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2.1 Introduction

Current developments in quantum information processing demonstrate in an impressive way
the practical potential of quantum physics [1-3]. In quantum computation, for example, char-
acteristic quantum phenomena, such as interference and entanglement, are exploited for solv-
ing computational tasks more efficiently than it is possible by any known classical means
[4-7]. However, interference and entanglement are fragile phenomena which can be destroyed
easily by uncontrolled interactions with an environment. In order to protect quantum informa-
tion against the resulting decoherence powerful methods of error correction [8-18] have been
developed over the last few years.

The main aim of quantum error correction is to reverse the perturbing influence of an un-
controllable environment. Whether such an inversion is possible or not and how it can be
achieved most efficiently depends on the physical interaction between the quantum system
considered and its environment. In the subsequent sections we discuss main ideas underlying
a recently developed new class of error correcting quantum codes which are capable of cor-
recting a frequently occurring class of errors arising from spontaneous decay processes [19].
In quantum optical systems such spontaneous decay processes may arise from the sponta-
neous emission of photons and in solid state devices, for example, they may originate from
the spontaneous emission of phonons. These jump codes exploit in an optimal way informa-
tion about errors which is obtained from continuous observation of the environment. It will be
demonstrated that on the basis of Heisenberg- and Ising-type Hamiltonians universal quantum
gates can be constructed for these jump codes. They guarantee that any error can be corrected
even if it occurred during the action of one of these gates. Thus, with the help of these quan-
tum gates it is possible to stabilize quantum information processing units against spontaneous
decay processes.

This contribution is organized as follows: In Sec. 2 we summarize basic facts about the
inversion of general quantum operations or generalized measurements. One of the particularly
useful results arising from the systematic analysis of this general problem is an algebraic cri-
terion for the inversion of error operators. In Sec. 3 we discuss the theoretical description of
spontaneous decay processes and of continuous measurement processes by master equations.
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The practical need of inverting events involving zero- and one-photon (or phonon) emission
processes leads directly to one-error correcting jump codes. These quantum codes exploit in
an optimal way information about error times and error positions by monitoring the environ-
ment continuously. In Sec. 4 we address the problem of stabilizing the coherent dynamics
of a quantum system against spontaneous decay processes. An example of such a coherent ’
dynamics is a quantum algorithm performed by a quantum information processing unit. In
particular, we address two main problems which arise in this context. Firstly, we deal with the
question how one can implement any unitary transformation entirely within the code space
of a jump code without leaving it at any time. Secondly, we propose a universal entangle-
ment gate which allows one to entangle two arbitrary basic quantum registers of a quantum
information processing unit. This entanglement gate does not leave the error correcting code
space of a jump code at any time. Together with the local unitary transformations which can
be performed on any of the basic quantum registers it forms a universal set of quantum gates.

2.2 Invertible quantum operations and error correction

A typical quantum information processing unit is composed of a system of N two-level quan-
tum systems, so called qubits, which can be addressed individually. According to the linear
superposition principle of quantum mechanics an arbitrary pure quantum state of such a N-
qubit quantum register is of the form

Y= " D Ghigeinlif,. . ta,d) 1)

i1,82,...,iy=0,1

with |0,) and |1,) denoting two orthogonal basis states of qubit a. The corresponding or-
thonormal basis states of the N-qubit Hilbert space H are denoted |in,in_1, " ,%1) =
lin) ®|in—1) ® - - ® [i1). The complex coefficients a;, ;,...;, fulfill the normalization condi-
tion 37, . iv—01 | @iyig—iy [?= 1. The power of quantum computation relies on the ability
to preserve the quantum coherence of such a register-state. Any coupling to an external envi-
ronment which involves uncontrollable degrees of freedom may destroy linear superpositions
thus causing decoherence [20]. This phenomenon which is undesirable from the point of view
of quantum information processing can be overcome by quantum mechanical error correction
techniques. Shor [8] demonstrated that quantum error correcting codes are possible. By now
many different classes of error correcting quantum codes have been developed [9-18].

