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The recently introduced detected-jump-correcting quantum codes are capable of stabilizing qubit systems
against spontaneous decay processes arising from couplings to statistically independent reservoirs. These
embedded quantum codes exploit classical information about which qubit has emitted spontaneously and
correspond to an active error-correcting code embedded in a passive error-correcting code. The construction of
a family of one-detected-jump-error-correcting quantum codes is shown and the optimal redundancy, encoding,
and recovery as well as general properties of detected-jump-error-correcting quantum codes are discussed. By
the use of design theory, multiple-jump-error-correcting quantum codes can be constructed. The performance
of one-jump-error-correcting quantum codes under nonideal conditions is studied numerically by simulating a
guantum memory and Grover’s algorithm.
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[. INTRODUCTION number of control measurements and perform the rapid re-
covery operations. However, in view of current-day experi-

The discovery of powerful, fast quantum algorithfs-3] mental possibilitied11] it is generally difficult to achieve
launched new efforts to implement such quantum algorithm$&oth the requirements. Therefore it is desirable to develop
in real physical systems. Quantum algorithms simultaneouslglternative error-correcting strategies that possibly correct a
exploit two characteristic features of quantum theory;restricted class of errors only, but which tend to minimize
namely, the fundamental phenomenon of quantum interfeboth redundancy and the number of recovery operations. Re-
ence and the fact that for distinguishable quantum systemsently, the first steps in this direction have been taken by
the dimension of the Hilbert space increases exponentiallgdefining a new class obne-detected-jump-error-correcting
with the number of systems. Therefore, to implement a quangquantum codesvhich are capable of stabilizing distinguish-
tum algorithm in a real qguantum system we must be able table qubits against spontaneous decay processes into statis-
create and manipulate arbitrary superpositions of quanturtically independent reservoirgl2]. These codes are con-
states and to preserve quantum coherence during computstructed by embedding an active error-correcting code in a
tion. Unfortunately, quantum coherence is very fragile. Typi-passive code space and by exploiting information available
cally, any coupling to an environment leads to decoherencen error positions. This embedding procedure leads to a sig-
so that quantum-mechanical superpositions are rapidly dedificant reduction of redundancy and the number of control
stroyed. measurements and recovery operations.

The urgent need to develop efficient methods to protect In this paper the physical principles underlying detected-
guantum coherence has led to the study of very generglimp-error-correcting quantum codes are explored and gen-
classes of quantum error-correcting coflés-7]. The main  eralized, motivated by the practical need for quantum-error-
idea is to restrict the dynamics of a quantum algorithm to ecorrecting codes which minimize both redundancy and the
subspace of the Hilbert space, in which errors can be identiaumber of recovery operations. Based on these physical prin-
fied uniquely by suitable measurements and where the erraiples an upper bound is established on the number of logical
operators can be inverted by unitary operations. Typicallystates of a general embedded detected jump-error-correcting
this is achieved by an encoding of the logical informationquantum code.
and by a suitable choice of quantum gates. From this bound it is apparent that the recently discovered

For some special cases it is also possible to design a pasne-detected-jump-error correcting quantum codes have
sive error-correcting quantum cofl@—10. Such a passive minimal redundancy. Based on this family of optimal one-
guantum code relies on a subspace of the Hilbert spacgetected-jump-error-correcting quantum code® establish
which is not affected by any errors at all. In this situation thelinks with the general notions of combinatorial design theory
unitary recovery operation is the identity operation so that af13]. For this purpose the concept ospontaneous emission
active correction of the errors is not necessary. error designis introduced. This is a powerful tool for con-

In principle, any type of error can be corrected by thesestructing multiple-detected-jump-error-correcting quantum
strategies as long as enough physical qubits are available tmdes capable of stabilizing distinguishable qubits against
achieve the required redundancy and one can make a largpontaneous decay processes. As an example, we present an
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[ A s . B modes of the electromagnetic field. This coupling causes
| . . P ‘ spontaneous decay processes of the qubits from their excited
states|1),, to their stable lower lying statg®), . Within

the Born, Markov, and the rotating wave approximations the

resulting dynamics of the reduced density operait) of

% this N-qubit system is described by the master equation
Bea-® @ @ | s

Y ¥ a dp(t i N
A 1 %?%[Heﬁp(t)—p(t)HZﬁHE Lap(OLL (1)
- 2 | o«

S R S [ S IR 3 with the non-Hermitian effective Hamiltonian

. N
FIG. 1. Model of a quantum computer consisting of an ensemble H.o.—=H— ﬁ E LTL )
of distinguishable two-level systentgubity, which are well local- eff 2 =1 e

ized at positionx, and which are coupled to the vacuum modes of

the radiation field. The mean distandebetween adjacent qubits is  Thereby, the coherent dynamics of tNegubit system in the
assumed to be large in comparison with the wavelength of the sporahsence of the coupling to the vacuum modes of the electro-
taneously emitted radiation, i.&.<d. Thus, the spontaneous decay magnetic field is described by the Hamiltonienwhich in-
processes do not affect the distinguishability of the qubits. The quzgrporates the influence of the external laser pulses. In addi-
bits are monitored continuously by photodetectors capable of deterﬁon, we assume that the mean distance between the qubits is
mining the time at which a spontaneous decay process occurred ang, o, Jarger than the wavelengths of the spontaneously emit-
the position of the affected qubit. ted radiation. Therefore, to a good degree of approximation

