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Abstract:

Entanglement is a powerful resource for processing quantum information. In this context
pure, maximally entangled states have received considerable attention. In the case of bi-
partite qubit-systems the four orthonormal Bell-states are of this type. One of these Bell
states, the singlet Bell-state, has the additional property of being antisymmetric with respect
to particle exchange. In this contribution we discuss possible generalizations of this anti-
symmetric Bell-state to cases with more than two particles and with single-particle Hilbert
spaces involving more than two dimensions. We review basic properties of these totally
antisymmetric states. Among possible applications of this class of states we analyze a new
quantum key sharing protocol and methods for comparing quantum states.

PACS: 03.67.-a, 03.65.Ta

1 Introduction

By now, quantum theory has become a well established part of modern physics. We have
become accustomed to its results even if some of the concepts involved appear strange from
the point of view of classical physics. However, as long as these peculiarities are restricted to
the microscopic domain it is not so difficult for us to get used to them. During the last decade
there have been various successful attempts to push characteristic quantum phenomena into
the macroscopic domain and to exploit these very phenomena for practical purposes. These
attempts may be viewed as first steps of a newly emerging quantum technology. Thus,
it was possible to propose new, efficient quantum algorithms, to develop methods for the
transfer of quantum states and of secret keys, and to invent new quantum error correction
methods which suppress decoherence. Quite a number of these new effects rely on the use
of states whose correlations are incompatible with local realistic theories. The singlet state
of two distinguishable spin-1/2 particles is a prominent example which has been studied
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extensively in the past. The main purpose of the subsequent contribution is to point out
several possible applications of generalizations of this singlet state to cases which involve
more than two distinguishable quantum systems of arbitrary but finite dimensions.

2 Definition and basic properties of totally antisym-

metric quantum states

Totally antisymmetric quantum states are natural generalizations of the singlet state to
many-particle quantum systems. In atomic and molecular physics, for example, they have
already been playing an important role as Slater-determinant states. These are defined by
the relation

|AN 〉 = 1√
N !

∑

π

(−1)sgn(π)|π1〉...|πN 〉 (1)

with {|i1〉...|iN 〉; i1, ..., iN = 0, ..., d− 1} denoting an orthonormal basis of the Hilbert space
of N d-dimensional quantum systems. The sum appearing in Eq.(1) runs over all possible
permutations π of the N elementary quantum systems considered. Due to basic properties
of determinants this state exists only in cases in which the number of particles N equals the
dimension of the one-particle Hilbert spaces d involved. Thus, in the simple case of three
qutrits, for example, the totally antisymmetric quantum state is given by

|A3〉 =
1√
6
{|0〉|1〉|2〉+ |1〉|2〉|0〉+ |2〉|0〉|1〉 − |0〉|2〉|1〉 − |1〉|0〉|2〉 − |2〉|1〉|0〉} . (2)

Let us summarize briefly some of the most important properties of these totally antisym-
metric states:

1. They are invariant under local unitary transformations of the form U ⊗ U ⊗ ... ⊗ U ,
i.e.

U ⊗ U ⊗ ...⊗ U |ψ〉〈ψ|U † ⊗ U † ⊗ ...⊗ U † = |ψ〉〈ψ|. (3)

2. Simultaneous measurements of all particles in a commonly chosen measurement basis
result in perfect correlations, i.e.

P (i1, . . . , iN) ≡| 〈π1|...〈πN |ψ〉 |2 1

N !
|εi1,...,iN |2 (4)

with εi1,...,iN denoting the totally antisymmetric tensor which is non-zero only if all
its indices are different.

3. They can be generated in an iterative manner by a sequence of generalized XOR-gates
and discrete Fourier transforms. The three-particle state |A3〉, for example, can be
prepared from the antisymmetric two-particle state 1√

2
(|2〉1|1〉2 − |1〉1|2〉2) by

|A3〉 = GR31 GR32 F3 |0〉3
1√
2
(|2〉1|1〉2 − |1〉1|2〉2).

