
Journal of Physics B: Atomic, Molecular and Optical Physics

Non-analytic vertex renormalization of a Bose gas
at finite temperature
To cite this article: G Metikas and G Alber 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4223

 

View the article online for updates and enhancements.

You may also like
Excited-state quantum phase transitions
Pavel Cejnar, Pavel Stránský, Michal
Macek et al.

-

Analytic properties of the complete formal
normal form for the Bogdanov–Takens
singularity
Ewa Stróyna and Henryk odek

-

Some remarks on ‘superradiant’ phase
transitions in light-matter systems
Jonas Larson and Elinor K Irish

-

This content was downloaded from IP address 130.83.36.132 on 22/02/2023 at 09:17

https://doi.org/10.1088/0953-4075/35/20/309
/article/10.1088/1751-8121/abdfe8
/article/10.1088/1361-6544/abe51d
/article/10.1088/1361-6544/abe51d
/article/10.1088/1361-6544/abe51d
/article/10.1088/1751-8121/aa65dc
/article/10.1088/1751-8121/aa65dc


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 4223–4239 PII: S0953-4075(02)35865-6

Non-analytic vertex renormalization of a Bose gas at
finite temperature

G Metikas1,2 and G Alber1

1 Institut für Angewandte Physik, Technische Universität Darmstadt, D-64289,
Darmstadt, Germany
2 Abteilung für Quantenphysik, Universität Ulm, Albert-Einstein-Allee 11, D-89069,
Ulm, Germany

Received 15 April 2002, in final form 6 August 2002
Published 8 October 2002
Online at stacks.iop.org/JPhysB/35/4223

Abstract
We derive the flow equations for the symmetric phase of a dilute three-
dimensional Bose gas. We point out that the flow equation for the interaction
contains parts which are non-analytic at the origin of the frequency–momentum
space. We examine the way this non-analyticity affects the fixed point of the
system of the flow equations and shifts the value of the critical exponent for the
correlation length in comparison with previous work where the non-analyticity
was neglected. Finally, we emphasize the purely thermal nature of this non-
analytic behaviour comparing our approach to a previous work where non-
analyticity was studied in the context of renormalization at zero temperature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Thermal effective actions are in general non-local in coordinate space or, equivalently, non-
analytic at the origin of the momentum–frequency space [1, 2]. For example, in a theory with
two interacting scalar fields, one integrates out one of them to find the effective action for the
other. At finite temperature, provided the coupling is weak, one usually proceeds by applying
perturbation theory, and then making an expansion in powers of frequency and momentum in
order to obtain a local effective Lagrangian. It is this latter expansion which leads to results
which are not uniquely defined but depend on the path on the frequency–momentum plane
through which the origin is approached. For example, when the perturbation is truncated at the
self-energy level, the self-energy is non-analytic at the origin. The reason is that the expansion
is around a singularity [3].

This effect was noticed for the first time by Abrahams and Tsuneto in the 1960s, in the
context of BCS theory, while they were studying time-dependent Ginzburg–Landau theory near
zero temperature and near the critical temperature [4]. Later it became clear that it is the origin
of Debye screening and of plasma oscillations in QED [5, 6]. These two different physical
phenomena correspond to two different ways of approaching the origin of the momentum–
frequency plane. The effects of the non-analyticity have also been studied in QED3 [7] and
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in QCD [8–13]. The non-analyticity is also present in the graviton self-energy [14, 15] and
in higher-order graviton diagrams [16]. Even in the much simpler case of interacting scalars
the non-analyticity of the self-energy persists when the internal propagators in a loop have the
same mass [17–20]. The only known analytic exception is the pion–nucleon model [21]. An
interesting remark is that, whenever the internal propagators in a loop have different masses,
the self-energy is analytic at the origin [22]. The reason is that the singularity is no longer at
the origin, allowing thus a uniquely defined expansion around the origin.

