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1. Introduction

The phenomenon of “Quantum Jumps” is an aspect of nature which made Max Planck coin
the term Quantum Mechanics about a century ago. It has since exercised a rather undesirable
effect; limiting the controllable use of Quantum Systems in many areas of science, engi-
neering, communications, and computing. In a recent paper [1] a surprising connection be-
tween the physical jump operator of certain quantum systems and the derivation operator of
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incidence structures was discovered. Quantum systems to which these results can be applied
encompass the new and promising field of quantum computation. In this paper the universal
concept of a quantum computer will be used as a mathematical model for describing the
relations between physical processes and certain methods of combinatorial mathematics.

These close connections have only been discovered during the last few years, although
the foundations for the field of quantum computation were laid by Richard Feynman, Paul
Benioff, and Yuri Manin already in the early 80s by studying the relationship between the
physical and computational processes. Starting from the observation that quantum mechan-
ical processes are hard to simulate on classical computers, they concluded that quantum
mechanics might help to speed-up some computations. After preliminary results which
were mainly of a theoretical nature, Peter Shor presented an algorithm of practical interest
for a computer based on the principles of quantum mechanics [30]. His quantum algorithm
for factoring integers is exponentially faster than any classical algorithm known so far.

However quantum computation would still remain in the theoretical domain if there had
not been proposals for the physical realisation of quantum computers, see e.g., [12,13,18,
28]. Nevertheless, another obstacle appeared along the way to the realization of quantum
computers.

The quantum computer is modeled as a closed system that is isolated from its environment.
But in contrast to classical systems, quantum mechanical systems are much more sensitive
to disturbances from the environment, e.g., by electro-magnetic fields and radiation. Initially
it was believed that there was no way to circumvent this problem by using error correction
since arbitrary quantum states cannot be replicated [35]. Again it was Shor who showed
that even in the quantum setting error correction is possible [31].

His work initiated a lot of research establishing a theory of quantum error correction.
Independently, Steane [33,34] and Calderbank and Shor [10] came up with methods to con-
struct quantum error-correcting codes from classical linear binary codes. Then, Gottesman
[19] and Calderbank [9] presented different approaches to generalise the construction of
quantum error-correcting codes, but yielding the very same codes. The general conditions
for quantum error-correcting codes have been studied by Ekert and Macchiavello [16], and
later were extended by Knill and Laflamme [25].

This paper is organised as follows. The ideas of quantum information processing including
quantum error correction are summarised in Section 2. In Section 3 we introduce the notion
of jump codes, followed by a discussion of the bounds on these codes. In Section 5 we explore
the connection between t-SEEDs and jump codes. We then look at the constructions of
t-SEEDs which arise from finite geometries in Section 6 and from isodual codes in Section 7.
Finally, we give some further constructions of jump codes in Section 8, closing with some
open questions in the conclusion.

2. Basics of Quantum Information Processing

2.1. Quantum Information & Quantum Computation

From an abstract point of view, quantum information processing is based on the mathemat-
ical framework of quantum mechanics. Ideally, the state of a quantum mechanical system
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is represented by a unit length vector in a complex Hilbert space H. In the context of quan-
tum information processing, the Hilbert space H usually has finite dimension. Following
[15], the elements of H are denoted by the so-called ket vectors |ψ〉, while the elements
of the dual space are denoted by bra vectors 〈ψ |. The smallest non-trivial example occurs
when H is a two-dimensional space, i.e., H ∼= C

2. Similar to classical bits, the states of an
orthonormal basis of C

2 are denoted by |0〉 and |1〉. An arbitrary state of H ∼= C
2, known

as quantum bit or qubit is given by

|ψ〉 = α |0〉+β |1〉 , where |α|2 +|β|2 = 1, α, β ∈ C. (1)

The joint state of a quantum system composed of n physically distinguishable subsys-
tems is modeled by the tensor product of the Hilbert spaces of the subsystems, i.e., H =
H1 ⊗· · ·⊗Hn . For an n qubit quantum system, the elements of the canonical basis are of
the form

|b1 · · · bn〉 := |b1〉 |b2〉 · · · |bn〉 := |b1〉⊗ |b2〉⊗ · · ·⊗ |bn〉

where bi ∈ {0, 1}. Hence, an arbitrary state of an n qubit quantum system is given by

|ψ〉 =
∑

x∈{0,1}n

αx |x〉 , where
∑

x∈{0,1}n

|αx |2 = 1, αx ∈ C. (2)

If more than one coefficient αx is non-zero, such a state is called a superposition of the
states with non-zero coefficients. Two quantum states that differ only by a factor of mod-
ulus 1 cannot be distinguished. Hence, the state of a quantum mechanical system can be
identified with the (complex) ray c |ψ〉 where c ∈ C

∗ = C\ {0} or any representative of that
ray.

Quantum information is processed by means of unitary transformations, while the final
read-out corresponds to a measurement. It has been shown that in order to implement an
arbitrary unitary transformation it is sufficient to operate on a fixed number of subsystems in
each step of the computation [2]. Similarly, it is sufficient to measure each of the subsystems
individually with respect to fixed bases. Mathematically, that measurement corresponds to
a probabilistic projection onto either the space spanned by |0〉 or by |1〉. If the state before
the measurement is given by (1), then the state after the measurement is

|0〉 with probability |α|2 or |1〉 with probability |β|2 (3)