A main aim of quantum error correction is to reverse the dynamical influence of an ex-
ternal environment on the states of a quantum register [21-23]. The most general dynamical
influence of this kind can be represented by a unitary joint evolution of a quantum register with
an environment followed by a von Neumann measurement performed on the environment. If
initially the quantum register and the environment are not entangled and if the various possible
measurement results are discarded, this way a trace-preserving or deterministic quantum oper-
ation £ is obtained. Its action on an arbitrary register state with density operator p (and proper
normalization Trp = 1) can be characterized by a set of Kraus-operators [24] { K}, }. These
Kraus- or error operators characterize all possible environmental influences which may occur
and they satisfy the completeness relation ), . K| leK im = 1. The quantum state resulting
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from a deterministic quantum operation is given by

£:p—Ep) = > pp 22)
l

The labels ! characterize all possible measurement results which occur with probabilities
= T, K leKlmp). Observation of a particular measurement result, say {, implies
that immediately afterwards the register is in the normalized state p; = >, KimpK le /D1
Typically a set of Kraus-operators { K., } which defines a quantum operation (or general-
ized measurement) is not unique. Any two sets of Kraus-operators, say {K .} and {Kjn},
give rise to the same quantum operation if and only if they are related by a unitary matrix
Unp,im. 1-€. T(—,\u = Z/\M’lm U, im Kim [25]. An important special case of deterministic
quantum operations are pure ones. They are characterized by the property that for each mea-
surement result [ the associated quantum state p; involves one Kraus-operator { K} only, i.e.

E: p—= &) = D pm 23)
l

with p; = Tr(KlTKlp), oL = KlpKlT/pl and ), KITKZ = 1. Pure quantum operations
correspond to situations where a maximum amount of information about the register state is
extracted from the quantum state of an environment [21-23]. As a result, an initially prepared

pure register state, say |1, remains pure, i.e. [¢) — |[¢') = Kj|)/4/ (| K] Ki|Y).

A quantum operation £ is reversible, if one can construct a deterministic quantum oper-
ation R such that R(£(p)) = p for any density operator p. The recovery operation R is
required to be deterministic because we want the reversal definitely to occur not just with
some probability. In general such an inverse quantum operation cannot be constructed over
the whole state space of a quantum register. The main problem in quantum error correction
is to find an appropriate, sufficiently high dimensional subspace C C H over which such an
inversion operation can be defined.

It has been shown by Knill and Laflamme [26] and by Bennett et al. [27] that a quantum
operation is reversible on a subspace C if and only if there exists a non-negative matrix A
such that

PcK[KyPe = AwPe . (2.4)

for all possible error (or Kraus-) operators K; and K. Thereby Pr denotes the projection
operator onto the desired subspace C which is usually called a quantum error-correcting code
space or code. Its code words which may be identified with classical bit-strings are formed
by an orthonormal basis of states, say {|c;},i = 1,---,L}. The difference r between the
dimension of the original Hilbert space  and the dimension of C, i.e. r = 2NV — L > 0,
-is a measure of the redundancy which has to be introduced in order to guarantee successful
error correction. For the actual reversal of a quantum operation one has to identify first of all
the character of the error (i.e. its syndrome) by an appropriate measurement and subsequently
one has to apply an appropriate unitary recovery operation which reverses this quantum op-
eration [21-23]. The criterion of Eq. (2.4) guarantees the existence of such a measurement
process and its associated unitary recovery operation. These two basic steps, namely determi-
nation of the character of an error and subsequent application of a (nontrivial) unitary recovery
operation, constitute the basic elements of any kind of active quantum error correction.
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A special situation arises, if one is able to identify a subspace C’ which fulfills not only
Eq. (2.4) but also the more stringent condition

KiPer = N Ppr 2.5)

for all possible error operators K; considered. In this case the quantity A;y of Eq. (2.4)
factorizes according to Ay = AjAp. It is apparent that in this case all the required unitary
recovery operations are trivial as they are equal to the identity operation over the code space C’.
Thus, no recovery operation has to be performed at all. Such a passive error correction [16-18]
is not only capable of correcting single but also multiple errors of arbitrary order. However,
so far only very few physical situations are known in which sufficiently high dimensional
decoherence-free subspaces (DFSs) C’ can be constructed. In many cases the relevant DFSs
are one-dimensional so that they are not of any practical interest for purposes of quantum
information processing.

