] (11)

where the number of renormalization steps l is a continuous parameter running from 0

(no shells integrated out) to l∗ = ∞ (all shells integrated out). The trivially rescaled

quantities defined in (7) also become functions of l.

Setting g = 0 and consequently g(l) = 0 in (11) one can study the ideal Bose gas

both at zero (β = ∞) and at finite temperature (β 6= ∞), e.g. [38]. One can also study

the zero-temperature, interacting Bose gas, e.g. [40,41,8,42]. Finally, one can study the

problem in its full generality, the finite-temperature interacting Bose gas.

In reference [8], the symmetric phase of the finite-temperature interacting Bose

gas in an arbitrary number of dimensions was considered. It was shown that, for any

finite temperature, the interacting Bose gas is driven towards a two-component classical

system, as the fixed point of the RG equations is approached, see also [1, 2, 3, 4, 5, 6, 7].
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Our formalism is different from that of [8] or [1,2,3,4,5,6,7], so it may be of some

interest to show that we can come to the same conclusion. In the course of the following

calculation we will also see how the finite temperature theory we are examining here

develops an infrared divergence.

The RG method which we have been using is perturbative over the interaction g.

Therefore, as in the zero-temperature interacting gas case, e.g. [43], we examine the

behaviour of (11) near the fixed point (µ∗, β∗) = (0, 0) of the unperturbed system, that

is the finite-temperature ideal gas. Near this fixed point the Bose-Einstein distribution

can be expanded as follows

N [β(E(p)− µ)] =
1

β[E(p)− µ]
, (12)

and therefore equations (8) near the fixed point become

µ(l) = e2lµ− e2lgdD

∫ Λ

Λe−l

dp pD−1 2
1

β[E(p)− µ]
,

g(l) = e(2−D)lg − e(2−D)lg2dD

∫ Λ

Λe−l

dp pD−1

{

9

2

1

E(p)− µ
+ 5

1

β(E(p)− µ)2

}

. (13)

We observe that, at (µ = 0, β = 0), the last term in each of the above equations is

infrared divergent for all p and all D. This divergence can be treated by redefining

variables; we recast the above equations in terms of the new variable g̃ = g/β,

µ(l) = e2lµ− e2lg̃βdD

∫ Λ

Λe−l

dp pD−1 f1[β, E(p)− µ],

g̃(l) = e(4−D)lg̃ − e(4−D)lg̃2βdD

∫ Λ

Λe−l

dp pD−1 f2[β, E(p)− µ] (14)

which can be also written in a differential form
dµ(l)

dl
= 2µ(l)− g̃(l)β(l)dDΛ

Df1[β(l), E(Λ)− µ(l)],

dg̃(l)

dl
= (4−D)g̃(l)− g̃(l)2β(l)dDΛ

Df2[β(l), E(Λ)− µ(l)]. (15)

These are exactly the equations (4.6) of [8] for the chemical potential and the interaction

supplemented by equations (4.12) of [8] in the classical regime.

Near the unperturbed fixed point (µ∗, β∗) = (0, 0), Eqs. (14) reduce to

µ(l) = e2lµ− e2lg̃dD

∫ Λ

Λe−l

dp pD−1 2
1

E(p)− µ
,

g̃(l) = e(4−D)lg̃ − e(4−D)lg̃2dD

∫ Λ

Λe−l

dp pD−1 5
1

[E(p)− µ]2
. (16)

We note that apart from some numerical coefficients, equations (16) are identical

with the equations ensuing from the classical Landau-Ginzburg-Wilson (LGW) reduced

Lagrangian, see, e.g., equations (6.40)-(6.42) of [43].