2.2. Quantum Error Correction

2.2.1. Error-Correcting Codes

A basic principle of quantum information processing is the possibility to perform compu-
tations in superposition and to use constructive or destructive interference to amplify or
to suppress different computational paths. In real quantum mechanical systems, however,
superpositions and coherence—which is necessary for interference—may be disturbed due
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to interaction with the environment. Therefore, some means of error-correction are re-
quired. As unknown quantum information cannot be copied [35], the classical approach
using redundancy by replicating the quantum information does not apply. Instead, quantum
information has to be encoded in a suitable chosen subspace C of a larger Hilbert space
H. Of course, the way the subspace C is chosen strongly depends on the error model. An
example is the so-called depolarising channel which transmits a quantum state undisturbed
with probability 1− p and outputs a random quantum state (uniformly distributed) with
probability p, reflecting a uniform symmetric channel. Although quantum information is
continuous, it is sufficient to be able to correct a discrete set of errors, e.g., the error basis
[24]. The complete characterization of quantum error-correcting codes in terms of error
operators is given by the following theorem of Knill and Laflamme [25]:

THEOREM 1. A subspace C ≤ H with orthonormal basis {|ci 〉 : i = 1, . . . , K } is a quantum
error-correcting code for the set of error operators E = {Ai : i = 1, . . . , L} if and only if
the following holds:

(i) ∀i 
= j∀k, �: 〈ci |A†
k A�|c j 〉 = 0

(ii) ∀i, j∀k, �: 〈ci | A†
k A� |ci 〉 = 〈c j |A†

k A�|c j 〉.
(4)

In the case of qubits, an error basis is given by the identity and the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
.

The algebraic structure of the Pauli matrices directly links quantum error-correcting codes
and self-orthogonal codes over F4 [4,8]. There are also relations to orthogonal geometry [7].

2.2.2. Quantum Jumps

As for classical codes, further side-information, e.g., about the position of an error, might
aid in the process of error-correction [21]. In this paper we consider the error model where
errors are due to quantum jumps, i.e., the (excited) state |1〉 may spontaneously decay
into the (ground) state |0〉 [27]. Furthermore, we assume that the decay rate is equal for
all subsystems, i.e., independent of the position. Then the corresponding error operator is
given by

a := |0〉 〈1| =
(

0 1
0 0

)
.

If the operator acts only on the i th subsystem, the following notation will be used:

Ji := ai := id⊗· · ·⊗ id⊗|0〉 〈1|⊗ id⊗· · ·⊗ id. (5)

Hence, with some probability a quantum state |ψ〉 = α |0〉+β |1〉 is changed into the
state |0〉, erasing all quantum information. Of course, if the initial state is |ψ〉 = |0〉, i.e.,
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β = 0, then a jump cannot occur. But note that, in contrast to the measurement process (3),
the probability of a jump does not depend on α and β in general.

Physically, the decay process is accompanied by the emission of some quanta, e.g., pho-
tons. By continuously monitoring the system one can obtain information about which qubit
encountered a quantum jump [1]. Not surprisingly in the context of quantum mechanics,
continuously monitoring the quantum system has a side effect on the quantum system itself.
Even when no quantum jump occurs, the state of the system is changed due to monitoring.
Ignoring normalisation, the dynamics of the system starting in the state |ψ(t0)〉 is given
by [1]

|ψ(t)〉 = exp

(
−κ/2 · (t − t0)

n∑
i=1

a†
i ai

)
|ψ(t0)〉 (6)

= exp

(
−κ/2 · (t − t0)

n∑
i=1

|1〉i 〈1|i
)

|ψ(t0)〉 . (7)

3. Jump Codes

After these preliminaries are ready to introduce the notion of a t-error protecting jump
code. We stress again that in the above model we assume the existence of an observer
monitoring the decay channel with a 100% effective measurement. Therefore the set of
locations E = {x1, . . . , xe} of the qubits, at which the jump error occurred is known due to
the observation of spontaneous emissions; see [1].

From equation (7) it follows that between quantum jumps, the state is modified by the
time dependent operator (setting t0 = 0)

A0(t) := exp

(
−κ/2 · t

n∑
i=1

|1〉i 〈1|i
)

.

The error operator A0(t) acts on a state |ci 〉 of an n qubit system of the form (2) as

A0(t) |ci 〉 =
∑

x∈{0,1}n

e−κ/2·t wgt xαx |x〉

where wgt x denotes the Hamming weight of the binary word x . From condition (4) we
obtain

〈ci | A0(t)
†A0(t) |ci 〉 =

∑
x∈{0,1}n

|αx |2e−κ·t wgt x (8)

=
n∑

w=0

e−κ·tw ∑
wgt x=w

|αx |2.
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As (8) must be independent of the state |ci 〉, the length
∑

wgt x=w |αx |2 of the projection of
|ci 〉 onto the space spanned by the states |x〉 with constant Hamming weight w must be
constant. Furthermore, if the code C is at least two-dimensional, this is possible if and only
if all the states |ci 〉 are superpositions of basis states with constant Hamming weight.

Introducing the notation∣∣∣∣
(

V

w

)〉 〈(
V

w

)∣∣∣∣ :=
∑

x ∈ {0, 1}n

wgt x = w

|x〉〈x | (9)

for V = {1, . . . , n}, we obtain the condition

∀i :

〈
ci

∣∣∣∣
(

V

w

)〉〈(
V

w

)∣∣∣∣ci

〉
= 〈ci |ci 〉 = 1.

Note that the diagonal of the operator (9) can be interpreted as the length 2n incidence vector
of all (

n
w ) w-subsets of V when each basis state |x〉 is interpreted as the incidence vector of

a particular subset X ⊂ V . Similarly, we use the notation

|2V /2E 〉〈2V /2E | :=
∑

E⊆X⊆V

|x〉〈x | (10)

for the length 2n incidence vector of the sublattice 2V /2E of all subsets containing E .
In order to correct 0 ≤ s ≤ t errors caused by jumps at known positions E = {x1, . . . , xs},

the basis of the code C must fulfill conditions (4) for the error operators Ak of the form

A0(ts) ·axs · A0(ts−1) · . . . ·ax2 · A0(t1) ·ax1 · A0(t0).