. . each qubita couples to a different set of modes of the ra-
embedded  three-detected-jump-error-correcting  quantuffy,iion field so that these sets constitute statistically indepen-

code. . ; ; ;

i . . . . dent reservoir§l5]. In Eq. (1) the coupling of qubitx to its
col a5pocts conoaraing the spontanaus emission of photo SCIVIr and the resuing sponianeous decay pradass
b ) . -~ —]0), are characterized by the Lindblad operator
y qubit systems are summarized. In Sec. Ill the physical
principles are explored, which lead to the construction of
one-detected-jump-error-correcting quantum codes. The con-
O R e ot e e ., denotes the identy on every except
design theory are establishéd in Sec. V. Finally, in Sec ViquIt’ a.ndK“ 1S th? gssomated spontaneous Qeqay rate.
numerical examples are presented v;/hi;:h exhit;it basic. sta;, Provided that initially theN-qubit system is in a pure
bil . ; .. r i _%tate, say| o), a formal solution of the master E€l) is
ility properties of the optimal one-detected-jump-error

correcting quantum codes. given by[14]

La:\/K—a Jl,B#cz®|o>ozoz<]'|’ (3)

“ort th
ll. SPONTANEOUS DECAY OF DISTINGUISHABLE p()=> f dtnf dty_4---
QUBITS AND PHOTON DETECTION n=0 .0 0

In this section we summarize basic facts about the dy- X ftzdtlp(t;tnan, Stiag)[ttaan, - tag)
namical description of a quantum system interacting with 0

initially unoccupied modes of the electromagnetic field.

These considerations are the starting point for the develop- X(Gtaan, ... tiaql, 4
ment of optimal strategies of error correction, which we pur-
sue in the subsequent sections.

We consider a model of a quantum computer in which
two-level atoms(qubitg interact with external laser pulses
which synthesize the quantum gates underlying a quanturH?tnan’ ootan)=
algorithm. TheseN qubits are assumed to be arranged in an
array with well-defined positions, (¢=1, ... N) (see Fig.
1). In addition, thes& qubits are assumed to be distinguish-
able, which requires that their mean nearest-neighbor dis-
tance is large in comparison with the optical wavelengths
involved. Their distinguishability guarantees that the dimen- () am iH gt )/
sion of their associated Hilbert spaceKs,=2N and thus X geft /e el i ) -
scales exponentially with the number of qubits. In addition, it ZiH ot 1R
is assumed that thesd qubits couple to the unoccupied XLg € et |0)- (5

with the pure quantum state

e Hett—t/A| . | = iHegty/t
ap a

| o)

p(tlthan, .. . tiag)Y?

and with the probabilities

ot
p(tithay, ... ,t1a1)=<4/10|e”"efft1/h|_‘;l. LT

ap
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It can be shown that each pure stitd,«,,, ... ti@;) de-  the N-qubit system against modifications arising from the
scribes the quantum state of tiNequbit system at timae  effective Hamiltonian of Eq(2).
conditioned on the emission of precisalyphotons at times The main idea is to determine an appropriate subspace

t1<---<t, by qubitsa,, ...,a, [14-18. Thus, each of of the Hilbert space of thal distinguishable qubits in which
the pure quantum states of Ed) corresponds to a possible the perturbing part of the Hamiltonian acts as a multiple of
measurement record4(, - . . tha,) in an experiment in the unit operator, i.e.,

which each qubit is observed continuously by photodetec-
tors. In the subsequent discussion, it is important to note that
due to the large separation between the qubits ideally this
measurement record determines not only the spontaneous de-
cay timest;, but also the associated positiong (i  wherec denots a ¢ number(In our setting this number is

i
Heff|D:H|D_§C]1 , (6)
D

=1,....n) of the qubits that have been affected by thesereal valued and positive.If the (unperturbedl dynamics
decay processes. The measurement recque ( . . . tha,) characterized by the Hamiltonid# does not take an initial

is observed with probability(t;t,ay, ... tya;). Accord-  pure quantum state outside this decoherence-free subspace
ing to Eq.(4) the quantum statg;t,a,, ... tiaq) resulting D, this condition implies that, provided no photon is emitted

from a particular measurement record is determined by twan the time interva[0t], the quantum state at tintés iden-
types of effects. First, the time evolution between two suc+ical with the unperturbed stafeompare with Eq(4)]. Thus,
cessive photon emission events is characterized by the noif- one can find such a sufficiently high-dimensional
Hermitian HamiltonianH of Eq. (2). Thus, even in the decoherence-free subspace, the dynamics taking place be-
absence of any spontaneous photon emission process int@een successive spontaneous photon emission events is sta-
given time interval[Ot], in general, an arbitrary quantum bilized perfectly without the need for control measurements
state is modified by the couplings to the vacuum modes o&nd recovery operations. In practice, it is desirable to choose
the electromagnetic field. Second, immediately after thehe dimension of the decoherence-free subspace to be as
spontaneous emission of a photon by qubithe quantum large as possible.