This paper is based on the simple observation that an essential step of the renormalization
group (RG) method applied to a theory with a self-interacting field is to split the field into
slow and fast components, and integrate out the fast field, obtaining thus an effective action
for the slow field [23, 24]. Therefore, according to the above discussion of thermal effective
actions, when RG techniques are applied in the context of thermal field theory, we anticipate
that effects originating in the non-analyticity will arise. As an example of such effects we
examine whether and how the thermal non-analyticity influences the critical properties of the
system under study.

We choose to examine this aspect of RG in the context of a three-dimensional homogeneous
self-interacting bosonic gas with weak repulsive interactions and discuss its possible physical
significance in this case. However, our analysis and conclusions should hold whenever RG is
used at finite temperature. This choice of system was motivated by the renewed interest in the
Bose–Einstein condensation due to its recent experimental realization. For the interacting gas,
the approach which is most often used is that of Bogoliubov. However, this is just a mean-field
type method and, in principle, one can improve upon it by using more sophisticated techniques.
One possibility near the critical region is the RG [25–28].

In the case of the homogeneous gas, there is an extra, more important reason for looking
for alternatives to the Bogoliubov approach. In the critical region, the Bogoliubov theory
simply does not work because there are fluctuations around the mean field that cannot be
treated perturbatively. This happens because, as the temperature approaches the critical
temperature Tc, the thermal cloud density develops an infrared singularity and thus diverges
as the momentum tends to zero [29, 30].

In section 2, we introduce the basics of the BEC formalism above the critical region.
We then apply Wilsonian renormalization and derive the flow equations for the parameters of
the Lagrangian assuming that the polynomial expansion of the effective action in powers of
fields is truncated at second order (quartic interactions), the derivative expansion of the field is
truncated at leading order and the infrared cutoff which separates the fast from the slow modes
is sharp. We point out the non-analytic structure of the RG correction to the interaction term
(vertex) and follow this non-analyticity as it propagates to the flow equation for the interaction.

In section 3, we calculate the non-trivial fixed point of the system of the flow equations and
find the critical exponent for the correlation length. We note that taking the non-analyticity into
account shifts the value of the critical exponent for the correlation length in comparison to [25]
where the assumptions made about the order of truncation of the polynomial and derivative
expansion as well as the form of the cutoff are the same as in our calculation. A discussion
of the physical significance of our result and the way the assumptions made may influence it
follows.

In section 4, we compare our work with [31] where the issue of non-analyticity in the
context of renormalization is also discussed. We point out that the conclusions of [31] hold
only at T = 0 whereas the non-analytic behaviour which we are investigating in this paper
is purely thermal and vanishes at zero temperature, thus being completely independent of the
non-analyticity discussed in [31].

In section 5, we present our conclusions.
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2. Non-analyticity in the uncondensed phase

When the two-body collisions between bosons are taken to be low momentum or s wave, the
path integral representation of the partition function of the homogeneous interacting Bose gas
is given by

Z(µ, β, V , g) ≡ Tr e−β(Ĥ−µN̂ ) =
∫

δ[φ, φ∗]e−S[φ,φ∗] (1)

where the action

S[φ, φ∗] = 1

h̄

∫ h̄β

0
dτ

∫
V

d3x

[
φ∗(τ,x)

[
h̄

∂

∂τ
− h̄2

2m
∇2 − µ

]
φ(τ,x) +

1

2
g|φ(τ,x)|4

]
(2)

is truncated at the order of quartic interaction.
In the low-momentum approximation the quartic interparticle interaction can be described

by the zero-momentum component of the Fourier transform of the two-body interaction
potential. Thus, within this approximation, a repulsive, short-range potential can be
characterized by a positive interaction strength g. In three spatial dimensions this interaction
strength is related to the positive scattering length a of the interparticle interaction by the
familiar relation g = 4π h̄2a/m. The chemical potential is denoted by µ. The case µ < 0
holds for T > Tc and corresponds to the uncondensed phase whereas µ > 0 describes the
condensate which is formed when T < Tc [32]. In this paper we will deal only with the
uncondensed or symmetric phase. Starting from (2) we can derive the RG equations for g and
µ. This set of coupled differential equations can then be used for the study of universal as well
as non-universal properties of the gas [25–28]. In the following we will set h̄ = 1.