In practical applications one is interested in constructing error correcting methods which
tend to decrease not only the number of recovery operations but which also minimize redun-
dancy. For this purpose it may be advantageous to combine passive and active methods of
quantum error correction. In the subsequent sections we discuss such a family of error cor-
recting quantum codes which is capable of correcting spontaneous decay processes of the
distinguishable qubits of a quantum information processor.

2.3 Quantum error correction by jump codes

2.3.1 Spontaneous decay and quantum trajectories

Any interaction of a quantum system with an environment whose degrees of freedom are not
accessible to observation leads to decoherence. An example of such an interaction is the
coupling of a quantum register to the unoccupied vacuum modes of the electromagnetic field
(compare with Fig. 2.1). As a result an excited qubit can decay spontaneously by emission of
a photon. For the sake of quantum information processing situations are of particular interest
in which no spontaneous decay process affects the distinguishability of the qubits involved.
This is guaranteed whenever the wave lengths \ of the spontaneously emitted photons are
much smaller than typical distances d between adjacent qubits and therefore the qubits decay
* into statistically independent environments. In this case the time evolution of the state of the
quantum register p(t) is given by a quantum master equation of the form [23]

90 4y = L 18, p(0)] + 3 (L POLL] + [Zaplt), L)) 2.6)

Thereby the Hamiltonian H describes the coherent dynamics of the quantum register in the ab-
sence of any coupling to its environment. This coherent dynamics might represent a quantum
algorithm, for example. The Lindblad operators [19] Ly = \/kq|0a) (la| Witha =1,--- | N
characterize the influence of the environment on the quantum register. The spontaneous de-
cay rate of qubit « is denoted by k. It should be mentioned that the Born- and Markov
approximations underlying the derivation of Eq. (2.6) are applicable whenever the interaction
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Figure 2.1: Schematic representation of an array of distinguishable qubits whose spontaneous emission
times ¢; and error positions «; are monitored continuously by photodetectors.

between system and environment is weak and, in addition, the environmental correlation time
is small. Typically these conditions are well fulfilled for quantum optical systems. Sometimes
they are also fulfilled for other quantum systems, such as solid state devices with phononic
decay processes, provided the environmental temperature is sufficiently high [30].

If the initial state of a quantum register is pure, a formal solution of the quantum master
equation (2.6) is given by [31,32]

0 t tn ) t2
p(t)= / dtn/ 71 T dty |ty tn, om; .. -5 t1,04)
2, Zn o Jos 0 ity @7

n=007;:::;x

{t; tn) Ons - -+ 5 b1y 01 |

§

with the unnormalized pure states

titn, On; ... t1,0n) = e KHarG=t)p [ e~kHarltz=t)[  o~kHerti |t =),
‘ (2.8)

According to Eq. (2.7) the state of the register at time ¢ is unravelled into a sum of contribu-
tions which are associated with all possible numbers n of spontaneously emitted photons. For
a given number n of emitted photons the quantum state is unravelled into a sum of all contribu-
tions which describe all possible sequences of emission events taking place at emission times
t; <ty < --- < t, and affecting qubits o, - - - , av,. The pure state |¢; ¢y, ;... 31, 1) of
Eq. (2.8) describes the resulting quantum state of the register [31,32]. The quantum jumps
of the qubits from their excited to their ground states due to spontaneous decay processes
are characterized by the Lindblad operators L. The time evolution between two successive
quantum jumps with no photon emission in between is described by the effective Hamiltonian

ih
o A A
Hy = H-> Ea:LaLa. 2.9)
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The norm of the quantum state of Eq. (2.8) yields the probability with which a particular
measurement record characterized by a quantum trajectory [32-34] (t,, an; . . . ;t1, 1) con-
tributes to the density operator p (¢). The formal solution of Eq. (2.7) describes the dynamics
of the quantum register under the influence of the environment in cases in which the envi-
ronment is monitored continuously by photodetectors [31, 32] but the measurement results
are discarded. According to Sec. 2.2 the formal solution of Eq. (2.7) describes a determin-
istic quantum process where each quantum trajectory characterizes a particular measurement
record.

