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Detected-jump-error-correcting quantum codes, quantum error designs,
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The recently introduced detected-jump-correcting quantum codes are capable of stabilizing qubit systems
against spontaneous decay processes arising from couplings to statistically independent reservoirs. These
embedded quantum codes exploit classical information about which qubit has emitted spontaneously and
correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of
a family of one-detected-jump-error-correcting quantum codes is shown and the optimal redundancy, encoding,
and recovery as well as general properties of detected-jump-error-correcting quantum codes are discussed. By
the use of design theory, multiple-jump-error-correcting quantum codes can be constructed. The performance
of one-jump-error-correcting quantum codes under nonideal conditions is studied numerically by simulating a
quantum memory and Grover’s algorithm.
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I. INTRODUCTION

The discovery of powerful, fast quantum algorithms@1–3#
launched new efforts to implement such quantum algorith
in real physical systems. Quantum algorithms simultaneou
exploit two characteristic features of quantum theo
namely, the fundamental phenomenon of quantum inter
ence and the fact that for distinguishable quantum syst
the dimension of the Hilbert space increases exponent
with the number of systems. Therefore, to implement a qu
tum algorithm in a real quantum system we must be able
create and manipulate arbitrary superpositions of quan
states and to preserve quantum coherence during com
tion. Unfortunately, quantum coherence is very fragile. Ty
cally, any coupling to an environment leads to decohere
so that quantum-mechanical superpositions are rapidly
stroyed.

The urgent need to develop efficient methods to pro
quantum coherence has led to the study of very gen
classes of quantum error-correcting codes@4–7#. The main
idea is to restrict the dynamics of a quantum algorithm t
subspace of the Hilbert space, in which errors can be ide
fied uniquely by suitable measurements and where the e
operators can be inverted by unitary operations. Typica
this is achieved by an encoding of the logical informati
and by a suitable choice of quantum gates.

For some special cases it is also possible to design a
sive error-correcting quantum code@8–10#. Such a passive
quantum code relies on a subspace of the Hilbert sp
which is not affected by any errors at all. In this situation t
unitary recovery operation is the identity operation so that
active correction of the errors is not necessary.

In principle, any type of error can be corrected by the
strategies as long as enough physical qubits are availab
achieve the required redundancy and one can make a
1050-2947/2003/68~1!/012316~10!/$20.00 68 0123
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number of control measurements and perform the rapid
covery operations. However, in view of current-day expe
mental possibilities@11# it is generally difficult to achieve
both the requirements. Therefore it is desirable to deve
alternative error-correcting strategies that possibly corre
restricted class of errors only, but which tend to minimi
both redundancy and the number of recovery operations.
cently, the first steps in this direction have been taken
defining a new class ofone-detected-jump-error-correctin
quantum codeswhich are capable of stabilizing distinguish
able qubits against spontaneous decay processes into s
tically independent reservoirs@12#. These codes are con
structed by embedding an active error-correcting code i
passive code space and by exploiting information availa
on error positions. This embedding procedure leads to a
nificant reduction of redundancy and the number of con
measurements and recovery operations.

In this paper the physical principles underlying detecte
jump-error-correcting quantum codes are explored and g
eralized, motivated by the practical need for quantum-er
correcting codes which minimize both redundancy and
number of recovery operations. Based on these physical p
ciples an upper bound is established on the number of log
states of a general embedded detected jump-error-corre
quantum code.

From this bound it is apparent that the recently discove
one-detected-jump-error correcting quantum codes h
minimal redundancy. Based on this family of optimal on
detected-jump-error-correcting quantum codes, we establish
links with the general notions of combinatorial design theo
@13#. For this purpose the concept of aspontaneous emissio
error designis introduced. This is a powerful tool for con
structing multiple-detected-jump-error-correcting quantu
codes capable of stabilizing distinguishable qubits aga
spontaneous decay processes. As an example, we prese
©2003 The American Physical Society16-1
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embedded three-detected-jump-error-correcting quan
code.

This paper is organized as follows. In Sec. II basic phy
cal aspects concerning the spontaneous emission of pho
by qubit systems are summarized. In Sec. III the phys
principles are explored, which lead to the construction
one-detected-jump-error-correcting quantum codes. The
ditions for general-detected-jump-error-correcting quant
codes are given in Sec. IV. The links with combinator
design theory are established in Sec. V. Finally, in Sec.
numerical examples are presented, which exhibit basic
bility properties of the optimal one-detected-jump-erro
correcting quantum codes.

II. SPONTANEOUS DECAY OF DISTINGUISHABLE
QUBITS AND PHOTON DETECTION

In this section we summarize basic facts about the
namical description of a quantum system interacting w
initially unoccupied modes of the electromagnetic fie
These considerations are the starting point for the deve
ment of optimal strategies of error correction, which we p
sue in the subsequent sections.