state is modified by the Lindblad operatoy,. This distinc- An important special case occurs when all tHequbits

tion between the two different types of dynamics is crucialhave identical spontaneous decay rates, ikg= . In this

for the development of a useful quantum error-correctingsituation it follows that

strategy that minimizes the redundancy as well as the num-

ber of control measurements and recovery operations. N + N
D L=k [1).4(1] )
a=1 a=1
Ill. DESIGNING OPTIMAL ) ) _
ONE-DETECTED-JUMP-ERROR-CORRECTING and any subspace formed by basis states involving an equal
QUANTUM CODES number, sayw=<N, of excited qubits is a decoherence-free

subspace. For a given numberMfubits the dimensioK

In this section we introduce the main ideas Ieading to thQ)f such a decoherence_free Subspace is g|vem(By: (\’I\\Il)
construction of optimal one-detected-jump-error-correctingyhich is maximal ifw=|N/2J. (|x| denotes the largest inte-
embedded quantum codes which are capable of stabilizinger smaller or equal ta.)
systems of distinguishable qubits against spontaneous decay |n general, the first spontaneous emission of a photon will
processes. These quantum codes exploit the physical posgiffect the quantum state of tiNequbit system in an irrevers-
distinguishable qubits by photodetectors. photon by qubitx, for example, is described by the applica-

How can we stabilize aN-qubit system, such as that tjon of the Lindblad operatok ,,, which induces a quantum
depicted in Fig. 1, agalnst sp_ontaneous_ decay processes |f%emp 1),,—/0), . This Lindblad operator is not invertible
can observe the qubits continuously with the help of photog,yer the decoherence-free subspacso that this quantum
det.ectors? To achieve this two major tasks have to be tackymp cannot be corrected. In order to correct for this quan-
led; namely, we have to correct the modifications takingy,m jump actively, we have to restrict the dynamics to a still

place during successive photon emission events. These modimalier subspac®C D in which a unitary operator, sdy
fications are described by the effective Hamiltonian of EQ.can pe found having the property ’ “

(2). And, we have to invert each quantum jurip ,—|0),
caused by the spontaneous emission of a photon by qubit U,Lalc=1|c. (8)

In principle, the errors taking place during two successive
photon emission events can be corrected by an active errofherefore, if we still want to take advantage of passive error
correcting quantum code with a sufficiently rapid sequenceorrection between successive photon emission events we
of control measurements and recovery operatjd8 How-  have to construct an active error-correcting quantum code
ever, for practical applications such an approach is not veryithin the relevant decoherence-free subspace.
attractive. One faces all the problems that are related to the We now construct a one-detected-jump-error-correcting
implementation of large numbers of control measurementembedded quantum code in the special case of identical
and recovery operations. It is therefore much more desirablepontaneous decay rates considered above. According to the
to develop passive error-correcting methods for stabilizingcriterion given in Ref.[5], the orthogonal basis states
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{lc):i=1,... K} of a subspac€ constitute an active error- 1 _
correcting quantum code with respect to the set of error op- |co) = T[|11oq+e'<°|0011>],
erators{L,:a=1, ... N} if and only if 2
1 i

(GlLiLgle)y=5A g (9) )= ﬁ[ml 019+e'*|1010],
for all possible values df,j anda, 8. Equation(9) states the cy)= i[| 1001 +€'¢|0110)]. (10)
necessary and sufficient conditions for the existence of uni- \/5
tary recovery operations that fulfill Eg8) for the error op- _ _
erators{L,:a=1, ... N}. In the physical setting this crite- These code words are formed by all possible different pairs

rion states thati) different orthogonal quantum states remain Of basis states of the decoherence-free subspace which can
orthogonal under the action of error operators dindall ~ be constructed by interchanging staté$ and|1). These
basis states are affected by a given pair of ertgyandL, ~ complementary pairings are also characterized by equally
in a similar way. The latter condition necessarily implies thatweighted probability amplitudes that involve an arbitrary
the scalar products between stateci) andL 4c) are state  Phaseg. It can be easily checked that this embedded quan-
independent. It is plausible that a larger set of error operatoréim code fulfills the criterion of Eq(9) for any of the Lind-
leads to a more restrictive set of conditions of the type of Eqblad operatord., of Eq. (3) separately, but not for two dif-
(9). Furthermore, we also expect that more restrictive condiferent Lindblad operators with# 8. Thus, provided that the
tions lead to a higher redundancy of an active quantum cod&rror time and the error position are known this embedded
As an example, consider the situation where continuouguantum code can correct one quantum jump at a time. In
observation of th&-qubit system by photodetectors does notaddition, errors between successive quantum jumps are cor-
reveal which qubitx has emitted the registered photon. This rected passively. In this way the number of control measure-
implies that the error operators that could induce a spontangnents and recovery operations is reduced and so is the re-
ous decay process are in the $kf,:a=1,... N}. It has dundancy. This is apparent by comparing our quantum code
been shown by Pleniet al. [20] that when the error posi- With the code proposed by Pleng al. [20], which requires
tions are unknown, eight physical qubits are needed to erfight physical qubits for the encoding of two orthogonal
code two orthogonal logical states by an embedded quantu@iantum states.
code. This should be compared with the optimal active one- The above construction based on complementary pairings
error-correcting code using five qub[ta1]. can be generalized to an even numbleof physical qubits;
Thus, the advantage offered by using an embedded qua@iving an infinite family of one-detected-jump-error-
tum code, capable of passively correcting errors betweeforrecting embedded quantum codes. The construction is the
successive photon emission events leads to a significant ifollowing. We start from the highest-dimensional
crease of redundancy in comparison to purely active methdecoherence-free subspace which involves all quantum states
ods. However, this disadvantage can be overcome if, besiddd which half of the qubits are excited to statds . Sub-
knowing the error time, information about the error positionsequently, we construct an active quantum code within this
« is also available. In principle, this information can be ob-decoherence-free subspace by complementary pairings. The
tained from continuous observation of tNequbit system by ~ dimensionK; of the resulting embedded quantum code is
photodetectors as long as the mean distance between adpiven by
cent qubits is large in comparison with the wavelength of the