Thereby, F3 denotes the discrete Fourier transformation applied to the third particle
and GRij represents a generalized XOR-operation applied to particles i and j. Applied
to the first and second particle, for example, this latter operation is defined by

GR12 |i〉1|j〉2 = |i〉1|i⊖ j 〉2 (5)
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with ⊖ denoting subtraction mod(d). This construction can be generalized in a
straightforward way to more than three particles.

4. In the case of N particles the reduced density matrix ρ̂i of subsystem i is given by

ρ̂i =
1

d

d−1
∑

j=0

|j〉〈j|, (6)

i.e., the single-particle reduced density matrix describes a completely depolarized state.
Projection of one of the particles onto a particular state, say |j〉〈j|, leaves the rest of
the system in the pure antisymmetric state which involves all one-particle states except
state |j〉, i.e.

|AN−1〉 =
1

√

(N − 1)!

∑

π

(−1)sgn(π)|π1〉...|πN−1〉. (7)

The index of correlation [1] between a particular particle and the remaining part of
the system is given by

Ii−r = Si + Sr − S = 2Si = 2log (d). (8)

with the von-Neumann entropy of particle i being given by Si = −Trρ̂i ln ρ̂i and with
Si−r denoting the von-Neumann entropy of the remaining part. The entropy S of the
whole system equals zero as it is in a pure state.

As exemplified in the subsequent sections totally antisymmetric quantum states can be used
for many tasks which are of interest for quantum communication.

3 A quantum mechanical key sharing protocol

The secret distribution of a classical key is one of the main aims of quantum cryptography.
Known secure protocols of bipartite key distribution are either based on non-orthogonal
two dimensional quantum states [2] or on entangled states [3]. These protocols enable two
parties to share a common, secret classical key. Recently, several more general situations
have been discussed. One of them involves the distribution of a classical key between several
parties in such a way that a subset of the parties has access to the key only if they share
the information available. Various multi-partite key sharing protocols of this kind have been
proposed which are either based on the use of GHZ-states [4] or on the use of pairs of singlet
states [5].

Here we discuss an alternative multi-partite quantum key sharing protocol which is based
on anti-symmetric states of qudit systems. (A qudit system is a d dimensional elementary
quantum system.) This protocol enables one to generate, to split and to distribute a classical
d-ary key securely. We demonstrate the basic principles of this protocol for quantum key
sharing in the simplest nontrivial case of three three-dimensional quantum systems. In
this case we base our quantum protocol on the totally antisymmetric state |A3〉 defined
by Eq. (2). For this key sharing protocol two basic properties of totally antisymmetric
states are important. Firstly, all outcomes of simultaneous measurements performed by
the participants in identical bases must be different and secondly, the unitary invariance of
A-states guarantees that this is also true for any commonly chosen basis.

Let us consider three parties (Alice, Bob and Charlie). Each of them is endowed with a
common set U of unitary transformations. The protocol runs as follows:
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• Alice prepares three qutrits in the anti-symmetric state |A3〉. She applies a unitary
transformation (∈ U) on qutrit one, measures this qutrit and keeps her choice of the
unitary transformation and the measurement result secret. This transformation with
the subsequent measurement changes the correlations in the anti-symmetric state.

• Alice sends qutrit two to Bob and qutrit three to Charlie.

• In order to recover the original state and the correlations of the measurements, Bob
(Charlie) also chooses a unitary transformation (∈ U) randomly and applies it onto his
qutrit. Afterwards Bob (Charlie) measures his qutrit. Alice keeps her choice secret.

• Bob (Charlie) transmits his choice of transformation to Alice but keeps the measure-
ment outcome secret. If all three unitary transformations coincide, Alice declares the
outcomes of the measurements to be a valid part of the key. In this case, Bob and
Charlie can deduce Alice’s result if they share the outcomes of their measurements.

• In order to study the security of the key generated by this protocol Alice requests from
Bob and Charlie a subset of the outcomes of their measurements.