We consider a model of a quantum computer in whichN
two-level atoms~qubits! interact with external laser pulse
which synthesize the quantum gates underlying a quan
algorithm. TheseN qubits are assumed to be arranged in
array with well-defined positionsxa (a51, . . . ,N) ~see Fig.
1!. In addition, theseN qubits are assumed to be distinguis
able, which requires that their mean nearest-neighbor
tance is large in comparison with the optical waveleng
involved. Their distinguishability guarantees that the dime
sion of their associated Hilbert space isKH52N and thus
scales exponentially with the number of qubits. In addition
is assumed that theseN qubits couple to the unoccupie

FIG. 1. Model of a quantum computer consisting of an ensem
of distinguishable two-level systems~qubits!, which are well local-
ized at positionsxa and which are coupled to the vacuum modes
the radiation field. The mean distanced between adjacent qubits i
assumed to be large in comparison with the wavelength of the s
taneously emitted radiation, i.e.,l!d. Thus, the spontaneous deca
processes do not affect the distinguishability of the qubits. The
bits are monitored continuously by photodetectors capable of de
mining the time at which a spontaneous decay process occurred
the position of the affected qubit.
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modes of the electromagnetic field. This coupling cau
spontaneous decay processes of the qubits from their ex
statesu1&a , to their stable lower lying statesu0&a . Within
the Born, Markov, and the rotating wave approximations
resulting dynamics of the reduced density operatorr(t) of
this N-qubit system is described by the master equat
@14,15#

dr~ t !

dt
52

i

\
@Heffr~ t !2r~ t !Heff

† #1 (
a51

N

Lar~ t !La
† ~1!

with the non-Hermitian effective Hamiltonian

Heff5H2
i\

2 (
a51

N

La
†La . ~2!

Thereby, the coherent dynamics of theN-qubit system in the
absence of the coupling to the vacuum modes of the elec
magnetic field is described by the HamiltonianH which in-
corporates the influence of the external laser pulses. In a
tion, we assume that the mean distance between the qub
much larger than the wavelengths of the spontaneously e
ted radiation. Therefore, to a good degree of approxima
each qubita couples to a different set of modes of the r
diation field so that these sets constitute statistically indep
dent reservoirs@15#. In Eq. ~1! the coupling of qubita to its
reservoir and the resulting spontaneous decay processu1&a
→u0&a are characterized by the Lindblad operator

La5Aka 1bÞa ^ u0&aa^1u, ~3!

where 1bÞa denotes the identity on every except theath
qubit, andka is the associated spontaneous decay rate.

Provided that initially theN-qubit system is in a pure
state, sayuc0&, a formal solution of the master Eq.~1! is
given by @14#

r~ t !5 (
n50

` E
0

t

dtnE
0

tn
dtn21•••

3E
0

t2
dt1p~ t;tnan , . . . ,t1a1!ut;tnan , . . . ,t1a1&

3^t;tnan , . . . ,t1a1u, ~4!

with the pure quantum state

ut;tnan , . . . ,t1a1&5
e2 iH eff(t2tn)/\Lan

•••La1
e2 iH efft1 /\

p~ tutnan , . . . ,t1a1!1/2
uc0&

and with the probabilities

p~ t;tnan , . . . ,t1a1!5^c0ueiH eff
† t1 /\La1

†
•••Lan

†

3eiH eff
† (t2tn)/\e2 iH eff(t2tn)/\Lan

•••

3La1
e2 iH efft1 /\uc0&. ~5!
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It can be shown that each pure stateut;tnan , . . . ,t1a1& de-
scribes the quantum state of theN-qubit system at timet
conditioned on the emission of preciselyn photons at times
t1<•••<tn by qubits a1 , . . . ,an @14–18#. Thus, each of
the pure quantum states of Eq.~4! corresponds to a possibl
measurement record (t1a1 , . . . ,tnan) in an experiment in
which each qubit is observed continuously by photodet
tors. In the subsequent discussion, it is important to note
due to the large separation between the qubits ideally
measurement record determines not only the spontaneou
cay times t i , but also the associated positionsa i ( i
51, . . . ,n) of the qubits that have been affected by the
decay processes. The measurement record (t1a1 , . . . ,tnan)
is observed with probabilityp(t;tnan , . . . ,t1a1). Accord-
ing to Eq.~4! the quantum stateut;tnan , . . . ,t1a1& resulting
from a particular measurement record is determined by
types of effects. First, the time evolution between two s
cessive photon emission events is characterized by the
Hermitian HamiltonianHeff of Eq. ~2!. Thus, even in the
absence of any spontaneous photon emission process
given time interval@0,t#, in general, an arbitrary quantum
state is modified by the couplings to the vacuum modes
the electromagnetic field. Second, immediately after
spontaneous emission of a photon by qubita the quantum
state is modified by the Lindblad operatorLa . This distinc-
tion between the two different types of dynamics is cruc
for the development of a useful quantum error-correct
strategy that minimizes the redundancy as well as the n
ber of control measurements and recovery operations.

III. DESIGNING OPTIMAL
ONE-DETECTED-JUMP-ERROR-CORRECTING

QUANTUM CODES

In this section we introduce the main ideas leading to
construction of optimal one-detected-jump-error-correct
embedded quantum codes which are capable of stabili
systems of distinguishable qubits against spontaneous d
processes. These quantum codes exploit the physical p
bilities that are offered by the continuous observation of
distinguishable qubits by photodetectors.