Recall that equation (8) implies that all states of the code are superpositions of basis
states with constant Hamming weight. Furthermore, a single quantum jump decrements the
Hamming weight of all basis states by one. Hence it is sufficient to consider only the error
operator A0(t) and multiple-jump operators of the form

JE := axs · . . . ·ax2 ·ax1 .

As the positions of the errors are assumed to be known, it is not necessary to consider
combinations of error operators JE and JE ′ with E 
= E ′. Hence, condition (4) simplifies to

(i) ∀i 
= j : 〈ci | J †
E JE |c j 〉 = 0

(ii) ∀i, j : 〈ci | J †
E JE |ci 〉 = 〈c j |J †

E JE |c j 〉
(11)

for all E ⊂ V , |E | ≤ t . Using the notation introduced in (10), we finally obtain

(i) ∀i 
= j : 〈ci | 2V /2E 〉〈2V /2E |c j 〉 = 0,

(ii) ∀i, j : 〈ci | 2V /2E 〉〈2V /2E |ci 〉 = 〈c j |2V /2E 〉〈2V /2E |c j 〉.
(12)

Note that it is not sufficient that orthogonal states remain orthogonal after quantum jumps
(condition (i) in (12)). Additionally, upon projection by a jump operator the states have to be
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renormalised with the very same scalar (condition (ii) in (12)). This surprising observation
provides an example where the linearity of quantum mechanics requires the consideration
of a projective argument. Namely that the conditional reconstruction operator must be a
central linear transformation of the code space.

To prove this assertion let |ci 〉, for i = 1, . . . , K , be an ONB of an K -dimensional sub-
space C to be protected against jumps errors JE of weight at most t . Then for any ONB |φ j 〉
of states

|φ j 〉 =
K∑

i=1

αi j |ci 〉

to be protected, we must have that |φ′
j 〉 = JE |φ j 〉 form an orthogonal basis of JEC. Thus for

the matrix C = ∑K
k=1 |ck〉 〈k| (corresponding to the encoding (13)) and any unitary matrix

A = ∑
αi j |i〉 〈 j | we must have that

A†C† IE C A

is diagonal, where IE is the matrix IE := |2V /2E 〉〈2V /2E | (cf. (10)). By Schur’s lemma,
this is only possible iff

C† IE C = λ(E)IK×K

for some non-negative real λ(E).
We can now define a quantum error-correcting code which protects against at least t

detected quantum jumps:

Definition 2. A t-detected-jump-error correcting quantum code (short: jump code) C =
(n, K , t)w encoding K orthogonal basis states |i〉 (i = 0, . . . , K −1) using n qubits corre-
sponds to a mapping

|i〉 �−→ |ci 〉 ∈ (C2)⊗n ∼= C
2n

(13)

where the |ci 〉 fulfill the properties

(i) 〈ci | ( V
w )〉〈( V

w ) |ci 〉 = 〈ci |ci 〉 = 1

(ii) For all s = 0, . . . , t and for all T ∈ ( V
s ) there exists a constant λ(T ) such that

〈ci | 2V /2T 〉〈2V /2T |c j 〉 = λ(T )δi j .

The first condition assures that all states are superpositions of basis states |x〉 with Hamming
weight wgt x = w . The second condition combines the requirements of (12).

The above conditions are summarised as

THEOREM 3. Given a jump code C = (n, K , t)w , then any s-jump error for 0 ≤ s ≤ t in the
n-qubit monitored decay channel can be corrected.
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4. Bounds

4.1. General Bounds

Before we discuss bounds on the parameters of jump codes, we state some useful properties.
First, we consider the binary complement of a jump code.

LEMMA 4. If C is a jump code on n qubits correcting t jump errors, then σ⊗n
x C can also

correct at least t jump errors. In particular, if a jump code C = (n, K , t)w exists, then there
is also a jump code C = (n, K , t)n−w .

Proof. For a fixed code, the set of correctable erasures (resp. detectable errors) is a linear
vector space of operators [20]. A jump code can detect both the local qubit error operators
identity I2 and a†a = |1〉 〈1|. The linear vector space generated by these two operators is
invariant under conjugation by σx . Furthermore, σ⊗n

x maps the symmetric space of Hamming
weight w onto the symmetric space of Hamming weight n −w .

Next we consider shortening and lengthening operations.

LEMMA 5. If a jump code C = (n, K , t)w exists for w > t > 1, then exists also a jump code
C ′ = (n −1, K , t −1)w−1.

Proof. The code C ′ is obtained by applying a jump operator at a position of C which is not
constantly zero and then deleting that position.

LEMMA 6. If a jump code C = (n, K , t)w exists, then exist also jump codes C0 = (n +1,

K , t)w and C1 = (n +1, K , t)w+1.

Proof. The codes C0 and C1 are obtained by tensoring a qubit |0〉 resp. |1〉 to C.

Next, we derive a straightforward upper bound on the dimension of a jump code.

LEMMA 7. The dimension K of a jump code C = (n, K , t)w is bounded from above by

K ≤ min

{(
n − t

w − t

)
,

(
n − t

w

)}
. (14)

Proof. The dimension of the space of all words of length n and Hamming weight w is
( n

w ). This implies the bound K ≤ ( n
w ). A jump on j positions reduces the Hamming weight

to w − j . After the jump, the j positions of the jump are zero. There are ( n − j
w − j ) such words.

A jump may not reduce the dimension of the code, hence K ≤ ( n − j
w − j ). The minimal value

is achieved for j = t , as(
n

w

)
= n

w

(
n −1

w −1

)
= n(n −1) · · · (n − t +1)

w(w −1) · · · (w − t +1)

(
n − t

w − t

)
.