2.3.2 Jump codes

How can we stabilize a quantum system, such as the one depicted in Fig. 2.1, against spon-
taneous decay processes, if we are able to monitor the distinguishable qubits continuously by
photodetectors? According to Eq. (2.7) we have to tackle two major tasks. Firstly, we have
to correct the modifications taking place during successive photon emission events. These
modifications are described by the effective (non-hermitian) Hamiltonian of Eq. (2.9). Sec-
ondly, we have to invert each quantum jump which is caused by the spontaneous emission of a
photon. These quantum jumps are described by the Lindblad operators appearing in Eq. (2.8).

For the sake of simplicity let us concentrate in this section on the case of a quantum
memory without any intrinsic coherent time evolution, i.e. H = 0 in Eq. (2.6). If we want
to correct the errors taking place during successive photon emission events, we must invert
the pure quantum operation which is characterized by the one-parameter family of Kraus-
operators

Ko(t) = e Zalilat/2 (2.10)

Specializing the criterion of Eq. (2.4) to the case of these hermitian error operators an inversion
is possible over a subspace C if and only if

PeKo(2t)Pe = Aoo(t) Pe (2.11)

with Ago(t) > 0. Stated differently, over the code space C the undesired modification appear-
ing in the effective Hamiltonian of Eq. (2.9) has to act as a (non-negative) multiple of the unit
operator. Thus, the code space we are looking for is a DFS of the effective Hamiltonian with
H=0. ;

In the subsequent discussion we focus on the important special case in which the spon-
taneous decay rates of all qubits are equal, i.e. kK, = . The corresponding DFSs can be
found easily because the relevant operator, i.e. >, L, Lo = £ Y, |1a)(al|, just enumerates
the number of excited qubits. Therefore, any set of orthonormal states which all involve the
same number of excited qubits constitutes a passive error correcting code space for the Kraus-
operators Ko(t). The dimension D of a DFS involving N physical qubits k£ of which are
excited, i.e. a DFS — (N, k), is given by D = (IZ) = N!/[k!(N — k)!]. For a given num-
ber of physical qubits IV this dimension is maximal, if half of the qubits are excited, i.e. for
k = [N/2]. ([z] denotes the largest integer smaller or equal to z.) Such a DFS of maximal
dimension involving four physical qubits, for example, is formed by the set of code words
{|1100), |0011}), |1010), |0101),|1001),|0110)}.
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In general, arbitrary linear superpositions of code words of such a DFS cannot be stabi-
lized against quantum jumps arising from spontaneous decay processes. If we also want to
invert each individual quantum jump, we have to find an appropriate subspace C' C C over
which any of the quantum operations appearing in Eq. (2.7) is reversible. For this purpose we
note, that within any DFS — (IV, k) the time evolution between successive quantum jumps is
proportional to the unit operator, i.e. e~ %a LyLat/2|, = ¢=knt/2P,, Therefore, we have to
find appropriate subspaces C’ C C over which the Lindblad operators appearing in Eq. (2.8)
are reversible. The details of the construction of an active error correcting quantum code ca-
pable of correcting one quantum jump at a time, for example, depends very much on whether
the error position is known or not. In the case of an unknown error position one has to fulfill
the criterion of Eq. (2.4) for all possible Lindblad operators L, with o € {1,--- , N}. Plenio
et al. [22] have been able to find such a code which requires at least eight physical qubits
for the encoding of one logical qubit, i.e. for two orthonormal logical states. In contrast, if
the error position « of a quantum jump characterized by Lindblad operator L, is known, the
redundancy of such an active one-error correcting quantum code which is embedded into a
passive code can be lowered significantly.