How can we stabilize anN-qubit system, such as tha
depicted in Fig. 1, against spontaneous decay processes
can observe the qubits continuously with the help of pho
detectors? To achieve this two major tasks have to be t
led; namely, we have to correct the modifications tak
place during successive photon emission events. These m
fications are described by the effective Hamiltonian of E
~2!. And, we have to invert each quantum jumpu1&a→u0&a
caused by the spontaneous emission of a photon by quba.

In principle, the errors taking place during two success
photon emission events can be corrected by an active e
correcting quantum code with a sufficiently rapid seque
of control measurements and recovery operations@19#. How-
ever, for practical applications such an approach is not v
attractive. One faces all the problems that are related to
implementation of large numbers of control measureme
and recovery operations. It is therefore much more desira
to develop passive error-correcting methods for stabiliz
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the N-qubit system against modifications arising from t
effective Hamiltonian of Eq.~2!.

The main idea is to determine an appropriate subspacD
of the Hilbert space of theN distinguishable qubits in which
the perturbing part of the Hamiltonian acts as a multiple
the unit operator, i.e.,

HeffuD5HuD2
i

2
c1U

D

, ~6!

wherec denotes a c number.~In our setting this number is
real valued and positive.! If the ~unperturbed! dynamics
characterized by the HamiltonianH does not take an initia
pure quantum state outside this decoherence-free subs
D, this condition implies that, provided no photon is emitt
in the time interval@0,t#, the quantum state at timet is iden-
tical with the unperturbed state@compare with Eq.~4!#. Thus,
if one can find such a sufficiently high-dimension
decoherence-free subspace, the dynamics taking place
tween successive spontaneous photon emission events i
bilized perfectly without the need for control measureme
and recovery operations. In practice, it is desirable to cho
the dimension of the decoherence-free subspace to b
large as possible.

An important special case occurs when all theN qubits
have identical spontaneous decay rates, i.e.,ka[k. In this
situation it follows that

(
a51

N

La
†La[k (

a51

N

u1&aa^1u ~7!

and any subspace formed by basis states involving an e
number, sayw<N, of excited qubits is a decoherence-fre
subspace. For a given number ofN qubits the dimensionKD

of such a decoherence-free subspace is given byKD5(w
N)

which is maximal ifw5 bN/2c. (bxc denotes the largest inte
ger smaller or equal tox.!

In general, the first spontaneous emission of a photon
affect the quantum state of theN-qubit system in an irrevers
ible way. According to Eq.~4! the spontaneous emission of
photon by qubita, for example, is described by the applic
tion of the Lindblad operatorLa , which induces a quantum
jump u1&a→u0&a . This Lindblad operator is not invertible
over the decoherence-free subspaceD so that this quantum
jump cannot be corrected. In order to correct for this qu
tum jump actively, we have to restrict the dynamics to a s
smaller subspaceC,D in which a unitary operator, sayUa ,
can be found having the property

UaLauC51uC . ~8!

Therefore, if we still want to take advantage of passive er
correction between successive photon emission events
have to construct an active error-correcting quantum c
within the relevant decoherence-free subspace.

We now construct a one-detected-jump-error-correct
embedded quantum code in the special case of iden
spontaneous decay rates considered above. According to
criterion given in Ref. @5#, the orthogonal basis state
6-3
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$uci&: i 51, . . . ,K% of a subspaceC constitute an active error
correcting quantum code with respect to the set of error
erators$La :a51, . . . ,N% if and only if

^ci uLa
†Lbucj&5d i j Lab ~9!

for all possible values ofi , j anda,b. Equation~9! states the
necessary and sufficient conditions for the existence of
tary recovery operations that fulfill Eq.~8! for the error op-
erators$La :a51, . . . ,N%. In the physical setting this crite
rion states that~i! different orthogonal quantum states rema
orthogonal under the action of error operators and~ii ! all
basis states are affected by a given pair of errorsLa andLb
in a similar way. The latter condition necessarily implies th
the scalar products between statesLauci& andLbuci& are state
independent. It is plausible that a larger set of error opera
leads to a more restrictive set of conditions of the type of
~9!. Furthermore, we also expect that more restrictive con
tions lead to a higher redundancy of an active quantum co

As an example, consider the situation where continu
observation of theN-qubit system by photodetectors does n
reveal which qubita has emitted the registered photon. Th
implies that the error operators that could induce a sponta
ous decay process are in the set$La :a51, . . . ,N%. It has
been shown by Plenioet al. @20# that when the error posi
tions are unknown, eight physical qubits are needed to
code two orthogonal logical states by an embedded quan
code. This should be compared with the optimal active o
error-correcting code using five qubits@21#.

Thus, the advantage offered by using an embedded q
tum code, capable of passively correcting errors betw
successive photon emission events leads to a significan
crease of redundancy in comparison to purely active m
ods. However, this disadvantage can be overcome if, bes
knowing the error time, information about the error positi
a is also available. In principle, this information can be o
tained from continuous observation of theN-qubit system by
photodetectors as long as the mean distance between
cent qubits is large in comparison with the wavelength of
spontaneously emitted radiation. For this purpose, it is
portant that each photon emitted by one of the qubits can
detected.