Using the same argument for the complemented code C = (n, K , t)n−w (cf. Lemma 4) yields
the upper bound

K ≤
(

n − t

(n −w)− t

)
=

(
n − t

w

)
.
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If we are free to choose the Hamming weight w of the states of a jump code, we get the
following bound.

LEMMA 8. The upper bound of Lemma 7 is maximal for w = �n/2�, i. e.,

K ≤
(

n − t

�n/2�− t

)
. (15)

Proof. Consider the function f (x) := (
n−t

x ). In the interval 0 ≤ x ≤ (n − t)/2, f (x) is
increasing, and decreasing in the interval (n − t)/2 ≤ x ≤ n − t . Furthermore, f (x) has the
symmetry f (n − t − x) = f (x).

For n = 2ν even, f (ν) = f (ν − t) and the bound (14) is maximal for w = ν. For n =
2ν +1 odd, using ν ≥ (n − t)/2 and ν − t ≤ (n − t)/2 we get f (ν) ≥ f (ν +1) =
f (ν − t) ≤ f (ν +1− t). Again, the bound (14) is maximal for w = ν.

An optimal code, i.e., a code achieving this upper bounds, exists for t = 1 and even
length [1]:

COROLLARY 9. For even length n, the (n, 1
2 ( n

n/2 ), 1)n/2 jump code with basis states
1/

√
2(|x〉+ |x〉) (where x denotes the binary complement of the bitstring x) is optimal.

4.2. Specific Bounds

LEMMA 10. There is no jump code C = (5, 4, 1)w .

Proof. For n = 5 and t = 1, lemma 7 yields a maximal upper bound K ≤ 4 for w = 2 or
w = 3. Using Lemma 4, it is sufficient to consider only the case w = 2.

Let {|c1〉, |c2〉, |c3〉, |c4〉} be an ONB of C = (5, 4, 1)2. If all |ci 〉 were of the form |ci 〉 =
|0〉|c′

i 〉, then {|c′
i 〉} would be an ONB of a jump code C ′ = (4, 4, 1)2. But for n = 4 and

t = 1, the upper bound (15) is 3. So the first qubit is not constantly zero. Hence we can
apply a jump to the first qubit. Then J1C is a 4-dimensional subspace of the space with
basis {|01000〉, |00100〉, |00010〉, |00001〉}. From (12) it follows that the states J1 |ci 〉 are
proportional to an ONB. Hence we can assume

J1 |c1〉 = α |01000〉 J1 |c3〉 = α |00010〉
J1 |c2〉 = α |00100〉 J1 |c4〉 = α |00001〉

with α ∈ R and α > 0. Then, the ONB of the code can be written as

|c1〉 = α |11000〉 + β11 |01100〉+β12 |01010〉+β13 |01001〉
+ β14 |00110〉+β15 |00101〉+β16 |00011〉,

|c2〉 = α |10100〉 + β21 |01100〉+β22 |01010〉+β23 |01001〉
+ β24 |00110〉+β25 |00101〉+β26 |00011〉,
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|c3〉 = α |10010〉 + β31 |01100〉+β32 |01010〉+β33 |01001〉
+ β34 |00110〉+β35 |00101〉+β36 |00011〉,

|c4〉 = α |10001〉 + β41 |01100〉+β42 |01010〉+β43 |01001〉
+ β44 |00110〉+β45 |00101〉+β46 |00011〉.

A jump on the second qubit results in

J2 |c1〉 = α |10000〉+β11 |00100〉+β12 |00010〉+β13 |00001〉,
J2 |c2〉 = β21 |00100〉+β22 |00010〉+β23 |00001〉,
J2 |c3〉 = β31 |00100〉+β32 |00010〉+β33 |00001〉,
J2 |c4〉 = β41 |00100〉+β42 |00010〉+β43 |00001〉.

The vector β11 |00100〉+β12 |00010〉+β13 |00001〉 must be orthogonal to the three linear
independent vectors J2 |ci 〉 for i = 2, 3, 4. Hence β11 = β12 = β13 = 0. Considering jumps
at positions 3–5, by symmetry we get

β21 = β24 = β25 = 0,

β32 = β34 = β36 = 0,

β43 = β45 = β46 = 0.

The ONB of the code has now the form

|c1〉 = α |11000〉+β14 |00110〉+β15 |00101〉+β16 |00011〉
|c2〉 = α |10100〉+β22 |01010〉+β23 |01001〉+β26 |00011〉
|c3〉 = α |10010〉+β31 |01100〉+β33 |01001〉+β35 |00101〉
|c4〉 = α |10001〉+β41 |01100〉+β42 |01010〉+β44 |00110〉.

(16)

For jumps at positions 3–5 we get:

J3 |c1〉 = β14 |00010〉+β15 |00001〉 J3 |c2〉 = α |10000〉
J4 |c1〉 = β14 |00100〉+β16 |00001〉 J4 |c3〉 = α |10000〉
J5 |c1〉 = β15 |00100〉+β16 |00010〉 J5 |c4〉 = α |10000〉.

From (11) (ii) it follows that |β14| = |β15| = |β16| = |α|/√2. Again by symmetry, we get
|βk�| = |α|/√2 for all k, � in (16).

On the other hand, orthogonality of |c1〉 and |c2〉 implies

0 = 〈c1|c2〉 = β16β26,

a contradiction to α 
= 0. Therefore, a jump code C = (5, 4, 1)w cannot exist.

Using Lemma 5, we get

COROLLARY 11. There is no jump code C = (6, 4, 2)w .