4 Security of the quantum key sharing protocol

As a general investigation of security is beyond the scope of this contribution, we restrict
our subsequent discussion to a cut-and-resend attack which does not involve coherent mea-
surements. In such an attack an external or internal eavesdropper could try to obtain
information about the key by attaching an ancilla state to the three qutrits. Subsequently,
measurement of the ancilla could reveal information about the outcomes of measurements
performed on the qutrits.

The most general state of a system composed of qutrits and an ancilla is given by

|E〉 ≡
2

∑

i1,i2,i3=0

|i1〉|i2〉|i3〉 ⊗ |Ei1,i2,i3〉. (9)

Thereby, the ancilla system is described by the states |Ei1,i2,i3〉. These states need not be
mutually orthogonal but they obey a normalization condition, namely 〈E|E〉 = 1. If the
eavesdropper wants to remain undetected he must design the state |E〉 in such a way that
the probabilities P (i1, i2, i3) remain unchanged. This imposes a set of constraints onto the
states |Ei1,i2,i3〉. If we choose U = {1, F} with F denoting the discrete Fourier transform
these constraints are given by the equations

|E012〉+ |E021〉+ |E120〉+ |E102〉+ |E201〉+ |E210〉 = 0,

|x|2(|E012〉+ |E021〉) + x∗(|E102〉+ |E120〉) + x(|E210〉+ |E201〉) = 0,

x∗(|E012〉+ |E210〉) + |x|2(|E102〉+ |E201〉) + x(|E120〉+ |E021〉) = 0,

x(|E012〉+ |E102〉) + x∗(|E201〉+ |E021〉) + |x|2(|E210〉+ |E120〉) = 0,

|x|2(|E012〉+ |E021〉) + x(|E102〉+ |E120〉) + x∗(|E210〉+ |E201〉) = 0,

x(|E012〉+ |E210〉) + |x|2(|E102〉+ |E201〉) + x∗(|E120〉+ |E021〉) = 0,

x∗(|E012〉+ |E102〉) + x(|E201〉+ |E021〉) + |x|2(|E210〉+ |E120〉) = 0
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with x ≡ e−i 2π
3 . The unique solution of this set of equations is given by

|Ei1,i2,i3〉 = εi1,i2,i3 |R〉. (10)

This result implies that, provided the eavesdropper wants to remain undetected, the state
|E〉 has to have the form

|E〉 =





1

3!

2
∑

i1,i2,i3=0

εi1,i2,i3 |i1〉|i2〉|i3〉



 |R〉. (11)

Thus, the state of the ancilla factorizes from the qutrit-system so that the eavesdropper can-
not obtain any information about the key. If the eavesdropper wants to retrieve information
about the key he must perturb the state in such a way that the correlations of the outcomes
of the measurements are changed.

5 A protocol for quantum state sharing

Totally antisymmetric states are also well suited for distributing d-dimensional quantum
states between N = d parties. The task of quantum state sharing to be realized may be
viewed as a generalization of the well-known bipartite entanglement-assisted teleportation
protocol. The aim of the protocol is to send the state |χ〉 from a source to a particular
receiver. However, due to security reasons it should be possible to reconstruct this state
only if all participants cooperate. Thus, reconstruction of the state |χ〉 by the receiver
should be possible only if at least one additional mediator communicates additional classical
information properly. In the simplest case of three parties, i.e. N = d = 3, the protocol
implementing this task is characterized by the following identity

|χ〉1|A3〉234 ≡
2

∑

l,ρ=0

1

3
|Ψl,ρ〉12

2
∑

k=0

1√
3
ei

2π

3
kρF−1

3 |k〉3 U(l, ρ, k)|χ〉4. (12)

This identity involves four particles, namely particle one which carries the quantum state |χ〉
and particles two, three and four which are distributed between the three parties involved
in the protocol. The orthonormal states |Ψl,ρ〉12 are defined by

|ψl,ρ〉12 =
1√
3

2
∑

k=0

ei
2π

3
lk|k〉1|k ⊖ ρ〉2 mod 3. (13)