How can we construct a one-detected-jump-err
correcting embedded quantum code that exploits informa
about the error position in an optimal way so that its red
dancy is minimized? Let us concentrate again on our pr
ously introduced example of identical spontaneous de
rates. In this setting we have a decoherence-free subs
that involvesw excited qubits. This stabilizes the dynami
between successive photon emission events passively.
example, in the simple case ofN54 andw52, the orthogo-
nal basis statesuci& of the decoherence-free subspace
given by $u1100&,u0011&,u1010&,u0101&,u1001&,u0110&%.
Within this six-dimensional decoherence-free subspac
possible active quantum code, capable of correcting
quantum jump at a time at a known positiona, is determined
by the following three orthonormal code words:
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uc0&5
1

A2
@ u1100&1eiwu0011&],

uc1&5
1

A2
@ u01 010&1eiwu1010&],

uc2&5
1

A2
@ u1001&1eiwu0110&]. ~10!

These code words are formed by all possible different p
of basis states of the decoherence-free subspace which
be constructed by interchanging statesu0& and u1&. These
complementary pairings are also characterized by equ
weighted probability amplitudes that involve an arbitra
phasew. It can be easily checked that this embedded qu
tum code fulfills the criterion of Eq.~9! for any of the Lind-
blad operatorsLa of Eq. ~3! separately, but not for two dif-
ferent Lindblad operators withaÞb. Thus, provided that the
error time and the error position are known this embedd
quantum code can correct one quantum jump at a time
addition, errors between successive quantum jumps are
rected passively. In this way the number of control measu
ments and recovery operations is reduced and so is the
dundancy. This is apparent by comparing our quantum c
with the code proposed by Plenioet al. @20#, which requires
eight physical qubits for the encoding of two orthogon
quantum states.

The above construction based on complementary pair
can be generalized to an even numberN of physical qubits;
giving an infinite family of one-detected-jump-erro
correcting embedded quantum codes. The construction is
following. We start from the highest-dimension
decoherence-free subspace which involves all quantum s
in which half of the qubits are excited to statesu1&a . Sub-
sequently, we construct an active quantum code within
decoherence-free subspace by complementary pairings.
dimensionKJ of the resulting embedded quantum code
given by

KJ5~1/2!S N

N/2D[S N21

N/221D . ~11!

It is a remarkable fact that, provided one wants to corr
errors passively between successive quantum jumps, it is
possible for an even number of physical qubitsN to reduce
the redundancy of such an embedded jump code~see Sec. V
and Ref.@22#!. Therefore, our family of embedded quantu
codes has the desirable feature that it minimizes redunda
and that it requires only a small number of recovery ope
tions. For instance, in a given time interval, say@0,t#, the
mean numbern of required recovery operations is of th
order ofn'Nkt/2.

To stabilize any quantum algorithm against spontane
decay processes using an embedded one-detected-j
error-correcting quantum code, three requirements have t
met. First, one has to be able to register the timet and posi-
tion a of each spontaneous decay event that takes place
6-4
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ing the performance of the quantum algorithm. As indica
schematically in Fig. 1 this can be achieved by continuo
observation of theN-qubit system with photodetectors. I
principle, an identification of the perturbed qubita is pos-
sible provided the mean nearest-neighbor spacing of the
bits is large in comparison with the wavelengths of the
diation emitted spontaneously. However, in practice,
error positiona might not be determined so easily due
imperfect detection efficiencies of the photodetectors. The
fore, in actual applications shelving techniques@23,24# might
be useful, which amplify each spontaneously emitted pho
to such an extent that it can be detected with an efficie
arbitrarily close to unity.

Second, we have to ensure that each spontaneous d
event is corrected immediately by application of an app
priated unitary transformation which inverts the effect of t
Lindblad operatorLa . In practice, this inversion has to b
performed on a time scale that is small in comparison w
the natural time scale of the quantum algorithm and with
mean spontaneous decay time. Third, one has to ensure
the sequence of quantum gates that constitute the qua
algorithm does not leave the code space at any time. This
be done by encoding the logical information within the co
space, and by developing a universal set of quantum g
which leaves this code space invariant.

Ideally these quantum gates are implemented by suit
Hamiltonians. This ensures that the code space is left inv
ant even during the application of one of these univer
quantum gates. Such universal sets of Hamiltonian-indu
quantum gates have already been developed
decoherence-free subspacesD of the kind discussed abov
@8–10#. But, in general, unitary gates based on swapp
Hamiltonians need not be universal on the embedded q
tum code, or the swapping Hamiltonians do not leave
embedded quantum code invariant. The solution of this in
cate and yet unsolved problem is beyond the scope of
present work. However, some preliminary results have
ready been obtained recently@25–27#.

So far we have shown that any Lindblad operatorLa of
the form of Eq. ~3! can be inverted by our one-detecte
jump-error correcting quantum codes. We provide an
ample of a unitary transformation that achieves this invers
in the case of the one-detected-jump-error-correcting qu
tum code involving four physical qubits. A possible sequen
of quantum gates capable of inverting a spontaneous d
process affecting qubita52, for example, is depicted in Fig
2. This example demonstrates the basic fact that it is ind
possible to perform a unitary inversion of the Lindblad o
eratorL2 provided Eq.~9! is fulfilled for a5b52.