In Table 1 we provide upper and lower bounds on the number of basis states Kw of a
jump code C = (n, Kw , t)w for n ≤ 14. The lower bounds are mainly based on SEEDs (see
Section 5) found by computer search, see Section 8.1.
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Table 1. Bounds Kw (n, t) on the dimension of a jump code C = (n, Kw , t)w . With the exception
of the marked entries, the upper bounds are given by (15). The lower bounds follow from various
constructions, including computer search. The subscript indicates the Hamming weight w . Entries
with K < 2 are left blank.

n\t 1 2 3 4 5 6

4 32

5 33
a

6 103 23 −3b

7 103 −15 33 −5
8 354 45 −15 34 −5
9 354 −56 45 −21 34 −6

10 1265 65 −56 34 −21 25 −6
11 1265 −210 105 −84 45 −28 35 −7
12 4626 105 −210 66 −84 35 −28 36 −7
13 4626 −792 554

c −330 66 −120 35 −36 36 −8
14 17167 556 −792 66 −330 55 −120 36 −36 27 −8

aby Lemma 10
bby Corollary 11
cfrom an LS(2, 4, 13), see Lemma 23

5. Block Designs and Jump Codes

In this section we will show that t-error protecting jump codes are naturally connected
with t-designs and their variants such as partially balanced designs. To denote the class of
designs required in this case we give

Definition 12. Let v > k > t and l be integers. A t-spontaneous emission error design,
denoted by t-SEED(v, k; l), is a system B ⊂ ( V

k ) of k-subsets of a set V of v elements with
a partition B(1), . . . ,B(l) of B, i.e.,

B = B(1) ∪̇ · · · ∪̇B(l), (17)

satisfying the generalised t-design property:
For all integers s ∈ [1 · · · t] there is associated to each s-subset T of V a multiplicity

λ(T ) such that for all indices i ∈ [1 · · · l] there exits λi (T ) blocks B(i)
1 , . . . , B(i)

λi (T ) in B(i)

satisfying the normalised multiplicity condition

λi (T )

|B(i)| :=
∣∣{B ∈ B(i) : T ⊂ B

}∣∣∣∣B(i)
∣∣ = λ(T ). (18)

Remark 13. This definition encompasses the resolvability of a t-design giving more free-
dom by allowing a local parameter λ(T ) rather than the usual λt .

Remark 14. If l = 1 and λ(T ) = λ for all T ∈ ( V
t ) then a trivial t-SEED(v, k; 1) is given

by any t-design Sλ(t, k; v) [5] thus justifying our terminology.
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The close relation between t-SEEDs and t-error correcting jump codes is described by

THEOREM 15. If a t-SEED(v, k; l) exists, then there is a jump code C = (v, l, t)k with l
states on v qubits.

Proof. For i ∈ [0 · · · l −1] we take the encoding

∣∣B(i)
〉 −→ 1√∣∣B(i)

∣∣
∑

B∈B(i)

|B〉 (19)

with |B〉 := |χB(i), . . . , χB(v)〉 and χB is the characteristic function of B, i.e., χB(i) = 1 if
i ∈ B, else χB(i) = 0. Equivalently, |B〉 = |IB〉 where IB ∈ {0, 1}v is the incidence vector
of the block B.

A t-jump error in positions x1, . . . , xt corresponds to a t-fold derivation at the points
x1, . . . , xt . For the block classes B(i), this is denoted by B(i)

x1,...,xt
:= {B \ {x1, . . . , xt }|

{x1, . . . , xt } ⊂ B ∈ B(i)}. As k > t and B(i)
⋂
B( j) = ∅ for i 
= j , it follows that B(i)

x1,...,xt

⋂
B( j)

x1,...,xt
= ∅. This proves condition (i) in (12), as for a the t-jump operator Jx1,...,xt

Jx1,...,xt

∣∣B(i)
〉 = 1√∣∣B(i)

∣∣
∑

B∈B(i)
x1 ,...,xt

|B〉 . (20)

The squared norm of the state (20) is

∣∣B(i)
x1,...,xt

∣∣∣∣B(i)
∣∣ =

∣∣{B ∈ B(i) : {x1, . . . , xt } ⊂ B
}∣∣∣∣B(i)

∣∣ = λ({x1, . . . , xt }),

so condition (18) implies condition (ii) in (12).

Remark 16. For all prime powers q there exists a 1-SEED(q2, q; q +1).

Proof. As block classes B(i) take the q +1 parallel classes of lines in the affine geometry
AG(2, q) over the field G F(q) of q elements.

In the special case of q = 2 this resembles the example shown in Figure 1 ([1], Fig. 1).

Figure 1. Graphical representation of the affine plane of 4 points and 6 lines. The partition into 3 disjoint parallel
classes of lines forming a 1-SEED(4, 2; 3) defines the states of the jump code C = (4, 3, 1)2.
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THEOREM 17. Any system B ⊂ ( V
k ) of k-subsets of a set V of v elements with a partition

B = B(1) ∪̇ · · · ∪̇B(l) into disjoint block classes B(i), fulfilling the regular t-design property:

for all T ∈ ( V
k ) there exists λ blocks B(i)

j ∈ B(i) ( j = 1, . . . , λ)

so that T ⊂ B(i)
j

holds for all B(i) is a t-SEED(v, k; l).

Proof. In this case each (V,B(i)) is an Sλ(t, k; v) so that for all T ∈ ( V
s ) λ(T ) = λs with

λs = λt (
v − s
t − s )/( k − s

t − s ) so that with the disjointness condition requirements (17) and (18) are
fulfilled.

We now give a suite of examples of t-SEEDs. In what follows we refer to the book [5].

COROLLARY 18. Any t-resolvable s-design S(s, k; v) forms a t-SEED(v, k; ( v − t
s − t )/(

k − t
s − t )).

Proof. Note that the condition of Theorem 17 just describes t-resolvability.

EXAMPLE 19. For m ≥ 2 there exists a 2-resolvable S(3, 4; 4m) and thus a jump code
C = (22m, 22m−1 −1, 2)4.