The different coefficients are due to the fact that the Bose gas theory involves a

complex field, whereas the classical LGW theory uses a two-dimensional vector field. As

we will see later, this difference is insignificant in the sense that the two theories have

the same universal behaviour.
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Finally, it is convenient to cast (15) in terms of dimensionless variables M = βΛµ,

Ḡ = m2ΛD−4g̃dD/h̄
4, E> = βΛE(Λ) = 1/2 (so that we keep track of the energy terms),

and b = β/βΛ, with βΛ = m/(h̄2Λ2), which yields

dM(l)

dl
= 2M(l)− Ḡ(l)b(l)f1[b(l), E> −M(l)],

dḠ(l)

dl
= (4−D)Ḡ(l)− Ḡ(l)2b(l)f2[b(l), E> −M(l)]. (17)

It may not be immediately obvious that the variable Ḡ is dimensionless. However

recalling that g = ΩDh̄
2aD−2/m, see [44], we can rewrite it as Ḡ = ΩD(aΛ)

D−2/b which

is clearly dimensionless.

2.1. ε-Expansion

Since equations (16) have the same structure as the classical RG equations, the same

difficulties in the infrared regime appear. In particular around µ = 0 and for D < 4 the

integral in the equation for the interaction is infrared divergent. It is interesting to note

that this divergence originates in the terms

N [β(E(p)− µ)]

E(p)− µ
and N [β(E(p)− µ)]2

of f2[β, E(p)− µ], see equation (4). As in the classical case, this divergence is cured by

performing the ε-expansion. We identify 4−D in the equation for the interaction with

ε. Furthermore we assume that µ and g̃ (and therefore M and Ḡ) are of the same order

and expand the RG equations (17) up to second order in these variables which yields

dM(l)

dl
= 2M(l)− Ḡ(l)b(l) {2N [b(l)E>] + 2b(l)N [b(l)E>](1 +N [b(l)E>])M(l)} ,

dḠ(l)

dl
= εḠ(l)− Ḡ(l)2b(l)

{

1 + 2N [b(l)E>]

2E>
+ 4b(l)N [b(l)E>](1 +N [b(l)E>])

}

. (18)

This system has a trivial fixed point at (M∗, Ḡ∗) = (0, 0) with eigenvalues

λ1 = 2,

λ2 = ε = 4−D. (19)

Therefore, the eigenspace of λ2 corresponds to the unstable direction for D < 4, to the

marginal one forD = 4, and to the stable direction for D > 4. There is also a non-trivial

fixed point

(M∗, Ḡ∗) =

[

ε

10− 2ε
,

5ε

(10 + 2ε)2

]

=
[

ε

10
+O(ε2),

ε

20
+O(ε2)

]

.

Up to first order in ε, its eigenvalues are

λ1 = 2− 2

5
ε,

λ2 = − ε = D − 4, (20)

and consequently the eigenspace of λ2 corresponds to the stable direction for D < 4, to

the marginal one for D = 4, and to the unstable direction for D > 4.



The ε-expansion in the symmetry-broken phase of an interacting Bose gas 7

For the case of physical interest, D = 3, we set ε = 1 in the expressions which

we have already expanded up to first order in ε. A simple example of a universal

property that we can now calculate is the critical exponent for the correlation length

ν = 1/λ1 = 0.600 + O(ε2). This is exactly the same as the result found in the ε-

expansion study of a classical two-component LGW theory in D = 3, e.g. [9,10,11], see

also [7]. A finite temperature interacting Bose gas in three spatial dimensions belongs

to the same universality class as a two-component classical field theory in three spatial

dimensions [7].

2.2. Direct Method

We set D = 3 directly in (11) or equivalently in (17). The fixed point is

(µ∗, g̃∗) = (E(Λ)/6, 5π2E(Λ)2/(18Λ3))

or equivalently in dimensionless units (M∗, Ḡ∗) = (1/12, 5/144). We then linearize

around the fixed point and calculate the eigenvalues

λ1 =
1

50

(

−1728Ḡ∗ +
√

2985984Ḡ∗2 + 57600Ḡ∗ + 625 + 75
)

,

λ2 =
1

50

(

−1728Ḡ∗ −
√

2985984Ḡ∗2 + 57600Ḡ∗ + 625 + 75
)

. (21)

Finally, we expand the critical exponent ν = 1/λ1 up to first order in Ḡ∗ because we

are performing a one-loop calculation,

ν =
1

2
+

72Ḡ∗

25
+O(Ḡ∗2) = 0.600 +O(Ḡ∗2).