spontaneously emitted radiation. For this purpose, it is im- K= (1/2) _ N-1 (11)
portant that each photon emitted by one of the qubits can be 7 N2/ \N/2—1)°
detected.

How can we construct a one-detected-jump-errorit is a remarkable fact that, provided one wants to correct
correcting embedded quantum code that exploits informatioerrors passively between successive quantum jumps, it is not
about the error position in an optimal way so that its redun-possible for an even number of physical quibitso reduce
dancy is minimized? Let us concentrate again on our previthe redundancy of such an embedded jump dsde Sec. V
ously introduced example of identical spontaneous decagnd Ref.[22]). Therefore, our family of embedded quantum
rates. In this setting we have a decoherence-free subspacedes has the desirable feature that it minimizes redundancy
that involvesw excited qubits. This stabilizes the dynamics and that it requires only a small number of recovery opera-
between successive photon emission events passively. Ftions. For instance, in a given time interval, dat], the
example, in the simple case N=4 andw=2, the orthogo- mean numbemn of required recovery operations is of the
nal basis statesc;) of the decoherence-free subspace areorder ofn~N«t/2.
given by {|1100,/0011),/1010,/0101),/1001),/0110}. To stabilize any quantum algorithm against spontaneous
Within this six-dimensional decoherence-free subspace decay processes using an embedded one-detected-jump-
possible active quantum code, capable of correcting onerror-correcting quantum code, three requirements have to be
guantum jump at a time at a known positianis determined met. First, one has to be able to register the ttraed posi-
by the following three orthonormal code words: tion a of each spontaneous decay event that takes place dur-
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ing the performance of the quantum algorithm. As indicated
schematically in Fig. 1 this can be achieved by continuous
observation of theN-qubit system with photodetectors. In U
principle, an identification of the perturbed qubitis pos- _
sible provided the mean nearest-neighbor spacing of the qu-
bits is large in comparison with the wavelengths of the ra- |
diation emitted spontaneously. However, in practice, the f (L
error positiona might not be determined so easily due to ’
imperfect detection efficiencies of the photodetectors. There- U
fore, in actual applications shelving techniq(i28,24] might
be useful, which amplify each spontaneously emitted photon
to such an extent that it can be detected with an efficiency U
arbitrarily close to unity. :
Second, we have to ensure that each spontaneous decay Classical control of recovery
event is corrected immediately by application of an appro-
priated unitary transformation which inverts the effect of the FIG. 2. Gates to invert a quantum jurfipdicated by a bojtof

Linablad operatolL,,. In practice, this inversion has to be a physical qubit. The four physical qubits involved form a (4,3,1)

performed on a time scale that is small in comparison W'thcode and are numbered in increasing order from top to bottom.

the natural time scale of the quantum algorithm and with the

mean spontaneous decay time. Third, one has to ensure ﬂ?ﬁt that at a constant error rate the cumulative correction of
the sequence of quantum gates that constitute the QUantUyf. 1 spontaneous emission events requires fewer recovery
algorithm does not leave the code space at any time. This Cfherations than the correction of each individual error sepa-
be done by encoding the logical information within the COderater. This reduction of the number of required recovery

S%‘?‘Cﬁyl and btheveIoplng a u_mver_sal set of quantum gat‘?ﬁ)erations offers significant advantages for the stabilization
which leaves this code space invariant. of quantum memories or quantum algorithms, in particular,

Id(_elally_ these hquantum gatr?s ar:e imglementeo_l bly ﬁs!litab'ﬁl cases in which the application of sufficiently fast recovery
Hamiltonians. This ensures that the code space is left invarlyhe aiions is difficult and costly. In this section we concen-

ant even during thehapphcatloln of onfe of t.*l‘es‘? umvders ate on basic conditions these multiple-error-correcting jump
quantum gates. Such universal sets of Hamiltonian-induceg,qes have to fulfill. Examples constructed on the basis of

quantum gates have already been developed fogenery)ideas from combinatorial design theory are presented

decoherence-free subspadesof the kind discussed above ;, gac v/

[8-10). But, in general, unitary gates based on swapping T, gefine general detected-jump-error-correcting quantum
Hamiltonians need not be universal on the embedded quan,yas we introduce some notation. For a set of positins
tum code, or the swapping Hamiltonians do not leave the:{a1 ,0(2 a,}, we denote by7E.the operator