IV. GENERAL DETECTED-JUMP-ERROR CORRECTING
QUANTUM CODES

In this section we discuss general notions of higher-or
detected-jump-error-correcting quantum codes. Provided
ror times and error positions ofd.1 spontaneous emissio
events are known, they can be corrected by a single s
ciently fast recovery operation with the help of such
d-detected-jump-error-correcting quantum code. It is app
01231
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ent that at a constant error rate the cumulative correction
d.1 spontaneous emission events requires fewer reco
operations than the correction of each individual error se
rately. This reduction of the number of required recove
operations offers significant advantages for the stabiliza
of quantum memories or quantum algorithms, in particu
in cases in which the application of sufficiently fast recove
operations is difficult and costly. In this section we conce
trate on basic conditions these multiple-error-correcting ju
codes have to fulfill. Examples constructed on the basis
general ideas from combinatorial design theory are prese
in Sec. V.

To define general detected-jump-error-correcting quan
codes, we introduce some notation. For a set of positionE
5$a1 ,a2 , . . . ,an%, we denote byJE the operator

JEªJ$a1 ,a2 , . . . ,an%ªLa1
La2

•••Lan
.

The associated error timest1 , . . . ,tn are no longer men-
tioned explicitly, but it is understood that they are know
Note that the operatorsLa1

, . . . ,Lan
commute, because th

a i are pairwise different. Since, by Eq.~5!, the errors that
involve two equal indices, saya15a2, cannot occur.

As discussed in Sec. III, forH[0 all the states that are
superpositions of states with a constant number of exc
qubits are common eigenstates of the nonunitary effec
time evolution~6! between quantum jumps. A subspaceC of
such a decoherence-free subspace with orthonormal b
$uc1&, . . . ,ucK&% is called ad-detected-jump-error-correctin
quantum code, and is denoted byC5(N,K,d)w if the fol-
lowing condition holds for setsE of jump positions with at
mostd elements and for all basis statesuci& and ucj&:

^ci uJ E
†JEucj&5d i j l~E!. ~12!

The notationC5(N,K,d)w is motivated by classical coding
theory. Similarly, the notationd-JC(N,w,K) is motivated by
notations from the design theory~see Ref.@12#!.

The validity of this statement follows from the gener
conditions on quantum error-correcting codes~cf. Ref. @5#!.

FIG. 2. Gates to invert a quantum jump~indicated by a bolt! of
a physical qubit. The four physical qubits involved form a (4,3,12

code and are numbered in increasing order from top to bottom
6-5
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Since we know on which positions the jump operatorJE

acts, only products of the formJ E
†JE have to be considered

There is a natural connection with combinatorics. Fo
basis stateux1•••xN& of N qubits, the positions that are i
stateu1& define a subset of$1, . . . ,N%. Furthermore, a col-
lection of such subsets corresponds to an equally weig
superposition of basis states.

Let B (1), . . . ,B (K) be K disjoint sets of subset
X#$1, . . . ,N%, where each subsetX containsw elements.
Identifying the setX and the binary wordx wherexi51 if
i PX andxi50 otherwise, we define the states

uci&5
1

AuB ( i )u
(

xPB ( i )
ux&. ~13!

TherebyuB ( i )u denotes the number of elements~cardinality!
of the setB ( i ). These orthonormal states span ad-detected-
jump-error-correcting quantum codeC5(N,K,d)w , pro-
vided that for all sets of jump positionsE with no more than
d elements and all setsB ( i ) the following condition holds:

uXPB ( i ):E#X%u

uB ( i )u
5l~E!. ~14!

We note that the disjointness of the setsB ( i ) implies condi-
tion ~12! for iÞ j . Furthermore, rewriting the operatorJ E

†JE

as J E
†JE5(X$Eux&^xu shows that fori 5 j and the states

~13! the expectation valuêci uJ E
†JEuci& equals the expres

sion in Eq.~14!.

V. BLOCK DESIGNS AND JUMP CODES

In this section we will show thatd-detected-jump-error-
correcting quantum codes are naturally connected withd de-
signs. These are combinatorial structures that have been
tensively studied for many decades, cf. Ref.@13#. To denote
this class of combinatorial structures we introduce some
tations using the language of finite incidence structures.
V be a set ofN elements, calledpoints, sayV5$1, . . . ,N%,
where N.0 is an integer anduVu5N. For 0<w<N the
class ofw subsets ofV containingw elements will be de-
noted by (w

V). In a suggestive way its cardinality, i.e.,

US V
wDU5S uVu

w D5S N
wD ,

is just the binomial coefficient (w
N). An incidence structure in

V is specified by a distinguished classB of subsets ofV. The
elementsB of B are calledblocks~or sometimeslines! of the
incidence structure. IfB#(w

V), we say thatB has constant
block sizew. As an example, any undirected graph is
incidence structure of block size 2, if we chooseV as the set
of points of the graph and the points that are directly c
nected by an edge as blocks.