In order to implement the first step of the RG procedure (Kadanoff transformation),we split
the field φ(x) into a long-wavelength component φ<(x) and a short-wavelength component
δφ>(x). The short-wavelength field involves Fourier components which are contained only
in an infinitesimally thin shell in momentum space of thickness �(1 − dl) � |p| � � near
the cutoff �, whereas the long-wavelength field has all its Fourier components in the sphere
whose centre is at the origin of the momentum space and its radius is �(1 − dl). We impose
no cutoff on the frequency and apply the Wilsonian technique of consecutive infinitesimal
shell integration only to the momentum and not to the frequency. For a case where a cutoff is
imposed on both momentum and frequency see [33].

We denote the volume of the shell by δVp and the volume of the sphere by Vp. The
coordinate space volume is denoted by V . For simplicity we will be referring to φ<(x) as the
lower or slow field and to δφ>(x) as the upper or fast field. Whenever more compact notation
is required we will be making use of the following:

x = (τ,x), p = (pn
0 ,p) with pn

0 = 2πn/β,∫
dx =

∫ β

0
dτ

∫
V

d3x,

∫
d p = 1

β

∞∑
n=−∞

∫
d3p

(2π)3
.

We now proceed to the one-loop calculation of the effective theory. We integrate out the upper
field and are left with an effective action for the lower field,

Seff [φ<, φ∗
<] = S[φ<, φ∗

<] + 1
2 Tr ln[1 − Ĝ>�̂]. (3)

For details on the derivation of this result and the approximations involved see [24]. Tr denotes
the trace in both the functional and the internal space of Ĝ>�̂ whereas tr denotes the trace
only in the internal space (see below). The hat denotes that the corresponding quantity is a
Schwinger–Fock operator [34],

Ĝ>( p̂) =
(

B( p̂) 0
0 B∗( p̂)

)
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and

�̂(x̂) = g

2

(
4φ∗

<(x̂)φ<(x̂) 2φ<(x̂)φ<(x̂)

2φ∗
<(x̂)φ∗

<(x̂) 4φ∗
<(x̂)φ<(x̂)

)

with

B( p̂) = B( p̂0, p̂) = 1

i p̂0 + E(p̂)
, E(p̂) = p̂2

2m
− µ. (4)

Note that the expression for �̂ contains the coupling g. This enables us to perform a perturbative
expansion over g in (3) in order to calculate it explicitly. We truncate this expansion to second
order in g:

Tr ln[1 − Ĝ>�̂] ≈ Tr[−Ĝ>�̂ − 1
2 (Ĝ>�̂)2].

This approximation also means that the polynomial expansion of the effective action in powers
of the field is truncated at quartic interactions. This is self-consistent with the truncation at
quartic interactions of the original action (2). The effect of the higher order interactions that
we neglect here will be discussed later, at the end of section 3. The first trace is

Tr[Ĝ>�̂] =
∫

dx
∫

d p tr[G>(p)�(x)] =
∫

dx |φ<(x)|22g
∫

δVp

d3p

(2π)3
[1 + 2N[E(p)]] (5)

where N[E(p)] = [eβ[E(p)]−1]−1 is the Bose–Einstein distribution. We note that the first trace
is quadratic in the modulus of the lower field and can therefore be interpreted as a correction
to the chemical potential

dµ = −g
∫

δVp

d3p

(2π)3
[1 + 2N[E(p)]]. (6)

The second trace is

Tr[Ĝ>�̂Ĝ>�̂] =
∫

d p
∫

dk
∫

dx
∫

dy ei(p−k)(y−x) tr[G>(p)�(x)G>(k)�(y)]