1 L | nJj»

embedded quantum code invariant. The solution of this intri-
cate and yet unsolved problem is beyond the scope of the Te=Tia, .« w1 =L Lo Ly .
present work. However, some preliminary results have al- e " e "

ready been obtained recenf®5-27. The associated error timds, ... t, are no longer men-
So far we have shown that any Lindblad operdtgrof  tioned explicitly, but it is understood that they are known.

the form of Eq.(3) can be inverted by our one-detected- Note that the operators, , ... L, commute, because the
n

Ampl of & uniary ransiommaton that achieves his mersior &€ Paifwise diferent. Since, by EG), the errors that
P Y involve two equal indices, say;= a,, cannot occur.

in the case of the one-detected-jump-error-correcting quan- As discussed in Sec. Ill. foH=0 all the states that are

tum code involving four phys'c?" qu.'tS'ApOSS'bIe Sequencesuperpositions of states with a constant number of excited
of quantum gates capable of inverting a spontaneous dec

process affecting qubit— 2, for example, is depicted in Fig. Qlbits are common eigenstates of the nonunitary effective

. . o time evolution(6) between quantum jumps. A subsp&ef
2. This example demonstrates the basic fact that it is indee, ch a decoherence-free subspace with orthonormal basis

possible to perform a unitary inversion of the Lindblad op-{|C1> ... Jco) is called ad-detected-jump-error-correcting

eratorL, provided Eq.(9) is fulfiled for a=8=2. quantum code, and is denoted By (N.K.d),, if the fol-
lowing condition holds for set& of jump positions with at
IV. GENERAL DETECTED-JUMP-ERROR CORRECTING mostd elements and for all basis stafes) and|c;):

QUANTUM CODES t
(6| TeTelc) =6\ (E). (12

I
1/

AR
N

In this section we discuss general notions of higher-order
detected-jump-error-correcting quantum codes. Provided eifhe notationC=(N,K,d),, is motivated by classical coding
ror times and error positions @f>1 spontaneous emission theory. Similarly, the notatiod-JC(N,w,K) is motivated by
events are known, they can be corrected by a single suffinotations from the design theofgee Ref[12]).
ciently fast recovery operation with the help of such a The validity of this statement follows from the general
d-detected-jump-error-correcting quantum code. It is appareonditions on quantum error-correcting codet Ref. [5]).
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Since we know on which positions the jump operatgs
acts, only products of the forrﬁEjE have to be considered.

There is a natural connection with combinatorics. For a

basis statdx;- - -xy) of N qubits, the positions that are in
state|1) define a subset df1, ... N}. Furthermore, a col-

lection of such subsets corresponds to an equally weighted

superposition of basis states.

Let BMD, ... BK pe K disjoint sets of subsets
XC{1,... N}, where each subsét containsw elements.
Identifying the setX and the binary worck wherex;=1 if
i e X andx;=0 otherwise, we define the states

V1B XEEBU) X)-

Thereby|B()| denotes the number of elemerttardinality
of the setB(). These orthonormal states spad-detected-
jump-error-correcting quantum cod€=(N,K,d),,, pro-
vided that for all sets of jump positioswith no more than
d elements and all se#8(") the following condition holds:

lci)= (13

IXe BMECX}|

50 A(E).

(14)

We note that the disjointness of the s&%) implies condi-
tion (12) for i #j. Furthermore, rewriting the operatdﬁgjE
as JtJe=Sx5e/x)(x| shows that fori=] and the states
(13) the expectation valuég|7L7e|c) equals the expres-
sion in Eq.(14).

V. BLOCK DESIGNS AND JUMP CODES

In this section we will show thadl-detected-jump-error-
correcting quantum codes are naturally connected ditlle-

PHYSICAL REVIEW A 68, 012316 (2003

7

3

2
Sl (2’ 23 4) Sl (2,3,7)

FIG. 3. Examples of 2-designs.

degreed(«) of the vertexe, i.e., the number of edges on
which « lies. The incidence structur8—as well as the

graph itself—is called regular, dl(«) is constant. If there

exists a constaniy such that for allE={ay, ...,aq}

€ (}j’) the cIassBE==(((Bal)a2) cen )de of all blocks contain-

ing the set ofd points has siz&3:| =\, the incidence struc-
ture is calledd regular. A d designis a d-regular incidence
structure with constant block size. It is denoted byd-
(N,w,\g) design or as5, (d,w,N) [13]. Graphs that corre-
spond to 2-designs are depicted in Fig. 3.

The 2-desigr5,(2,3,7) is known as Fano plane. The lines
of this plane can be taken to be

B={1,2,3,{1.4,6,,{1,5,7},{2,4,7},
{2,5,6},{3,4,5,{3,6,7}}.