For any pointaPV, the classBaª$BPB:aPB% denotes
the class of blocks containing the pointa ~or ‘‘the lines
through a ’’ !. If uBau5r is constant for allaPV the inci-
dence structureB is called regular. For a graph,uBau is the
01231
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degreed(a) of the vertexa, i.e., the number of edges o
which a lies. The incidence structureB—as well as the
graph itself—is called regular, ifd(a) is constant. If there
exists a constantld such that for all E5$a1 , . . . ,ad%
P(d

V) the classBEª(„(Ba1
)a2

… . . . )ad
of all blocks contain-

ing the set ofd points has sizeuBEu5ld , the incidence struc-
ture is calledd regular. A d designis a d-regular incidence
structure with constant block sizew. It is denoted byd-
(N,w,ld) design or asSld

(d,w,N) @13#. Graphs that corre-

spond to 2-designs are depicted in Fig. 3.
The 2-designS1(2,3,7) is known as Fano plane. The line

of this plane can be taken to be

B5$$1,2,3%,$1,4,6%,$1,5,7%,$2,4,7%,

$2,5,6%,$3,4,5%,$3,6,7%%.

From the graphical picture it is clear that any 2-subset
$1,2, . . . ,7% is contained in exactly one block ofB, hence we
havel251.

The preceding discussion leads to the notion
d-spontaneous emission error designs which we denote bd-
SEED(N,w,K) @22#. The essential property of these comb
natorial objects is thelocal multiplicity l(E) of a subsetE of
$1, . . . ,N% containing at mostd elements, which is defined
by

uB E
( i )u

uB ( i )u
5l~E!, ~15!

where B (1), . . . ,B (K) are disjoint subsets of (w
V). Any

d-SEED(N,w,K) produces a d-detected jump-error-
correcting quantum codeC5(N,K,d)w using the encoding
defined in Eq.~13!.

A class of 1-SEEDs can be constructed from the fin
analog of affine geometries. For any prime powerq, there is
a finite fieldGF(q) of sizeq. Form,bPGF(q), one defines
the lines ,m,bª$(x,mx1b):xPGF(q)% and ,`,b
5$(b,y):yPGF(q)%. Each line containsq points (x,y)
PGF(q)2. For mPGF(q)ø$`%, we define the classes o
parallel lines B (m)

ª$,m,b :bPGF(q)%. For a given point
(x,y)PGF(q)2, each blockB (m) contains exactly one line
which contains this point. Hence the blocksB (m) form a
1-SEED(q2,q,q11).

Another construction of SEEDs is given by the concept
resolvable designs. The blockset of a resolvable design ca
be partitioned in such a way that each part of the partition
again a design. A well-known example is given by the so

FIG. 3. Examples of 2-designs.
6-6
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tion to Kirkman’s schoolgirl problem~see Ref.@13# Example
5.8 @13#:

B (1)5$$1,2,3%,$4,8,12%,$5,10,14%,$6,9,15%,$7,11,13%%,

B (2)5$$1,4,5%,$2,9,11%,$3,13,15%,$6,8,14%,$7,10,12%%,

B (3)5$$1,6,7%,$2,8,10%,$3,12,14%,$4,9,13%,$5,11,15%%,

B (4)5$$1,8,9%,$2,5,7%,$3,13,14%,$4,10,15%,$6,11,12%%,

B (5)5$$1,10,11%,$2,12,15%,$3,4,6%,$5,8,13%,$7,9,14%%,

B (6)5$$1,12,13%,$2,5,6%,$3,9,10%,$4,11,14%,$7,8,15%%,

B (7)5$$1,14,15%,$2,4,7%,$3,8,11%,$5,9,12%,$6,10,13%%,

partitioning the 1-designS7(1,3,15) into seven 1-designs.
We conclude this section by constructing a thre

jump-correcting code. The permutation groupG
5^(1 2)(3 4),(5 6)(7 8),(1 2 3)(5 6 7)& of order 48 acts
on the 4-element subsets of$1,2, . . . ,8%. The orbits underG
of the sets$1,2,5,6%, $1,3,5,6%, and $1,4,5,6% are mutually
disjoint. Direct calculation shows that they satisfy the loc
multiplicity condition ~15!. Hence the sets B (1)

ª$1,2,5,6%G, B (2)
ª$1,3,5,6%G, andB (3)

ª$1,4,5,6%G define
an (8,3,3)4 jump code. The corresponding~not normalized!
basis states are given by

uc1&5u00 110 011&1u00 111 100&1u01 010 101&

1u01 011 010&1u01 100 110&1u01 101 001&

1u10 010 110&1u100 110 01&1u10 100 101&

1u10 101 010&1u11 000 011&1u11 001 100&,

uc2&5u00 110 110&1u00 111 001&1u01 010 011&

1u01 011 100&1u01 100 101&1u01 101 010&

1u10 010 101&1u10 011 010&1u10 100 011&

1u10 101 100&1u11 000 110&1u11 001 001&,

uc3&5u00 110 101&1u00 111 010&1u01 010 110&

1u01 011 001&1u01 100 011&1u01 101 100&

1u10 010 011&1u10 011 100&1u10 100 110&

1u10 101 001&1u11 000 101&1u11 001 010&.

Further examples ofd-SEEDs are discussed in Ref.@22#.
In that paper, there are also general bounds on the param
of jump codes derived. In particular, the dimensionK of a
d-detected-jump-error-correcting (N,K,d)w code is bounded
above by

K<minH S N2d
w2dD ,S N2d

w D J . ~16!