=
∫

d p
∫

dk
∫

dx
∫

dy ei(p−k)(y−x) g2

4
× [16B(p)B(k)φ∗

<(x)φ<(x)φ∗
<(y)φ<(y)

+ 4B(p)B∗(k)φ<(x)φ<(x)φ∗
<(y)φ∗

<(y)

+ 4B∗(p)B(k)φ∗
<(x)φ∗

<(x)φ<(y)φ<(y)

+ 16B∗(p)B∗(k)φ∗
<(x)φ<(x)φ∗

<(y)φ<(y)]. (7)

In order to simplify the above expression we change variables as follows:

(1) in the second and fourth terms in the square brackets, p → −p and k → −k, and
(2) in the second term, x → y and y → x .

The second trace now becomes

Tr[Ĝ>�̂Ĝ>�̂] =
∫

d p
∫

dk
∫

dx
∫

dy
g2

4

× {[ei(p−k)(y−x) + ei(k−p)(y−x)]B(p)B(k)16φ∗
<(x)φ<(x)φ∗

<(y)φ<(y)

+ 2ei(p−k)(y−x) B∗(p)B(k)4φ∗
<(x)φ∗

<(x)φ<(y)φ<(y)}. (8)

Changing variables again, k → q = k − p, yields

Tr[Ĝ>�̂Ĝ>�̂] =
∫

dq
∫

dx
∫

dy
g2

4
{2e−iq(y−x) J1(q)4φ∗

<(x)φ∗
<(x)φ<(y)φ<(y)

+ [e−iq(y−x) + eiq(y−x)]J2(q)16φ∗
<(x)φ<(x)φ∗

<(y)φ<(y)} (9)
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<

p+q

p

J
2

φ∗
<
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<

Figure 1. The two contributions of the RG correction to the interaction g, J1 and J2; p is the
frequency–momentum of the upper field (the momentum p is integrated over the infinitesimal shell
around the cutoff), q is the frequency–momentum of the lower field.

where

J1(q
m
0 , q) =

∫
d pB∗(p)B(p + q) and J2(q

m
0 , q) =

∫
d pB(p)B(p + q). (10)

We note that p is the momentum of the upper field (integrated over the infinitesimal shell
around the cutoff) whereas q is the momentum of the lower field; see figure 1.

It is essential in the RG procedure, and in particular in the Kadanoff transformation, to
recast the effective action obtained after integrating out the upper field in the form of the original
action (2). The first trace is in a form that can be interpreted as a correction to the chemical
potential. This is not the case, however, for the second trace; there are quartic products of
fields but, unlike the four-field coupling term in the original action (2), these are non-local in
coordinate space, thus not allowing the effective action to be recast in the form of the original
action. In other words, though we start from an action containing interactions which are local
in coordinate space, the RG procedure generates more general, non-local interactions.

This is a well known feature of RG, namely to generate extra terms that do not appear in the
original action and have a more general form in comparison to what we started with [23, 35, 36].
In the context of the ε-expansion, provided that these extra terms are irrelevant they can be
discarded for the purpose of calculating universal critical properties. However, our calculation
does not employ the ε-expansion; we are not working in 4 − d dimensions but directly in three
dimensions including thus all orders in the ε-expansion. Consequently the would-be irrelevant
terms can have some influence on the calculated universal properties [28].

In our case we can Taylor-expand φ<(y) around φ<(x). This approximation is usually
called derivative expansion. If we truncate this expansion at leading order, φ<(y) ≈ φ<(x),
we remain within the family of local interactions we started with. The lowest order truncation
of the derivative expansion is equivalent to the local potential approximation (LPA) [37] and
is physically relevant only when the lower field is slowly varying both in space and in time.
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Wilsonian renormalization is compatible with the derivative expansion. The reason is that
in Wilsonian renormalization we are interested in constructing an effective action for the slow
field. This compatibility can also be seen from a more technical point of view; the derivative
expansion of the lower field is equivalent to an expansion of J1 and J2 in powers of q0 and q (this
is easily seen from (9) doing integration by parts). This means that truncating the derivative
expansion at higher than the leading order would give momentum and frequency dependent
corrections to the interaction. Such terms are known to be irrelevant in the ε-expansion context,
e.g.[35, p 128]; we will omit them for the moment but later, at the end of section 3, we will
discuss their significance or equivalently the significance of the higher orders of the derivative
expansion in the type of RG calculation we are performing.