These orthonormal states generalize the Bell basis to the case of two qutrits. The unitary
transformation U(l, ρ, k) is given by

U(l, ρ, k)|m〉4 ≡ e−i 2π
3
lm

3
∑

q,r=1

ei
2π

3
kqεm−ρ,q,r|r〉4. (14)

F−1 denotes the inverse discrete Fourier transform.
The identity of Eq.(12) suggests the following protocol for quantum state sharing: The

sender obtains particle two of the totally antisymmetric quantum state. Particles three and

5



four are sent to the other two parties. The sender who is now holding particles one and two
performs a maximal quantum test on these two particles by projecting onto the orthonormal
basis of generalized Bell states (13). As a consequence he obtains two measurement results,
say l and ρ, which specify the Bell state particles one and two have been projected onto.
Now, one of the other parties applies a discrete Fourier transformation onto particle three
and performs a maximal quantum test on this particle. The result of this measurement
yields the label of the quantum state particle three has been projected onto, say k. The
three classical labels, namely (l, ρ, k) are communicated to the receiver. Only after having
received this combined classical information from the other two parties is the receiver able to
apply the proper inverse transformation, namely U †(l, ρ, k), onto his particle which enables
him to recover the original quantum state |χ〉.

6 Comparison of two quantum states I

Quantum state identification and state comparison constitute two other interesting applica-
tions of totally antisymmetric quantum states [7]. Thereby one wants to answer the basic
question whether two given quantum states are identical or different. The simplest version of
this problem can be illustrated in the case of two qubits. We shall comment on two separate
cases, namely on the case of two unknown and on the case of two known pure states.

Let us first assume that we are given two completely unknown pure quantum states and
that we want to decide with maximum probability whether these states are identical or
different. In the case of two unknown states, say |ψ〉 and |φ〉, we cannot give an affirmative
answer to the question whether these two states are the same. We can only determine
whether theses states are different or whether the answer is inconclusive. The fact that a
positive answer to this question cannot be obtained can be demonstrated in several ways.
The most straightforward argument relies on continuity. For any pair of different states the
affirmative answer should yield a zero result even in cases in which these states are only
infinitessimally different. As a consequence the probability for a non-zero result would have
to be discontinuous. This contradicts the fact that quantum mechanical probabilities are
continuous functions of projection operators.

In view of this impossibility the natural question arises how to proceed in order to obtain
at least a negative and an inconclusive answer. The product state of two qubits |ψ〉|φ〉 can
be decomposed uniquely into the symmetric states |0〉|0〉, |1〉|1〉, (|0〉|1〉+ |1〉|0〉) and into the
antisymmetric state (|1〉|0〉−|0〉|1〉). If we find a non-zero projection onto the antisymmetric
state, the two states cannot be identical. If the measurement yields an overlap with one of the
symmetric states the answer is inconclusive. What can we say about the relative frequency
of these two possible outcomes? The overlap between the decomposition components is
given by

Ps − Pa = |〈ψ|φ〉|2 ≥ 0, (15)

where Ps = 1 − Pa and Pa = |(〈1|〈0| − 〈0|〈1|)|ψ〉|φ〉|2/2 is the overlap between the tested
product state |ψ〉|φ〉 and the antisymmetric state. Thus, the measurement will show the
inconclusive result (projection onto the symmetric subspace) more often than a negative
one.

A realization of this state comparison using passive optical elements (detection in the
Bell basis) seems feasible. We have to distinguish in a reliable way the presence of the
antisymmetric state from any element of the symmetric subspace. For this purpose also a
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simple coincidence measurement could be used. The two states can be sent into a multiport,
for example, and at the output the coincidences can be detected. Only if both states are
identical certain coincidences are absent.