LEMMA 20. If v ≡ 3 mod 6 there exists a jump code C = (v, v−1
2 , 1)3.

Proof. If v ≡ 3 mod 6 there exists a resolvable Steiner triple system on v points. The
blockset of v(v−1)

6 triples is resolved into v−1
2 parallel classes. Any solution to Kirkman’s

problem provides the corresponding 1-SEED.

Remark 21. As a special combinatorial construction we mention the case of doubly-
resolvable designs, which use 2-resolvable 3-designs S(3, k; v) each of whose factors
S(2, k; v) is itself 1-resolvable. The associated jump codes C = (v, v−2

k−2 , 2)k and C ′ =
(v, (v−1)(v−2)

(k−1)(k−2)
, 1)k are nested in the sense that the basis vectors of C are the “diagonal

sums” of the (v−1)

(k−1)
basis vectors of the 1-jump code generated by each parallel class.

Highly regular SEEDs are given by large sets of t-designs; see the survey in ([13],
Section 3.4):

Definition 22. A large set of t-designs Sλ(t, k; v) designs, denoted LS[N ](t, k, v), is a
partition [(X,B(i))]N

i=1 of the complete design into N disjoint t-designs Sλ(t, k; v) where
λ = ( v − t

k − t )/N . Large sets are also denoted by LSλ(t, k, v) to emphasise the value of λ. The
λ can be omitted if it is one.

LEMMA 23. Any large set LS[N ](t, k, v) yields a t-SEED(v, k; N ). Any large set LSλ

(t, k, v) yields a t-SEED(v, k; ( v − t
k − t )/λ).

From [14, Table 3.44] we quote some results on the existence of largs sets of t-designs with
λ = 1 and derive parameters of t-SEEDs.
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• An LS(1, k, v) exists if and only if k divides v. For v ≡ 0 mod k, a 1-SEED(v, k; ( v −1
k −1 ))

exists.

• An LS(2, 3, v) exists if and only if v ≡ 1 or 3 (mod 6) and v 
= 7. For v ≡ 1 or 3 (mod 6)

and v 
= 7, a 2-SEED(v, 3; v −2) exists.

• An LS(2, 4, 13) exists [11]. The corresponding 2-SEED(13, 4; 55) meets the upper bound
of Lemma 7.

6. Finite Geometries and Jump Codes

We now describe a construction of a family of t-SEEDs for arbitrary t which almost meet
the upper bound asymptotically. Our construction uses methods from classical geometry.

Definition 24. Let p be a prime and let V = G F(p)2 be the points of an affine plane.
Choose B = Kp, where for t ∈ [1 · · · p]

Kt = {K |K = {(x, y) ∈ V, y = f (x)}},
and f (x) is a polynomial of degree less than t , i.e., the set of all curves defined by polyno-
mials of degree less than t .

Such a curve K ∈ B defined by a polynomial f (x) can be described by the vector of
values ( f (i)). Obviously we have the following

LEMMA 25. For all pairwise distinct elements x1, . . . , xt and each tuple of values (y1, . . . ,

yt ) there exists a unique curve K ∈ Kt which interpolates these points, i.e., the polynomial
f defining the curve K is uniquely determined by the conditions yi = f (xi ).

We obtain disjoint classes B(i) (cf. Definition 12) by an action of a group as follows:

LEMMA 26. Let Gt
∼= Z

p−t
p be the group in its representation G ∼= Z

p−t
p ×{0} on K := Kt

through the action

y → y + g for g = (g1, . . . , gp−t , 0, . . . , 0),

i.e., on the first p − t vertical lines of G F(p)2. Then Kh
⋂
Kg = ∅ if h 
= g, h, g ∈ G.

Proof. Without loss of generality let h = 0, g 
= 0. Suppose z = {(i, zi )} ∈ Kh
⋂
Kg . Then

there must exist polynomials u, v ∈ G F(p)[x] of degree less than t such that u(i) = zi and
v(i) = zi − gi for i = 1, . . . , p. As gi = 0 for i = p − t +1, . . . , p, u(i) = v(i) on t places.
Therefore u = v thus g = 0, a contradiction.

THEOREM 27. Let t ∈ [1 · · · (p −1)], p be a prime power. Let Gt and Kg
t for g ∈ Gt be

defined as above. Then (G F(p)2,Kg
t ) forms a partial t-design (a divisible t-design) with the

property that each t-subset T of G F(p)2 is contained in λ(T ) blocks where λ(T ) ∈ {0, 1}.
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Proof. Let t ∈ [1 · · · (p −1)] and set Bg := Kg
t . The partition of Bg of K induced by the

g ∈ Gt forms a t-SEED(v, k; l) with v = p2, k = p and l = p p−t .

From Lemma 7, the upper bound on the dimension l = p p−t of the codes of Theorem 27 is
given by

l ≤
(

p2 − t

p − t

)
.

For p → ∞ we obtain

lim
p→∞

log
(p2−t

p−t

)
log l

= lim
p→∞

log
(p2−t

p−t

)
(p − t) log p

= 1.

Hence, log2 l, the number of logical qubits that can be encoded using the above construction,
asymptotically approaches the upper bound.

The authors would like to thank D. Glynn and D. Jungnickel who after the talk at Oberwol-
fach [3] pointed out connections to Laguerre planes which lead to the above construction.

7. Isodual Codes and Jump Codes

7.1. The Construction

In this section we show how to construct jump codes C = (v, 2, t)k from t-SEEDs using
isodual binary codes. By an isodual code C we mean a binary linear code which is equivalent
to its dual code C⊥; see [29]. Equivalence means that C⊥ is obtained from C by a permutation
σ of coordinates of all the codewords.

Let G = Aut(C) be the automorphism group of C , i.e., the group of permutations of
coordinates of the codewords which preserve the code. Then for linear codes G = Aut(C⊥),
see [26]. Hence G acts on C⊥ and σ normalises G, i.e., σ G = Gσ .