From the graphical picture it is clear that any 2-subset of
{1,2,...,% is contained in exactly one block & hence we
haven,=1.

The preceding discussion leads to the notion of
d-spontaneous emission error designs which we denote by
SEED(N,w,K) [22]. The essential property of these combi-
natorial objects is thocal multiplicity A (E) of a subseE of
{1, ... N} containing at most elements, which is defined

signs. These are combinatorial structures that have been e®Y

tensively studied for many decades, cf. Héf3]. To denote

this class of combinatorial structures we introduce some no-
tations using the language of finite incidence structures. Let

V be a set oiN elements, callegoints sayV={1, ... N},
where N>0 is an integer andV|=N. For Osw=<N the
class ofw subsets ofV containingw elements will be de-
noted by CC). In a suggestive way its cardinality, i.e.,

VA [IVI) (N

w/ lw/) w)
is just the binomial coefficient)). An incidence structure in
V is specified by a distinguished cla8f subsets o¥. The

elementsB of B are calledblocks(or sometimedines) of the
incidence structure. IBQ(X), we say that5 has constant

52|
W—)\(E), (15
where BY, ... B®) are disjoint subsets of'j. Any
d-SEED(N,w,K) produces a d-detected jump-error-
correcting quantum cod€=(N,K,d),, using the encoding
defined in Eq(13).

A class of 1-SEEDs can be constructed from the finite
analog of affine geometries. For any prime powethere is
a finite field GF(q) of sizeq. Form,be GF(q), one defines
the lines €., p:={(X,mx+b):xeGF(q)} and €.,
={(b,y):ye GF(q)}. Each line containgy points (,y)
e GF(q)?. Forme GF(q)U{>=}, we define the classes of

block sizew. As an example, any undirected graph is anparallel lines B(™:={¢,,,:be GF(q)}. For a given point

incidence structure of block size 2, if we chodsas the set

(x,y) e GF(q)?, each blockB(™ contains exactly one line,

of points of the graph and the points that are directly conwhich contains this point. Hence the blocl&™ form a

nected by an edge as blocks.

For any pointe e V, the clasd3,:={B e B: « € B} denotes
the class of blocks containing the poinat (or “the lines
througha”). If |B,|=r is constant for alle eV the inci-
dence structurds is called regular. For a graphi3,| is the

1-SEED@?,q,9+1).

Another construction of SEEDs is given by the concept of
resolvable designsThe blockset of a resolvable design can
be partitioned in such a way that each part of the partition is
again a design. A well-known example is given by the solu-
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tion to Kirkman’s schoolgirl problenisee Ref[13] Example The dimension of the space spanned by the basis states of
5.8[13]: N qubits, wherew of them are in the excited state, i§)(
_ This implies the bound(s(u). A jump onj positions re-
B={{1,2,3,{4,8,13,{510,14,{6,9,13,{7,11,13}, duces the number of excitationswo- j. After the jump, the

j positions where the jump occurred are zero. There are
B®={{1,45,29,1%,{3,13,15,{6,8,14,{7,10,12}, 1P Jump

B®=1{{1,6,7%,{2,8,10,{3,12,14,{4,9,13,{5,11,15}, (W:} )

B®=1{{1,8,9,{2,5,7,{3,13,14,{4,10,15,{6,11,12}, such basis states. A jump must not reduce the dimension of
the code, hence
N—]
w—j/"

B(7): 1,14,18,12.474.13.811,159,12.16,10,13}, For O$J$d pOSSibIe quantum jumps the lowest upper
t 4 i3 . 3 3 bound is achieved foy=d as

~ N(N-1).- -(N—d+1)(N—d)
S w(w—1)---(w—d+1)\w—d/"

B®)={{1,10,11,{2,12,15,{3,4,6},{5,8,13,{7,9,14},

B®={{1,12,13,{2,5,6,{3,9,1¢,{4,11,14,{7,8,13}, K=

partitioning the 1-desigis;(1,3,15) into seven 1-designs.
We conclude this section by constructing a three-
jump-correcting code. The permutation groups
on the 2-cloment Subsels 2. 8. The orbts undes 10 00lain the second upper bound in E£6) we rote that
of the sets{1,2,5,8, {1,3,5,8, and{1,4,5.8 are mutually starting with a jump cod€=(N,K,d),,, applyingo, to all
disjoint. Direct calculation shows that they satisfy the localdubits yields a jump cod€=(N,K,d)y_,. Note that,o,
multiplicity condition (15. Hence the sets BM) interchanges ground and excited states, hence theQdids
:={1,2,5,6%, B®:={1,3,5,6%, andB(®:={1,4,5,8° define in the decoherence-free subspace wMh-w excitations.
an (8,3,3) jump code. The correspondirfgot normalizedl  Also, the linear space spanned by the opera@rgE for all
basis states are given by subsetsE with no more thand elements is invariant under
conjugation byo, on all qubits. This holds a&XLLLaax
|c1)=10011001}+|00111109+[01 010 10} =10),a(0|=1—|1),4(1]. Thus, for the codeC we obtain

+]01011 010+ |01 100 110+|01 101 00} the bound
+]10010110+|1001100}+|10100 10} N—d N—d