This is the same result as for a two-component classical theory, see e.g. [30, 31].

2.3. Momentum-Shell Method

This approach is used in [35], see also [37,36], and corresponds to setting D = 3 directly

in (11) or equivalently in (17) as in the direct method. In this case the RG equations

(11) coincide with equations (11a) and (11b) of [35]. The fixed point is the same as in

the direct method. However now we set Ḡ∗ = 5/144 in the eigenvalues

λ1 =
3 +

√
249

10
,

λ2 =
3−

√
249

10
(22)

and without expanding we find ν = 1/λ1 ≈ 0.532.

3. Symmetry-broken phase

If we spontaneously break the global U(1) symmetry of (2) by introducing the most

probable configuration φ, we find

S[φ, φ∗] = − βV

[

µn0 −
n2
0g

2

]
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+
1

h̄

∫ h̄β

0
dτ

∫

V
dDx φ∗(τ,x)

[

h̄
∂

∂τ
− h̄2

2m
∇2 − µ+ 2gn0

]

φ(τ,x)

+
gn0

2h̄

∫ h̄β

0
dτ

∫

V
dDx [φ∗(τ,x)φ∗(τ,x) + φ(τ,x)φ(τ,x)]

+
gφ

h̄

∫ h̄β

0
dτ

∫

V
dDx [φ∗(τ,x)φ∗(τ,x)φ(τ,x) + φ∗(τ,x)φ(τ,x)φ(τ,x)]

+
g

2h̄

∫ h̄β

0
dτ

∫

V
dDx φ∗(τ,x)φ∗(τ,x)φ(τ,x)φ(τ,x) (23)

where n0 = |φ|2 = µ/g is the condensate density, and φ(τ,x) now denotes the fluctuation

around the most probable configuration φ.

It is possible to write down the RG equations for the symmetry-broken phase. The

calculation is significantly more complicated than in the symmetric phase, for details on

the derivation of the RG equations see [35] for D = 3 and [37, 38] for arbitrary D. We

focus here on the RG equations for the chemical potential and the interaction

dM(l)

dl
= 2M(l)− Ḡ(l)b(l)

{

2E3
> + 6M(l)E2

> +M(l)3

2∆(l)3
[2N(b(l)∆(l)) + 1]− 1

+
M(l)(2E> +M(l))2

∆(l)2
b(l)N(b(l)∆(l))[N(b(l)∆(l)) + 1]

}

,

dḠ(l)

dl
= (4−D)Ḡ(l)− Ḡ(l)2b(l)

{

(E> −M(l))2

2∆(l)3
[2N(b(l)∆(l)) + 1]

+
(2E> +M(l))2

∆(l)2
b(l)N(b(l)∆(l))[N(b(l)∆(l)) + 1]

}

(24)

where ∆(l) =
√

E2
> + 2M(l)E>. We note that the above RG equations coincide with

(17) of the symmetric phase for M = 0.

3.1. ε-Expansion

At the fixed point (µ∗, β∗) = (0, 0) of the unperturbed system an infrared divergent

term appears in the course of the derivation of the RG equation for the interaction.

This term is exactly the same as in the symmetric case, i.e.,
∫ Λ

Λe−l

dp pD−1 5
1

(E(p)− µ)2
,

but now originates in the terms

(E(p)− µ)2

δ(p)3
N(βδ(p)) and

(2E(p) + µ)2

δ(p)2
N(βδ(p))2

with δ(p) =
√

E(p)2 + 2µE(p).

We can easily apply the ε-expansion technique to equations (24) in order to cure

the infrared divergence. As we have seen in the symmetric phase, all we have to do is

identify 4−D with ε in the equation for the interaction and then expand the chemical

potential equation up to first order in M and the equation for the interaction up to
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zeroth order in M . We thus find the ε-expansion RG equations

dM(l)

dl
= 2M(l)− Ḡ(l)b(l) {2N [b(l)E>] + 2b(l)N [b(l)E>](1 +N [b(l)E>])M(l)} ,

dḠ(l)

dl
= εḠ(l)− Ḡ(l)2b(l)

{

1 + 2N [b(l)E>]

2E>
+ 4b(l)N [b(l)E>](1 +N [b(l)E>])

}

.