At leading order in the derivative expansion, the second trace becomes

Tr[Ĝ>�̂Ĝ>�̂] =
∫

dx
g2

4
{ lim

q→0
[2eiqx J1(q)]4φ∗

<(x)φ∗
<(x)φ<(x)φ<(x)

+ lim
q→0

[(eiqx + e−iqx )J2(q)]16φ∗
<(x)φ<(x)φ∗

<(x)φ<(x)} (11)

which is a local expression that can be interpreted as a correction to the coupling term of the
original action

dg = −g2{ lim
(qm

0 ,|q|)→(0,0)
[J1(q

m
0 , q)] + 4 lim

(qm
0 ,|q|)→(0,0)

[J2(q
m
0 , q)]}. (12)

It is at this point that the non-analyticity enters our discussion. Because we are at finite
temperature, the integrals over frequencies in J1 and J2, I1 and I2, respectively (see below),
become sums which can be easily calculated when we turn them into integrals on the complex
plane through Poisson summation:

J1(q
m
0 , q) =

∫
δVp

d3p

(2π)3
I1(q

m
0 , q,p) and J2(q

m
0 , q) =

∫
δVp

d3p

(2π)3
I2(q

m
0 , q,p)

(13)

where

I1(q
m
0 , q,p) = 1

β

∞∑
n=−∞

B∗(pn
0,p)B(pn

0 + qm
0 ,p + q) = 1 + N[E(p)] + N[E(p + q)]

E(p + q) + E(p) − iqm
0

, (14)

I2(q
m
0 , q,p) = 1

β

∞∑
n=−∞

B(pn
0 ,p)B(pn

0 + qm
0 ,p + q) = N[E(p)] − N[E(p + q)]

E(p + q) − E(p) + iqm
0

. (15)

We have set exp iβqm
0 = 1 because qm

0 = 2πm/β. In the following, we will suppress the
superscript of qm

0 for simplicity.
The first sum, I1, is non-vanishing at T = 0 and is known as the regular term. The second

sum, I2, is purely thermal and is usually called the Landau term in the context of thermal field
theory [2]. We observe that the successive limits of J1(q0, q) coincide, i.e.,

lim
q0→0

lim
|q|→0

J1(q0, q) =
∫

δVp

d3p

(2π)3

1

2E(p)
[1 + 2N[E(p)]] = lim

|q|→0
lim

q0→0
J1(q0, q) (16)

whereas the successive limits of J2(q0, q) do not:

lim
q0→0

lim
|q|→0

J2(q0, q) = 0 �= lim
|q|→0

lim
q0→0

J2(q0, q) =
∫

δVp

d3p

(2π)3
βeβE(p)N2[E(p)]. (17)

The reason these two limits do not commute is that J2 has a singularity at the origin of
the momentum–frequency space [3]. Of course, in the evaluation of the above limits, we
interchanged the limits with both the integration over the momentum |p| and with the angular
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integration over θ , so our conclusion is not entirely reliable so far. In principle, one should
perform the integrations over |p| and θ first, and then take the limit. Unfortunately, in our case,
the integration over |p| cannot be done analytically. However, we can perform the angular
integration over θ analytically before evaluating the limits, provided that we split the integral
as

J2(q0, q) =
∫

δVp

d3p

(2π)3

N[E(p)]

E(p + q) − E(p) + iq0
−

∫
δVp

d3p

(2π)3

N[E(p + q)]