Procedures which are applicable to more than two copies require a more detailed study
of the group structure of the corresponding state spaces. If the number of copies equals
the dimension of the one-particle Hilbert spaces, i.e. N = d, then a comparison is simple
as a totally antisymmetric state |AN 〉 exists. Otherwise we have to use projections onto
combinations of the ”most antisymmetric” states available. Let us consider the simple
example of N = 2 and d > 2. The two-particle Hilbert space can be decomposed into two
subspaces, namely a symmetric one, spanned by the vectors |i〉|i〉 and (|i〉|j〉+ |j〉|i〉), and an
antisymmetric one, spanned by the states (|i〉|j〉 − |j〉|i〉) with i, j = 0, ..., d− 1. Successful
projection onto the latter state indicates that the two quantum states are different. Another
simple case arises if N = 3 and d = 2. The eight dimensional three-particle Hilbert space
can be decomposed into two subspaces spanned by the states |1〉|1〉|1〉, |0〉|0〉|0〉, (|1〉|1〉|0〉+
|1〉|0〉|1〉+ |0〉|1〉|1〉), (|1〉|0〉|0〉+ |0〉|0〉|1〉+ |0〉|1〉|0〉) and by the states (2|1〉|1〉|0〉−|1〉|0〉|1〉−
|0〉|1〉|1〉), (2|0〉|0〉|1〉 − |0〉|1〉|0〉 − |1〉|0〉|0〉), (|1〉|0〉|1〉 − |0〉|1〉|1〉), (|0〉|1〉|0〉 − |1〉|0〉|0〉). The
latter four dimensional subspace can be used to decide whether three two-level states are
different.

7 Comparison of two quantum states II

Let us now assume that two qubits are each prepared in one of the known states

|ψ1,2〉 = cos θ|+〉 ± sin θ|−〉. (16)

The problem of comparing these two states can be solved either by the strategy of minimum
probability of error or by the strategy of unambiguous state identification (for a review see
Ref.[6] and references therein). In the first case the minimum error with which both states
can be distinguished is given by

P comp
e =

1

2
cos2(2θ). (17)

In the second case the minimum probability of obtaining an inconclusive answer is given by

P comp
? = cos(2θ)[2− cos(2θ)]. (18)

The question is whether these two strategies are optimal. Indeed, the minimum error strat-
egy is optimal [7]. In the case of unambiguous state identification strategy we can do better.
In this latter case the optimum strategy is the following: First we use the Bell state decom-
position

|ψi〉|ψj〉 = cos2 θ|+〉|+〉+ (−1)i+j sin2 θ|−〉|−〉+ (19)

(−1)i cos θ sin θ[−δij(|+〉|−〉+ |−〉|+〉) +
(1− δij)(|+〉|−〉 − |−〉|+〉)].

If we project successfully onto the antisymmetric state (|+〉|−〉− |−〉|+〉), the two states are
different. If we project onto the symmetric state (|+〉|−〉+ |−〉|+〉), both states have to be
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identical. If the state is found neither in the symmetric nor in the antisymmetric subspace,
it is in one of the two possible states

|Φ±〉 =
cos2 θ|+〉|+〉 ± sin2 θ|−〉|−〉

√

1− 1
2 sin

2 2θ
(20)

which can be discriminated unambiguously. Thus, the overall probability for an inconclusive
result reads

P comp1
? = (1− 1

2
sin2 2θ)|〈Φ+|Φ−〉| = cos 2θ (21)

and
P comp1
? < P comp

? . (22)

These simple considerations illustrate that the unambiguous method of state comparison
is not the optimal one. It can be shown, however, that the two-step method proposed
is the optimal one. The interesting aspect of our analysis is that the unambiguous state
discrimination may be viewed as a two-step state comparison. First we find out whether the
two states are identical or not and afterwards we determine the label.

8 Conclusions

We have demonstrated that totally antisymmetric quantum states are useful for various
tasks in quantum information processing. Their special features are particularly useful
for implementing multi-partite key-sharing and quantum state sharing protocols and for
comparing quantum states. All the applications discussed here rely on the high symmetry
and the peculiar correlation properties of these quantum states. It is expected that the future
development of multi-partite protocols for quantum information processing will stimulate
many more interesting applications of totally antisymmetric quantum states.
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