For completeness, we repeat the main ideas of the proo
01231
-

l

ters

The dimension of the space spanned by the basis stat
N qubits, wherew of them are in the excited state, is (w

N).
This implies the boundK<(w

N). A jump on j positions re-
duces the number of excitations tow2 j . After the jump, the
j positions where the jump occurred are zero. There are

S N2 j
w2 j D

such basis states. A jump must not reduce the dimensio
the code, hence

K<S N2 j
w2 j D .

For 0< j <d possible quantum jumps the lowest upp
bound is achieved forj 5d as

S N
wD5

N~N21!•••~N2d11!

w~w21!•••~w2d11!
S N2d
w2dD .

To obtain the second upper bound in Eq.~16!, we note that
starting with a jump codeC5(N,K,d)w , applyingsx to all
qubits yields a jump codeC̄5(N,K,d)N2w . Note that,sx

interchanges ground and excited states, hence the codeC̄ lies
in the decoherence-free subspace withN2w excitations.
Also, the linear space spanned by the operatorsJ E

†JE for all
subsetsE with no more thand elements is invariant unde
conjugation bysx on all qubits. This holds assxLa

†Lasx

5u0&aa^0u512u1&aa^1u. Thus, for the codeC̄ we obtain
the bound

K<S N2d
N2w2dD5S N2d

w D .

If there is no restriction on the numberw of excited states,
choosingw5 bN/2c maximizes the upper bound of Eq.~16!,
i.e.,

K<S N2d

bN/2c2dD . ~17!

As mentioned above, the upper bound of Eq.~17! is achieved
for d51 and for an even numberN of qubits. A table of
lower bounds~obtained by constructions fromd-SEEDs! and
upper bounds for small values ofN and d is provided in
Ref. @22#.

VI. STABILITY PROPERTIES OF THE ONE-DETECTED-
JUMP-ERROR-CORRECTING QUANTUM CODES

The detected-jump-error-correcting quantum codes c
structed in the preceding sections can stabilize quantum
gorithms provided three conditions are satisfied. First,
decay rates of the qubits are equal. Second, the time
position of each quantum jump are detected with 100% e
ciency. Third, the appropriate unitary recovery operations
applied perfectly and instantaneously immediately followi
the detection of an error. Experimentally these requireme
can only be approximated. Therefore, the natural ques
6-7
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arises how nonideal conditions influence the robustnes
the embedded error-correcting quantum codes.

In this section several types of imperfections affecting
ideal performance of the one-detected-jump-error correc
embedded quantum codes of Sec. III are studied numeric
For this purpose we investigate the stabilization of a qu
tum memory and of a simple Hamiltonian dynamics agai
spontaneous decay processes. The effective two-level
Hamiltonian considered, i.e.,

H5 i\V~ ux0&^vu2uv&^x0u!, ~18!

can be viewed as modeling the quantum dynamics of
ideal Grover search algorithm@2# in the limit of a large num-
ber of qubits. Thereby, the Rabi frequencyV can be related
to the characteristic timetop required for performing an
oracle operation and to the number of qubitsN according to
V52/(topAN) @28#. Here,uv& denotes an equally weighte
superposition of all~orthonormal! code words that may be
used as an initial state in Grover’s quantum search algorit
The final state we are searching for is denotedux0&. For this
choice of uv& the statesuv& and ux0& are not orthogonal,
becausêvux0&51/AN. However, if the number of qubitsN
becomes large their overlap tends to zero. According to
Hamiltonian Eq.~18! and consistent with Grover’s quantu
algorithm@2#, after the interaction timet5p/(2V), the ini-
tial stateuv& is transformed to the final stateux0&.

A. Imperfect detection of error positions

Let us first of all consider situations where the jump p
sition can be detected with a given nonzero error rate o
Such an imperfection might occur if, for example, a phot
emitted by a particular trapped ion is detected by the pho
detector associated with a different ion~compare with Fig.
4!. The probability to detect the emitted photon at the corr
position is denoted byp. The probability that an emitted
photon is detected falsely by the next nearest neighbo
given byq3p. Analogously, the probability of detecting th
photon by thenth nearest neighbor isqn3p with the nor-
malization conditionp3(11q1q21•••)[1.

The influence of this type of imperfection on a quantu
memory, i.e.,H[0 in Eq. ~1!, is depicted in Fig. 5. A state
uc(0)& of the jump codeC5(4,3,1)2 is propagated accord
ing to Eq.~4! with a quantum Monte Carlo simulation of th
quantum trajectories@17#. Each realization of this simulation
represents an individual quantum trajectory in which the
tial pure stateuc(0)& is propagated accroding to Eq.~4!. If a
jump is detected, the appropriate recovery operation is

FIG. 4. Model for a 4-qubit register where jumps are detec
with a given error parameterq.
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plied. In the case of a correct detection, the quantum stat
the memory is recovered perfectly. In the case of a fa
detection, the quantum state of the memory leaves the c
space. Therefore, in this simulation the full Hilbert space
four physical qubits has to be taken into account. As a m
sure of fidelity the squared absolute value of the over
between the stateuc(t)& after a timet5p/(2k) and the
initial stateuc(0)& of the memory is plotted as a function o
the error parameterq. For the evaluation of this fidelity, one
has to average over a statistical ensemble of quantum tra
tories.