E(p + q) − E(p) + iq0
(18)

and perform the change of variables p → −p − q in the second term, eliminating thus the
dependence of the Bose–Einstein distribution on the angle θ and making the angular integration
possible. This procedure yields the result

J2(q0, q) =
∫

δVp

d3p

(2π)3

[
1

E(p + q) − E(p) + iq0
+

1

E(p + q) − E(p) − iq0

]
N[E(p)]. (19)

It is crucial to note that this change of variables is not permissible when we interchange the limit
lim|q|→0 limq0→0 with the integrations, because this causes both the terms in (18) to diverge.
These two divergencies cancelled each other before the change of variables p → −p − q [7].
Keeping this remark in mind we now perform the angular integration and find

J2(q0, q) = m

4π2

∫ �

�−d�

d|p| |p|N[E(p)]

|q| ln

[
(E+ − E(p))2 + q2

0

(E− − E(p))2 + q2
0

]
(20)

where E+ = E(|p|+|q|) and E− = E(|p|−|q|). Instead of just taking the two successive limits
in J2 as we did before, which in the momentum–frequency plane corresponds to approaching
the origin in the direction of one or the other axis, we could approach the origin through any
other curve, for example in the direction of any straight line q0 = a|q|. Here, of course,
we should not forget that the frequency is discrete whereas the momentum is continuous.
However, for the purpose of better illuminating the structure of J2 around the origin, we shall
make the approximation that the frequency is continuous so that q0 = a|q| can hold for any
real a. Applying this parametrization to (20) and then taking the limit |q| → 0 yields

lim
|q|→0

J2(a|q|, |q|) = m

4π2

∫ �

�−d�

d|p|N[E(p)]
2|p|2

|p|2 + m2a2
(21)

which reproduces the first limit of (17) for a → ∞. This result was derived from (20) and
therefore is also not valid when the limit a → 0 is interchanged with the integration over |p|.
However, if we do an integration by parts, we find

lim
|q|→0

J2(a|q|, |q|) = m

2π2

[
N[E(p)]

|p|3
|p|2 + m2a2

]�

�−d�

+
1

2π2

∫ �

�−d�

d|p||p|2
[ |p|2
|p|2 + m2a2

βeβE(p)N2[E(p)]

− 2m3a2

[|p|2 + m2a2]2
N[E(p)]

]
. (22)

We note that the surface term vanishes, as it is evaluated at the cutoff. This result not only
reproduces the first limit of (17) for a → ∞ but also agrees with the second limit of (17) for
a → 0. If we perform the angular integration and apply the same parametrization to J1, at the
limit |q| → 0, J1 is independent of a and given by (16). Expressions (16) and (22) are to be
substituted in the correction for the coupling constant (12).

Before we proceed to the second step of the RG formalism, we parametrize the momentum
according to |p(l)| = �e−l . The purpose this change of variables serves is simply to make the
flow equations more elegant.
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So far, the flow equation for the chemical potential is

dµ

dl
= −g

�3e−3l

2π2
[1 + 2N[ε�e−2l − µ]] (23)

and the flow equation for the coupling is

dg

dl
= −g2

{
�3e−3l

2π2

1

2[ε�e−2l − µ]
[1 + 2N[ε�e−2l − µ]]

+ 4
�3e−3l

2π2

[
�2e−2l

�2e−2l + m2a2
β N[ε�e−2l − µ][1 + N[ε�e−2l − µ]]

− 2m3a2

[�2e−2l + m2a2]2
N[ε�e−2l − µ]

]}
(24)

where ε� = �2/2m.
At this point we apply the second step of the RG procedure, namely the trivial rescaling,

whose purpose is to bring the effective action into the form of the original one. There are
two stages: first, we rescale the momentum according to |q| → |q(l)| = |q|el in order to re-
establish the original cutoff �. Then we require that the effective Lagrangian has the same
form as the original Lagrangian. This induces the trivial rescaling of the parameters of the
effective Lagrangian.