K= N-w—d/ | w |
+]10101 010+ |1100001}+|11 001 100,

N
w

If there is no restriction on the number of excited states,

|c2)=100110110+[00111 003+ 0101001} choosingw=| N/2| maximizes the upper bound of E€L6),
+]01011 100+ |01 100 103+ |01 101 010 1€
N—d
+]1001010}+/10011010+|1010001
| 1+ o+ ) <= o) 1)

+]10101 100+|11 000 110+ |11 001 001,
As mentioned above, the upper bound of E) is achieved

|c3)=/0011010}+|00111010+|01 010110 for d=1 and for an even numbeX of qubits. A table of
lower boundgobtained by constructions frodtSEEDS and
+[0101100}+|0110001}+|01101 100 upper bounds for small values of and d is provided in
+]1001001}+|10011 109+]10 100 110 Ref. [22].
+[1010100}+|11000 10}+ 11001 010. V1. STABILITY PROPERTIES OF THE ONE-DETECTED-

) ) JUMP-ERROR-CORRECTING QUANTUM CODES
Further examples of-SEEDs are discussed in R¢R22].

In that paper, there are also general bounds on the parametersThe detected-jump-error-correcting quantum codes con-
of jump codes derived. In particular, the dimensiérof a  structed in the preceding sections can stabilize quantum al-
d-detected-jump-error-correctind(K ,d),, code is bounded gorithms provided three conditions are satisfied. First, the

above by decay rates of the qubits are equal. Second, the time and
position of each quantum jump are detected with 100% effi-

[(N—=d| (N—d ciency. Third, the appropriate unitary recovery operations are
Ksmm[ (w—d) ( w )] (16 applied perfectly and instantaneously immediately following

the detection of an error. Experimentally these requirements
For completeness, we repeat the main ideas of the proof. can only be approximated. Therefore, the natural question
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o
.
*
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*

FIG. 4. Model for a 4-qubit register where jumps are detected
with a given error parametey.

0 0.1 0.2 0.3 0.4 0.5

arises how nonideal conditions influence the robustness of Parameter g for fault detection
the em_beddec_j error-correcting guantum Co_des. . FIG. 5. Fidelity |[{#(7)|#(0))|?> of a quantum memory after
In this section several types of imperfections affecting the, .. . /(2x) for an error parametay,

ideal performance of the one-detected-jump-error correcting

embedded quantum codes of Sec. Ill are studied numericallpjieq. |n the case of a correct detection, the quantum state of

For this purpose we investigate the stabilization of a quang,e memory is recovered perfectly. In the case of a false

tum memory and of a simple Hamiltonian dynamics againsyetection, the quantum state of the memory leaves the code

spontaneous decay processes. The effective two-level Rabh,ce Therefore, in this simulation the full Hilbert space of

Hamiltonian considered, i.e., four physical qubits has to be taken into account. As a mea-

s _ sure of fidelity the squared absolute value of the overla

H=i2Q(|xo)(v]—|v)(Xo]), (18 | etween the statﬁb(g) after a timer=7/(2«) and the P

can be viewed as modeling the quantum dynamics of théhitial state|#(0)) of the memory is plotted as a function of

ideal Grover search algorithf@] in the limit of a large num-  the error parametey. For the evaluation of this fidelity, one

ber of qubits. Thereby, the Rabi frequen@ycan be related ha; to average over a statistical ensemble of quantum trajec-

to the characteristic timer,, required for performing an tories.

oracle operation and to the number of quidtsccording to

Q=2/(7o,\/N) [28]. Here,|v) denotes an equally weighted B. Unequal spontaneous decay rates

superposition of al(orthonormal code words that may be For x,=« the orthonormal basis statés) of the code

used asan initial state in Grover’s quantum search algorithme —p are degenerate eigenvectors of the OperEtQIZLa

The_ final state we are searching for is dendteg). For this appearing in the effective Hamiltonian of E@). This prop-

choice of |v) the stateslv) and[xo) are not orthogonal, gry ensures that these states form a passive code for the

becausdv|xo) = 1/VN. However, if the number of qubity effective time evolution between successive quantum jumps.

becomes large their overlap tends to zero. According to thehe existence of such degenerate eigenstates of the operator

Hamiltonian Eq.(18) and consistent with Grover's quantum s | 1| relies on the assumption that the decay rates of all

algorithm([2], after the interaction time=#/(2Q), the ini- 4 pits are equal. Although this physical situation can be re-

tial state|v) is transformed to the final staf®,). alized in a laboratory, it is of interest to investigate what
_ N happens if this condition of equal decay rates is violated. In
A. Imperfect detection of error positions this latter case, our code does not correct errors between