The simplest example of such an embedded quantum code or jump code which is capable
of correcting one error at a time can be constructed with the help of four physical qubits [19].
The (unnormalized) code words of this partlcular jump code represent a logical qutrit and are
given by

|co) = [0011)+€%|1100) , |e1) = [0101)+€™°|1010) , |c2) = |0110)+€"|1001) (2.12)

with an arbitrary phase . Obviously, the code words of this jump code consist of four-qubit
states in which half of the qubits are excited. The equal number of excited qubits involved
in this code guarantees that the effective time evolution between successive quantum jumps
is corrected passively. A characteristic feature of this quantum code is the complementary
pairing of states with equal probabilities. This latter property guarantees the validity of the
necessary and sufficient conditions of Eq. (2.4) provided the error position is known. This
one-error correcting jump code involves three logical states and four physical qubits two of
which are excited. Therefore, let us call it jump code 1 — JC(4, 2, 3). This construction of
a one-error correcting embedded quantum code can be generahzed easﬂy to any even number
N of physical qubits. Thus, any jump code 1 — JC(N, N/2, () Y !,)) can be constructed by
an analogous complementary paring of N-qubit states half of which are excited. This way
one obtains ( NI\/]; 11) orthogonal code words which form a one-error correcting embedded
quantum code for spontaneous decay processes. It can be shown that this family of one-error
correcting quantum codes is optimal in the sense that their redundancy cannot be reduced
any further [19]. Asymptotically, for large numbers of physical qubits the effectwe number of
logical qubits L, which can be encoded by the jump code 1 — JC((N, N/2, ( N2 1)) is given

by L = logy(y /2_1) = N —logyV/N + O(1). In addition, a far reaching link between these
jump codes and fundamental structures of combinatorial design theory [36] can be established.
Exploiting this link jump codes can be constructed which are even capable of correcting more
than one error at a time [19,37].

Provided the decay rates of all qubits are equal, error position and error time can be de-
. termined perfectly and recovery operations are applied immediately after the observation of
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a quantum jump, spontaneous decay processes can be corrected perfectly with these jump
codes. But in reality, typically none of these conditions is fulfilled precisely. However, nu-
merical simulations demonstrate that quantum states can be stabilized against various types
of imperfections still to a high degree even if some of these conditions are not fulfilled per-
fectly [38].

2.4 Universal quantum gates in code spaces

The previously discussed error correcting jump codes allow one to stabilize a quantum mem-
ory against spontaneous decay processes. However, in order to be useful also for purposes of
quantum information processing and quantum computation two major additional requirements
have to be fulfilled. Firstly, one should be able to manipulate pure quantum states in such a
way that a chosen error correcting code space is not left at any time during the performance of
a quantum algorithm. This can be achieved by using a universal set of quantum gates which
operates entirely within an error correcting code space and which is implemented by a set of
Hamiltonians leaving this code space invariant. Such a Hamiltonian implementation of uni-
versal quantum gates guarantees that any quantum algorithm which is implemented with the
help of these quantum gates does not leave this code space at any time even during the appli-
cation of one of these quantum gates. Secondly, analogous to classical computer architecture,
it is desirable to develop quantum information processors which are based on small quantum
registers and, in addition, to design quantum gates in such a way that in each step at most two
basic quantum registers are entangled. This ensures that the same set of quantum gates can be
used for an arbitrarily large quantum information processing unitHn the subsequent sections
we present an example how a quantum information processing unit meeting these two major
requirements can be constructed on the basis of elementary four-qubit registers each of which
constitutes a local qutrit of the jump code 1 — JC(4, 2, 3