V → V (l) = V e−3l,

β → β(l) = βe−2l,

φ → φ(l) = φe3l/2,

µ → µ(l) = (µ + �µ)e2l,

g → g(l) = (g + �g)e−l.

(25)

The trivial rescaling of β implies that the frequency is rescaled as q0 → q0(l)e−2l and therefore

a = q0/|q| → a(l)e−l. (26)

Recasting (23) and (24) in terms of rescaled variables yields the flow equations for the
corresponding running quantities

dµ(l)

dl
= 2µ(l) − g(l)

�3

2π2
[1 + 2Nl ] (27)

and

dg(l)

dl
= −g(l) − g2(l)

�3

2π2

{
1 + 2Nl

2[ε� − µ(l)]

+ 4

[
�2

�2 + m2a2(l)
β(l)Nl [1 + Nl ] − 2m3a2(l)

[�2 + m2a2(l)]2
Nl

]}
(28)

where Nl = [eβ(l)[ε�−µ(l)] − 1]−1 is the Bose–Einstein distribution in terms of the rescaled
variables.

3. Fixed point

It is important to investigate whether the path dependence of the flow equation for the coupling
has any consequences on quantities of physical interest.
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We look at a universal property, the critical exponent for the correlation length. This is
calculated from the coupled system of (27) and (28). In fact, in order to have an autonomous
system, we should also take into account the flow equation for the inverse temperature,

dβ(l)

dl
= −2β(l) (29)

which is just a differential expression of the trivial scaling of β (25). We observe that, although
β appears in the equations for µ and g, these do not couple back to the equation for β. We also
note that the fixed point for β is zero, β∗ = 0. The fact that β∗ = 0 complicates things because
β(l) appears in the flow equations not only explicitly but also through Nl . This means that,
when we evaluate the fixed point for the system of the flow equations, the right-hand side of (27)
and (28) will diverge, because Nl diverges for β∗ = 0. This problem is circumvented when we
define a scaled running chemical potential M(l) and a scaled running coupling constant G̃(l)
such that the set of equations for these new parameters decouples from the equation for β;

M(l) = β�µ(l) and G̃(l) = �3β�g(l)/b(l) (30)

where β� = m/�2, ε> = 1/2 and b(l) = β(l)/β� is the scaled inverse temperature. In terms
of these new, dimensionless parameters

dM(l)

dl
= 2M(l) − 1

2π2
G̃(l)b(l)[1 + 2Nl ],

dG̃(l)

dl
= G̃(l) − 1

2π2
G̃2(l)b(l)

{
1 + 2Nl

2[ε> − M(l)]

+ 4

[
�2

�2 + m2a2(l)
b(l)Nl [1 + Nl ] − 1

β�

2m3a2(l)

[�2 + m2a2(l)]2
Nl

]}
,

db(l)

dl
= −2b(l). (31)

In the neighbourhoodof the fixed point, the rescaled temperature is high and the approximation
Nl ≈ [β(l)[ε� − µ(l)]]−1 = [b(l)[ε> − M(l)]]−1 holds [25]. This yields the equations

dM(l)

dl
= 2M(l) − 1

2π2
G̃(l)b(l)

[
1 + 2

1

b(l)[ε> − M(l)]

]
,

dG̃(l)

dl
= G̃(l) − 1

2π2
G̃2(l)

{
b(l)

2[ε> − M(l)]
+

1

[ε> − M(l)]2
+ 4

�2

�2 + m2a2(l)

b(l)

ε> − M(l)

+ 4
�2

�2 + m2a2(l)

1

[ε> − M(l)]2
− 4

2�2m2a2(l)

[�2 + m2a2(l)]2

1

ε> − M(l)

}
,

db(l)

dl
= −2b(l). (32)

At the fixed point (M∗, G̃∗, b∗ = 0) the left-hand side of (32) is zero by definition. The form
of the right-hand side depends subtly on whether a is zero or not as we will see. Near the fixed
point, the second term is dominant in the square brackets of the flow equation for the chemical
potential in (32),

dM(l)

dl
= 2M(l) − 1

π2
G̃(l)