(25)

Comparing (25) to (18) we see that they are exactly the same! In other words, when we

perform the momentum-shell integrations together with the ε-expansion, the symmetric

and symmetry-broken phases yield exactly the same RG equations, and consequently

identical universal properties.

3.2. Direct Method

As in the symmetric phase, it consists of setting directly D = 3 in (24). The non-trivial

fixed point is (M∗, Ḡ∗) = (1/2, 1/4). The eigenvalues of (24), when it is linearized

around the fixed point, are

λ1 =
9π2 − 12Ḡ∗ +

√
3(−16Ḡ∗2 + 24π2Ḡ∗ + 3π4)1/2

6π2
,

λ2 =
9π2 − 12Ḡ∗ −

√
3(−16Ḡ∗2 + 24π2Ḡ∗ + 3π4)1/2

6π2
, (26)

and therefore

ν = 0.500 +O(Ḡ∗2).

3.3. Momentum-Shell Method

We set directly D = 3 in (24) as in the direct method. The resulting RG equations,

when recast in the dimensionful variables µ and g, coincide with (29a), (29b) of [35], see

also equations (16), (17) of [37]. We now substitute Ḡ∗ in the eigenvalues of the direct

method

λ1 =
3 +

√
33

6
,

λ2 =
3−

√
33

6
, (27)

and without expanding we find ν = 1/λ1 ≈ 0.686.

4. Comparison and Conclusion

The first-order ε-expansion and the momentum-shell method used in [35] and in

subsequent papers [36,37,38] do not yield identical universal properties. As we have seen,

the first-order ε-expansion gives the value ν = 0.600 + O(ε2) for the critical exponent

of the correlation length both in the symmetric and in the symmetry-broken phases.

However the momentum-shell method gives ν = 0.532 in the symmetric and ν = 0.686 in
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the symmetry-broken phase. These results are to be compared to the experimental value

ν = 0.670, see e.g. [13]. It seems as if the momentum-shell method in the symmetry-

broken phase yields the best result (in fact, almost as good as the second order in the

ε-expansion result ν = 0.655 +O(ε3), see e.g. [15]). However, the results do not always

justify the method used to obtain them. For example, in subsection 2.1, had we not first

expanded ν = 1/λ1 up to first order in ε and then set ε = 1 but used the unexpanded

formula (20) for λ1, we would have found ν = 0.625. Although this is closer than

ν = 0.532 to the experimental result ν = 0.670, it is clearly incorrect.

The main point of this paper is that the momentum-shell method results depend

on whether the RG calculation is performed in the symmetric or the symmetry-

broken phase, whereas the first order ε-expansion results do not. The dependence of

the momentum-shell results on the phase is an artifact of not avoiding the infrared

divergence of the Bose gas theory. Because for any finite temperature the Bose gas

theory has the same infrared behaviour as a classical two-component theory, the ε-

expansion as we know it from classical papers, e.g. [11], can cure the infrared divergence

and yield reliable results.

Furthermore we note that, even if we do not worry about the infrared divergence,

and use the direct method, applying it in the symmetry-broken phase makes the result

for the critical exponent of the correlation length worse rather than improving it as one

would have expected from the momentum-shell method.

The above discussion and comparison of values does not take into account the effect

of several approximations (derivative expansion, polynomial truncation of the effective

action, assumptions about the sharpness or smoothness of the infrared cutoff separating

the fast from the slow modes) which were employed in the course of the calculation. For

discussions on these approximations see [45,36,39]. However since these approximations

were used in the part of the calculation which is common for all three methods, that is

the derivation of the RG equations (17) (or equivalently (11) ) and (24), a comparison

between these methods is still valid.
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