2.4.1 Universal sets of quantum gates for qudit-systems

Universal sets of quantum gates for qubit-systems were considered by D. DiVincenzo [39],
A. Barenco et al. [40] and S. Lloyd [41]. These authors have shown that with a few Hamil-
tonians acting on single qubits -and with one particular two-qubit Hamiltonian it is possible
to generate any unitary transformation for a quantum register consisting of qubits. All possi-
ble one-qubit operations are members of the continuous group SU(2) (suppressing a trivial
U(1) operation) and the two qubit operation entangles any two separable qubits. The lowest
dimensional member of our previously discussed jump codes, namely the 1 — JC(4,2,3)-
code, provides a logical qutrit and therefore the most general unitary qutrit-operations needed
for quantum information processing within this code space are members of the continuous
group SU(3) (again suppressing a trivial U (1) operation). Thus the natural question arises
which set of quantum gates is universal and thus capable of generating an arbitrary unitary
transformation within the state space of a qutrit. |

Jean-Luc and Ranee Brylinski [42] derived a generalization of the results of D. DiVin-
cenzo, A. Barenco et al. and S. Lloyd. In particular, they demonstrated that for d-dimensional
elementary data carriers, so called qudits, every N-qudit gate can be obtained by combinations
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of all one-qudit gates and a certain two-qudit entanglement gate. In particular, these authors
call a collection G of one-qudit and two-qudit gates universal (exactly universal), if every
N—qudit gate with N > 2 can be approximated with arbitrary accuracy (represented exactly)
by a circuit made up of N-qudit gates of this collection G. A (unitary) two-qudit gate V' is
called primitive, if it maps separable pure states again to separable pure states. Thus, if |z)
and |y) are qudit-states, we can find qudit-states |u) and |v) such that V|z)|y) = |u)|v). f V
is not primitive, it is called imprimitive. Suppose we are given a two-qudit gate V. Then the
collection of all one-qudit gates together with V' is universal if and only if V' is imprimitive.
In particular, J.-L.. and R. Brylinski [42] have proved the useful criterion that, if a (unitary)
two-qudit gate V is diagonal in a computational basis, i.e. V|j)|k) = exp(ib;x)|4)|k), V is
primitive if and only if we have

Ok + Opg = 0jq + Opr. (mod27) (2.13)

for all possible values of 7, k, p, q.

In general, the difficulty of finding an appropriate set of Hamiltonians by which one
can generate a universal set of quantum gates operating entirely within an error correcting
code space depends on the physical interactions available. Typical physical two-body interac-
tion Hamiltonians which are expected to be realizable in laboratory are Heisenberg and Ising
Hamiltonians Hy,. and Hg, i.e.

Higs =2 Ca@(t)(a&m)o(z)+0&y)o(y)+ac(f)a(z)) . Hyps = Dag(t)ogz)a(z). (2.14)
B B B B
af af

Thereby, 0i), 0¥, o) denote the three Cartesian components of the Pauli spin operators of
qubit « and the quantities Cg(t) and Dog(t) denote coupling coefficients of qubits o and £.
These latter coefficients are assumed to be tunable arbitrarily. If it is not possible to realize
particular linear combinations or commutators of these Hamiltonians by appropriate tunings
of these coupling coefficients, one may use appropriate products, such as

giltiHi+taHa) (ei%Hl ei%?:Hz)n +0 <%) :
ei(i[tlHl,t2H2]) L (ei%Hlei—tz-ﬁH2e-i-—tl-ﬁH16—i%Hz)n i 0 (_1\/_—_) . (215)
n

According to Eqs.(2.15) one needs infinite products for representing unitary transformations
corresponding to sums or commutators of Hamiltonians exactly. However, it can be shown
that in many cases exact representations can also be obtained which involve finite products
only [43,44].

2.4.2 Universal one-qutrit gates

In this section we address the question how arbitrary unitary transformations can be imple-
mented in the error correcting code spaces of jump codes with the help of Heisenberg-type
and Ising-type Hamiltonians. Thereby the Hamiltonians considered are expected to leave
these code spaces invariant so that during the application of an arbitrary sequence of unitary
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transformations the error correcting code space is not left at any time. This requirement guar-
antees that any error due to a spontaneous decay process occurring during the processing of a
quantum state can be corrected. As an example we consider the implementation of arbitrary
unitary transformations in the lowest dimensional one-error correcting jump code, i.e. the
1 —JC(4,2,3)-code [45].