Let us first of all consider situations where the jump po-SUcCcessive quantum jumps passively. _ o
sition can be detected with a given nonzero error rate only. FOr this purpose let us consider the Rabi Hamiltonian of
Such an imperfection might occur if, for example, a photonEd- (18) which describes the ideal quantum dynamics. In
emitted by a particular trapped ion is detected by the photo@ddition, we assume that the decay rates of the physical qu-
detector associated with a different iGcompare with Fig. bits are selected rando_mly according to a Gaussian distribu-
4). The probability to detect the emitted photon at the correction whose mean value is equal to the characteristic Rabi
position is denoted by. The probability that an emitted frequency().
photon is detected falsely by the next nearest neighbor is To study the resulting time evolution we choose the
given bygX p. Analogously, the probability of detecting the (6,10,1% code based on complementary pairirigse Sec.
photon by thenth nearest neighbor ig"x p with the nor-  Ill). In Fig. 6 the fidelity of the quantum stajg 7) is de-
malization conditionpX (1+q+qg®+---)=1. picted as a function of the variance« of the Gaussian dis-
The influence of this type of imperfection on a quantumtribution. The fidelity is defined as the overlégy|p(7)|Xo)
memory, i.e.H=0 in Eq. (1), is depicted in Fig. 5. A state between thgmixed system state(7) at time 7= #/(2Q)
|4(0)) of the jump codeC=(4,3,1), is propagated accord- and the desired stafe)(Xo| which would result from the
ing to Eq.(4) with a quantum Monte Carlo simulation of the ideal dynamics at this particular interaction time. In this nu-
guantum trajectoriegl7]. Each realization of this simulation merical simulation the master equatick) was integrated up
represents an individual qguantum trajectory in which the ini-to time 7= /(2Q)), whereas each jump operathy, was
tial pure statd(0)) is propagated accroding to E@). If a  replaced by a sequence consistind_gfand an immediately
jump is detected, the appropriate recovery operation is apapplied unitary recovery operatids, [see Eq.8)]. In this
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FIG. 6. Dependence of the fidelity of an effective Rabi oscilla-  FIG. 8. Dependence of the fideliti{ s(7)[xo)|* at time 7
tion at timer= 7/(2Q)) on the variance\ k of the decay rates: The = 7/(2(2) on the dead time¢ of a photodetector. The ideal dynam-
mean value of the decay ratesas-Q, the variances are chosen ics are governed by an effective Rabi oscillation with Rabi fre-
from Gaussian distributions witth x=0.1 ... 1.0<Q. The dia- duencyQ. For the encoding the one-detected-jump-error-correcting
monds show the simulation using the one-detected-jump-error coduantum code (6,10,3)is used. The fidelity is depicted for four
recting quantum code (6,104, )the stars show the corresponding different values ofx: «=0.2%) (black diamonds «=0.5Q (tri-
results for six qubits without encoding. angle$, k=0.7%) (white diamonds «=1.0() (crosses

. . L f Fig. 7 demonstrate that, as long as the delay between
numerical quantum Montg Carlo simulation it was assume.cgetection and correction is not too large compared with the
that the recovery operations are performed perfectly. It I$hean decay time, error correction is still possible.
apparent that the code stabilizes the quantum dynamics suc- ’
cessfully, despite the fact that the (6,1Q,19ode is not a
perfect one-detected-jump-error correcting quantum code for
this situation.

D. Dead times of the photodetectors

Another important condition for correct implementation
of a detected-jump-error-correcting quantum code is the abil-
ity to observe the environment of each qubd@ntinuously
However, immediately after the detection of a spontaneous
Immediately after the detection of a spontaneous emissioBmission event, typically the detector is not able to respond
event, the qubits are described by a quantum state belonging another photon. During the latent response time of a pho-
to a subspace involving one excited qubit less than the origitodetector, a second spontaneous emission event can take
nal code space. This subspace also constitutes a passiyRice, which may destroy quantum coherence. In Fig. 8 the
error'Correcting code. Therefore, a time d8|ay between thgependence of the f|del|ul/l(7)|X0>|2 on the response time
detection and the application of a recovery operation doegf g photodetector is depicted for various decay rates
not lead to an additional error caused by the effective time It is apparent from the numerical quantum Monte Carlo
evolutionHeg, provided the ideal quantum dynamics char-results of Fig. 8 that the detected jump-error-correcting quan-
acterized byH is not affected. Nevertheless, this time delaytym code can stabilize an algorithm as long as the response
must be short in comparison with the mean time betweefime of the photodetectors is small in comparison with the
two successive Spontaneous emission events. OtherWise,aQerage time between successive Spontaneous emission
second spontaneous emission may map the state of the sysyents.
tem onto another subspace, from which a recovery is no

C. Time delay between error detection and recovery operation

longer possible. The numerical quantum Monte Carlo results VIl. CONCLUSIONS
We have studied quantum error-correcting codes that ex-
Lre ploit additional information about the locations of the errors.
M This information is obtained by continuously monitoring the
w 0.8 ¢ L .
® ‘. system[29]. Errors caused by the resulting nonunitary dy-
-:% 0.6 LN namics are corrected passively by embedding the error-
; ML S S correcting code in a decoherence-free subspace. To construct
E 0.4 such codes, we have established connections to the design
iC theory. The numerical simulations presented demonstrate
0.2 that the jump codes discussed can stabilize quantum systems
even in cases of imperfect detections and recovery operation.
0 0.2 0.4 0.6 0.8
Delay time t/T ACKNOWLEDGMENTS
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