By isoduality C and C⊥ have identical weight distributions. Let Wi be the set of codewords
of weight i in C and W ⊥

i the corresponding set of codewords in C⊥.

LEMMA 28. If C and C⊥ are isodual codes, then the orbits of G on W ⊥
i are the images

under σ of the orbits of G on Wi .

Proof. Let O = {cσ
i1
, . . . , cσ

in
} be an image under σ of an orbit of G on Wi . For any

g ∈ G, Og = {cσg
i1

, . . . , cσg
in

}. As σ normalises G, Og = {chσ
i1

, . . . , chσ
in

} for some h ∈ G.
Since {ci1 , . . . , cin } is a G orbit, it follows that Og = O and that O is a G orbit.

In what follows we shall assume that C 
= C⊥, i.e., C is not self-dual.
For isodual codes we obtain by Lemma 28 the following decomposition of the codewords

of weight i into orbits:

Wi = Oi1 ∪̇ · · · ∪̇Oik (21)

W ⊥
i = Oσ

i1
∪̇ · · · ∪̇Oσ

ik
. (22)
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We can always assume that for some weight i there is a pair Oi j and Oσ
i j

of disjoint orbits
in the decomposition (21) and (22). Otherwise Wi = W ⊥

i for all Hamming weights, since
Oi j and Oσ

i j
are either disjoint or equal because they are both G orbits. But if Wi = W ⊥

i for
all Hamming weights then C = C⊥, contrary to our assumption.

THEOREM 29. Suppose C and C⊥ are isodual codes of length n with non trivial automor-
phism group G = Aut(C). Let G act on C and Oi j and Oσ

i j
be disjoint orbits of vectors in C

and C⊥ with weight i . Suppose that t < i . For each integer s with 1 ≤ s ≤ t decompose the
s-subsets of {1, . . . , n} into orbits �s = {�s1 , . . . , �sm } with respect to the induced action
of G on the s-subsets. Suppose that for each s the orbits in �s are preserved by σ , i.e.,
�σ

si
= �si for all i . Then the vectors in Oi j and Oσ

i j
give a t-SEED(n, i; 2).

Proof. The orbits Oi j and Oσ
ik

are disjoint, so we have only to establish the generalised
t-design property.

Let {p1, . . . , ps} be a s-subset of each of the blocks B1, . . . , Bm of Oi j , where m ≥ 1
is maximal. Then {pσ

1 , . . . , pσ
s } is a subset of each of the blocks Bσ

1 , . . . , Bσ
m of Oσ

i j
. Now

{p1, . . . , ps} ∈ �s j for some index s j and by σ -invariance {pσ
1 , . . . , pσ

s } ∈ �s j . Since �s j is
a G orbit there is an element h ∈ G such that {p1, . . . , ps} = {pσh

1 , . . . , pσh
s }. This implies

that {p1, . . . , ps} is a subset of each of the blocks Bσh
1 , . . . , Bσh

m of Oσ
i j

. Now using σ G =
Gσ , we have {Bσh

1 , . . . , Bσh
m } = {Bgσ

1 , . . . , Bgσ
m } for some g ∈ G. And since the blocks

B1, . . . , Bm belong to a G orbit, so do the m blocks Bg
1 , . . . , Bg

m . Hence {p1, . . . , ps} is a
subset of m blocks of the orbit Oσ

i j
.

The case where {p1, . . . , ps} is not covered by any blocks is handled by a similar argument
by noting that if {p1, . . . , ps} 
⊂ Bi , then {pσ

1 , . . . , pσ
s } 
⊂ Bσ

i . In this way we have shown
that local frequencies are preserved. By Theorem 17, Oi j and Oσ

i j
give a t-SEED(n, i; 2).

We note the following bound on the t-SEED(n, i; 2) obtained from even isodual codes
C = [2n, n, d]; where the notation [2n, n, d] denotes a code of length 2n, dimension n, and
minimum distance d .

LEMMA 30. The t parameter of a t-SEED(n, i; 2) constructed using the wgt = i codewords
of an isodual code C = [2n, n, d] (cf. Theorem 29), satisfies t ≤ i −�d/2�, provided that a
t-subset is covered by at least two blocks of wgt = i codewords of C.

Proof. An orbit Oi j of wgt = i codewords of C is a nonlinear subcode of C with the
property that the Hamming distance between any two codewords is ≥ d; see [26]. By the
hypothesis a t-subset of coordinates is covered by at least two blocks of Oi j . Comparing
the Hamming distance of these two blocks, we get 2(i − t) ≥ d, or t ≤ i −�d/2�.

7.2. Application of Isoduality

We now give some examples of Theorem 29.
Consider the code C = [18, 9; 6] which is unique [32]. A 2-SEED(18, 6, 2) is defined by

the supports of the codewords of weight six in the isodual [18, 9, 6] codes C and C⊥. The
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two block classes are given by

B(0) = {8, 11, 12, 13, 14, 17}G,

B(1) = {9, 12, 13, 14, 17, 18}G .

The automorphism group G of C has order 2448 and has generators

(1, 10, 6)(2, 3, 9)(4, 13, 8)(5, 11, 12)(7, 14, 17)(15, 18, 16),

(1, 10, 4, 11, 15, 13, 17, 7)(2, 14, 9, 5, 8, 18, 3, 6).

The block classes B(0) and B(1) are given by the supports of 102 codewords of weight six
which form a 2-(18, 6; 10) design. In this case G is the 2-transitive group PSL(2, 17).