Two classes of two-particle Hamiltonians of the Heisenberg- and Ising-type acting on
physical qubits will be needed for this construction, namely

1 ‘ 1
Eap = 3 (Pa,g + ag”)aéz) + o&y)aéy) + U‘(j)a',gz)) and Fop = 3 (Pa,ﬁ + a((f)af@z))
(2.16)
with o, f = 1,---, N. Any member of this family of two-particle Hamiltonians acts on

the physical qubits « and (3 only leaving all other qubits unaffected. The terms of Eqs.(2.16)
involving the projection operator P, s represent an energy shift of the two qubits. The residual
interaction terms are of Heisenberg- and Ising-type. ;From these Hamiltonians we can select
the six members F1a, Ea3, E13, Fi2, Fy3, Fi3, for example. Their action on the code words
of the jump code 1 — JC(4, 2, 3) with ¢ = 0 (compare with Eq. (2.12)) can be represented by
the matrices

1.0-0 010 0 01
Eiz=[00 1], Ex=(100], Ez3=(010], 217

010 0 01 1 00

1 00 0 00 000
Fio=1020 0 ), Fig=| 01 0|, Fs=|0 00

0 00 0 00 0 01

Accordingly, the unitary transformations resulting from the Hamiltonians E15, F13 and Fs3
swap two codewords and change the phase of the third code word. The unitary transformations
resulting from the Hamiltonians Fo, '3 and F53 change the phase of exactly one of the three
code words. It is straight forward to demonstrate that the six operators

Ch=FEyp—Fas, Ch=EFE3-Fs3 Cf=Ep}—Fp», _ (2.18)
Crz = i[C, O, 5 =i[05 0%, Cxm=ilCh,Cf]
and the two operators Fjo and Fj3 form a basis for the Lie Algebra of the continuous group
SU(3). Thus by an appropriate linear combination of these eight generators any unitary trans-

formation belonging to the continuous group SU (3) can be represented on the code space of
the jump code 1 — JC(4, 2, 3).

2.4.3 A universal entanglement gate

In computer science it is common practice to use basic registers of a fixed size and to scale
an information processing unit by using several of these basic registers. Consequently, on the
one hand an algorithm consists of the manipulation of single basic registers, and on the other
hand of the interaction between any two of these registers at a time. Such an architecture
ensures that the same set of gates can be used for an arbitrarily scaled device. If one applies
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register 1 register 2 register M-1 register M

entanglement operation V between
register 2 and register M-1

Figure 2.2: Schematic representation of an array of qubits consisting of M basic registers. Each basic
register carries a logical qutrit of the jump code 1 — JC(4,2,3). Any two basic registers, such as
registers 2 and (M — 1), can be entangled by the entanglement gate V.

this idea to a quantum processing unit, the basic registers are formed by an appropriate num-
ber of qubits. In addition, if one wants to correct errors originating from spontaneous decay
processes, the simplest basic register has to consist of four physical qubits which form a jump
code 1 — JC(4,2,3). Thus, an appropriate quantum information processing unit capable of
stabilizing quantum algorithms against spontaneous decay processes would consist of an ar-
ray of such four-qubit clusters (compare with Fig. 2.2). We have already demonstrated in
the previous section that any unitary transformation within such a four-qubit basic quantum
register can be implemented with the help of Heisenberg- and Ising-type Hamiltonians. Here
we present a universal entanglement gate which is capable of entangling two arbitrary four-
qubit basic registers and which is based on Ising-type Hamiltonians. Together with the unitary
transformations discussed in the previous section this entanglement gate forms a universal set
of quantumn gates for a quantum information processing unit which is based on four-qubit reg-
isters. In addition, the presented entanglement gate ensures that all errors due to spontaneous
decay processes can be corrected even if they take place during the application of a quantum
gate.