B. Unequal spontaneous decay rates

For ka[k the orthonormal basis statesuci& of the code
C,D are degenerate eigenvectors of the operator(aLa

†La

appearing in the effective Hamiltonian of Eq.~2!. This prop-
erty ensures that these states form a passive code for
effective time evolution between successive quantum jum
The existence of such degenerate eigenstates of the ope
(aLa

†La relies on the assumption that the decay rates of
qubits are equal. Although this physical situation can be
alized in a laboratory, it is of interest to investigate wh
happens if this condition of equal decay rates is violated
this latter case, our code does not correct errors betw
successive quantum jumps passively.

For this purpose let us consider the Rabi Hamiltonian
Eq. ~18! which describes the ideal quantum dynamics.
addition, we assume that the decay rates of the physical
bits are selected randomly according to a Gaussian distr
tion whose mean valuek̄ is equal to the characteristic Rab
frequencyV.

To study the resulting time evolution we choose t
(6,10,1)3 code based on complementary pairings~see Sec.
III !. In Fig. 6 the fidelity of the quantum stater(t) is de-
picted as a function of the varianceDk of the Gaussian dis-
tribution. The fidelity is defined as the overlap^x0ur(t)ux0&
between the~mixed! system stater(t) at time t5p/(2V)
and the desired stateux0&^x0u which would result from the
ideal dynamics at this particular interaction time. In this n
merical simulation the master equation~1! was integrated up
to time t5p/(2V), whereas each jump operatorLa was
replaced by a sequence consisting ofLa and an immediately
applied unitary recovery operationUa @see Eq.~8!#. In this

d

FIG. 5. Fidelity u^c(t)uc(0)&u2 of a quantum memory afte
time t5p/(2k) for an error parameterq.
6-8
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numerical quantum Monte Carlo simulation it was assum
that the recovery operations are performed perfectly. I
apparent that the code stabilizes the quantum dynamics
cessfully, despite the fact that the (6,10,1)3 code is not a
perfect one-detected-jump-error correcting quantum code
this situation.

C. Time delay between error detection and recovery operation

Immediately after the detection of a spontaneous emis
event, the qubits are described by a quantum state belon
to a subspace involving one excited qubit less than the o
nal code space. This subspace also constitutes a pa
error-correcting code. Therefore, a time delay between
detection and the application of a recovery operation d
not lead to an additional error caused by the effective ti
evolution Heff , provided the ideal quantum dynamics cha
acterized byH is not affected. Nevertheless, this time del
must be short in comparison with the mean time betw
two successive spontaneous emission events. Otherwi
second spontaneous emission may map the state of the
tem onto another subspace, from which a recovery is
longer possible. The numerical quantum Monte Carlo res

FIG. 7. Fidelityu^c(t)ux0&u2 for an effective Rabi oscillation a
time t5p/(2V) with a delay timet between detection and recov
ery. The decay rate isk50.5V.

FIG. 6. Dependence of the fidelity of an effective Rabi oscil
tion at timet5p/(2V) on the varianceDk of the decay rates: The

mean value of the decay rates isk̄5V, the variances are chose
from Gaussian distributions withDk50.1 . . . 1.03V. The dia-
monds show the simulation using the one-detected-jump-error
recting quantum code (6,10,1)3, the stars show the correspondin
results for six qubits without encoding.
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of Fig. 7 demonstrate that, as long as the delay betw
detection and correction is not too large compared with
mean decay time, error correction is still possible.

D. Dead times of the photodetectors

Another important condition for correct implementatio
of a detected-jump-error-correcting quantum code is the a
ity to observe the environment of each qubitcontinuously.
However, immediately after the detection of a spontane
emission event, typically the detector is not able to respo
to another photon. During the latent response time of a p
todetector, a second spontaneous emission event can
place, which may destroy quantum coherence. In Fig. 8
dependence of the fidelityu^c(t)ux0&u2 on the response time
of a photodetector is depicted for various decay ratesk.

It is apparent from the numerical quantum Monte Ca
results of Fig. 8 that the detected jump-error-correcting qu
tum code can stabilize an algorithm as long as the respo
time of the photodetectors is small in comparison with t
average time between successive spontaneous emi
events.

VII. CONCLUSIONS

We have studied quantum error-correcting codes that
ploit additional information about the locations of the erro
This information is obtained by continuously monitoring th
system@29#. Errors caused by the resulting nonunitary d
namics are corrected passively by embedding the er
correcting code in a decoherence-free subspace. To cons
such codes, we have established connections to the de
theory. The numerical simulations presented demonst
that the jump codes discussed can stabilize quantum sys
even in cases of imperfect detections and recovery opera

ACKNOWLEDGMENTS

This work is supported by the DFG~SPP ‘‘Quanteninfor-
mationsverarbeitung’’! and by Grant No. IST-2001-38869 o
the European Commission.

-

r-

FIG. 8. Dependence of the fidelityu^c(t)ux0&u2 at time t
5p/(2V) on the dead timet of a photodetector. The ideal dynam
ics are governed by an effective Rabi oscillation with Rabi f
quencyV. For the encoding the one-detected-jump-error-correct
quantum code (6,10,1)3 is used. The fidelity is depicted for fou

different values ofk̄: k̄50.25V ~black diamonds!, k̄50.5V ~tri-

angles!, k̄50.75V ~white diamonds!, k̄51.0V ~crosses!.
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