Another example arises from a [22, 11, 6] code C of [22], with generator matrix A5. The
automorphism group G has order 768 which has two distinct orbits of length 48 on the
weight six code words of C . The generators of G the group of order 768 are

(1, 2)(3, 20)(5, 16)(6, 15)(7, 18)(8, 17)(9, 14)(11, 12)(21, 22),

(1, 5, 2, 11, 4, 20, 22, 18, 21, 12, 19, 3)(6, 9, 15, 17, 14, 8)(7, 13, 16, 10),

(2, 13, 4)(3, 20)(5, 7, 11, 18, 16, 12)(6, 8, 9, 17, 15, 14)(10, 19, 21).

A 2-SEED(22, 6; 2) is defined by the supports of the codewords of weight six in the isodual
[22, 11, 6] codes C and C⊥. The two block classes are given by

B(0) = {1, 2, 5, 6, 7, 8}G,

B(1) = {1, 2, 5, 7, 15, 17}G .

We mention two more examples: a 2-SEED(6, 3; 2) from the [6, 3, 3] isodual code C . In
this code there are 4 codewords of weight 3, whose supports form a 1-(6, 3; 2) design and
a partially balanced t = 2 design with two frequencies λ(T ) = 0, 1. Similarly, the unique
[10, 5, 4] isodual code [23] gives a 2-SEED(10, 4; 2).

Quite a bit is known about the extremal isodual codes of lengths up to 48 see [17,23].
By Lemma 30, we expect that the extremal codes should give SEEDs with the highest
value of t .

8. Further Constructions of Jump Codes

8.1. SEEDs with Prescribed Symmetry Group

Most of the lower bounds in Table 1 have been obtained by computer search on SEEDs
implemented in MAGMA [6]. In order to reduce the search space, one can considers SEEDs
with a given symmetry group. Let G ≤ Sn be a permutation group acting on n letters. Then
the induced action of G on the set of w-subsets of V = {1, . . . , n} partitions ( V

w ) into orbits.
Similar to the construction in Theorem 29, one can use some of the orbits as block classes
B(i), and has then to check whether condition (18) hold.

Condition (18) is particularly easy to check when G is t-transitive.
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LEMMA 31. Let G ≤ Sn be a t-transitive permutation group. For w > t , G partitions the
set of w-subsets of {1, . . . , n} into orbits O(i). A collection O(1), . . . ,O(l) of orbits is a
t-SEED(n, w; l) if for all i , j∣∣{B ∈ O(i) : {1, . . . , t} ⊂ B

}∣∣∣∣O(i)
∣∣ =

∣∣{B ∈ O( j) : {1, . . . , t} ⊂ B
}∣∣∣∣O( j)

∣∣ .

Proof. As G is t-transitive, it is sufficient to check condition (18) only for one represen-
tative of the t-subsets.

8.2. Concatenated Jump Codes

Next we discuss the construction of jump codes by concatenation.

THEOREM 32. Let C = (n, p, t)w be jump code of prime dimension with basis states
|φ0〉 , . . . , |φp−1〉. Furthermore, let Cp = [[N , K , D]]p be a quantum error-correcting code
in the space (Cp)⊗N . Then the concatenation of C as inner and Cp as outer code yields a
jump code C̃ = (Nn, pK , T )Nw on Nn qubits with T ≥ D(t +1)−1.

Proof. The states |ψ〉 of the concatenated code C̃ can be written as

|ψ〉 =
∑
x∈F

N
p

αx |φx1〉|φx2〉 · · · |φxN 〉,

i.e., they are superpositions of product states where each of the N factors |φ〉 is a superpo-
sition of basis states with constant Hamming weight w . For each of the N factors of length
n, we distinguish two cases: if there are no more than t jumps in a single factor then they
can be corrected by the jump code C = (n, p, t)w .

Now assume that there are more than t jumps in a single factor. This type of error
corresponds to an erasure error [21] for the outer code Cp. When there are less than D(t +1)

jump errors, then there are at most D −1 factors with more than t jump errors, i.e., at most
D −1 erasures. Those erasures can be corrected by the outer code Cp. So all errors can be
corrected.

Consider the code of Figure 1 with basis |φ0〉 = |1100〉+ |0011〉, |φ1〉 = |1010〉+ |0101〉,
and |φ2〉 = |1001〉+ |1001〉. Here any 2-jump error corresponds to a projection onto one of
the basis states. (More than two jumps do not occur, as there are only two excited states.) If
we use this code as inner code, the outer code has only to be able to correct errors caused
by measurements in a fixed basis. This is equivalent to being able to correct phase errors.
In general, we obtain

COROLLARY 33. Let C = (n, p, t)w be jump code of prime dimension with basis states
|φ0〉 , . . . , |φp−1〉. Additionally, we require the following stronger version of condition (i)
in (12):

∀E ⊂ V ∀i 
= j : 〈φi | J †
E JE |φ j 〉 = 0. (23)
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Then the concatenation with a quantum code Cp = [[N , K ]]p that can correct up to D −1
phase errors at known positions yields a jump code C̃ = (Nn, pK , T )Nw on Nn qubits with
T ≥ D(t +1)−1.

Proof. Condition (23) asserts that after a quantum jump the images of the basis states |φi 〉
remain orthogonal. Hence any jump error JE that cannot be corrected by C corresponds to
a projection onto the space JEC. That projection can be refined to orthogonal projections
onto some of the states JE |φi 〉. So the error corresponds to a measurement, or equivalently,
a phase error for the outer code Cp.

9. Conclusion

We have investigated a new and surprising connection between combinatorial designs,
codes, and a recently proposed model of error control in quantum systems. We have tried
to include the known combinatorial constructions which lead to t-SEEDs. Realising that
our list is necessarily incomplete we apologise to the authors whose results we may have
omitted. It is an open question what other constructions of t-SEEDs are possible. We have
yet to completely understand the question whether jump codes derived from t-SEEDs are
as powerful as general jump codes.
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