Let us consider first of all the nine tensor product states which are associated with two basic
four-qubit registers. These states are constituted by the product states of two jump codes
1—JC(4,2,3), namely

[00), = [00110011)+ [11001100) + |00111100) + |11000011),
l01), = ]00110101) + [11001010) + [00111010) + |11000101),
02), = [00110110) + [11001001) + |00111001) + |11000110),
[10), = [01010011)+ [10101100) + |01011100) + |10100011),
[11), = [01010101) + |10101010) + [01011010) + |10100101),
[12), = [01010110) + |10101001) + [01011001) + |10100110),
|20), = [01100011) + |10011100) + [01101100) + |10010011),
|21), = [01100101) + [10011010) + |01101010) + |10010101),
122, = |01100110) + [10011001) + [01101001) + [10010110).

The linear subspace spanned by these states is denoted by Cg. It is apparent that these states are
linear superpositions of code words of the one-error correcting jump code 1 — JC(8,4, 35).
Let us assume that it is possible to implement the Ising-type Hamiltonian

Hent = 1/2(F6 + F36 + Far + F3r) (2.19)
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by an appropriate tuning of the coupling coefficients of Eq. (2.14). This Hamiltonian leaves
the code space of the jump code 1 — JC(8,4,35) invariant so that any spontaneous decay

process can be corrected. Let us denote the linear subspace spanned by the eight orthonormal

states {00)z, [01)z,[02)z,[10)z, [11)z, |[12)£,]20)z, [21)2 } by A and the Staterspanned by
the two orthonormal states {|22+) 7, = [01100110)+|10011001) and |22—) 1, = [01101001)+
[10010110) } by B. With this notation the action of the Hamiltonian can be represented by
Hent = Pa & 2|22+) (22 + | with P4 denoting the projection operator onto subspace A.
Therefore, the Hamiltonian H,,,; acts in the subspaces A and B differently. Applying this
Hamiltonian for the (dimensionless) time 7 yields the unitary transformation

Ut) =e 8" = e " Py @ (727|224 1. (22 + | + |22—)L.(22 - |). (2.20)

Though states [22+), and [22—), are affected differently by this Hamiltonian the unitary
transformation of Eq. (2.20) does not leave the one-error correcting code space 1—JC(8, 4, 35)
at any time. Therefore, any spontaneous emission event can be corrected. In order to im-
plement an entanglement operation within the tensor product space of two basic four-qubit
registers we choose the (dimensionless) interaction time so that 7 = 7. This implies that all
code words in subspace A are multiplied by a factor (—1) and states |22+), and |22—), are
both multiplied by a factor (+1). Applying an additional global factor of (—1) results in the
conditional phase gate V

V =Py —|22)10(22|. 2.21)

This conditional phase gate is a universal entanglement gate because, consistent with the nota-
tion of Eq. (2.13), 6;; = 0 for all (4, j) # (2,2) and 55 = 7. Therefore, 815+ 621 =0 # 7 =
011 + 622 (mod2m) and according to the criterion of Eq. (2.13) V' is a universal entanglement
gate.

2.5 Summary and outlook

We discussed main ideas underlying a recently introduced class of error correcting quantum
codes, the so called jump codes, which are capable of correcting spontaneous decay processes
originating from the coupling of distinguishable qubits to statistically independent environ-
ments. These quantum codes exploit information about error times and error positions in an
optimal way by monitoring the environment continuously. We also addressed the practical
question how these error correcting quantum codes can be used for stabilizing a quantum
algorithm against these types of errors. For this purpose we presented a set of universal quan-
tum gates which guarantees that any error due to a spontaneous decay process can be corrected
even if it occurred during the application of one of these quantum gates. This is possible be-
cause these quantum gates are based on Heisenberg- and Ising-type Hamiltonians which leave
the code space of a jump code invariant.

Though our discussion concentrated on one-error correcting quantum jump codes, the
already mentioned connection with basic concepts of combinatorial design theory may offer
interesting perspectives also for the construction of multiple-error correcting jump codes with
minimal redundancy. Such optimal multiple-error correcting quantum codes are expected to
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be particularly useful for stabilizing the dynamics of quantum information processing units
against environmental influences.
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