1

ε> − M(l)
. (33)

For a = 0, we recall (26), which means that a(l) = 0 for any value of l and therefore
a∗ = a(l → ∞) = 0. Consequently, the equation for the coupling reduces to

dG̃(l)

dl
= G̃(l) − 1

2π2
G̃2(l)
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×
{

b(l)

2[ε> − M(l)]
+

1

[ε> − M(l)]2
+ 4

b(l)

ε> − M(l)
+ 4

1

[ε> − M(l)]2

}
. (34)

Recalling the trivial scaling of b (25), we see that the second and fourth terms in the curly
brackets above are dominant near the fixed point,

dG̃(l)

dl
= G̃(l) − 1

2π2
G̃2(l)

5

[ε> − M(l)]2
(35)

and calculate the non-trivial fixed point

(M∗, G̃∗, b∗) =
(

1

12
,

5

4

π2

18
, 0

)
.

We linearize the system of (32) around the fixed point and find the largest eigenvalue
λ+ = 1.878. Therefore the critical exponent for the correlation length is ν = 1/λ+ = 0.532,
which agrees with the one found in [25].

For a �= 0, according to the trivial scaling of a (26), a∗ = ∞ and therefore the first and
the third terms in the curly brackets of (32) vanish near the fixed point, as in the case of a = 0.
From the remaining terms the fifth vanishes and, significantly, the fourth is also vanishing near
the fixed point, leaving as dominant contribution only the second term. Consequently the flow
equation for the coupling reduces to

dG̃(l)

dl
= G̃(l) − 1

2π2
G̃2(l)

1

[ε> − M(l)]2
(36)

and the non-trivial fixed point is

(M∗, G̃∗, b∗) =
(

1

4
,
π2

8
, 0

)
.

Linearizing around the fixed point we find that λ+ = 1.561 and therefore ν = 1/λ+ = 0.640.
This situation is similar to what happens, for example, in the case of thermal QED for

the photon propagator. Because the photon self-energy is non-analytic at the origin, different
ways of approaching the origin lead to different dispersion relations and give rise to different
types of excitation [1, 2]. For short wavelengths, the dispersion relation is q2

0 = q2 + m2
P ,

where m2
P = (e2/2)(T 2/3 + µ2/π2) is the thermal mass for the transverse photons whereas

the longitudinal photons do not propagate. However, for long wavelengths, the transverse
photons have the dispersion q2

0 = ω2
P + 6

5q2 and the longitudinal photons have the dispersion
q2

0 = ω2
P + 3

5q2, where ω2
P = 2

3 m2
P is the plasma frequency at order e2. The phenomenon

which we are describing here is of the same mathematical nature, the difference being that it
is occurring not in the propagator but in the vertex between four bosons. To be more precise it
is the vertex graph corresponding to J2 (see figure 1) that exhibits the same singular behaviour
as the photon self-energy in QED.

It is interesting to note that, although there is an infinite number of rays of the type
q0 = a|q| which pass from the origin of the momentum–frequency plane, we have found only
two different values for ν. The first value appears when the initial a = a(l = 0) = 0 and
therefore, near the critical region, a∗ = a(l → ∞) = 0. The second value appears when
the initial a = a(l = 0) �= 0 or a = a(l = 0) = ∞ and therefore, near the critical region,
a∗ = a(l → ∞) = ∞. We note that in the second case a∗ always takes the same value,
infinity, regardless of what the exact non-zero value of the initial a is. This is the reason that
only two and not infinite different values for ν exist.

The fact that only two different classes of a exist for the purpose of calculating ν is in
itself interesting. Regarding the choice between these two classes, it seems to us that setting
a = ∞ (which is equivalent to a �= 0 for the purpose of calculating ν) is more natural in a
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theory where there is no frequency cutoff and no infinitesimal shells of frequency are being
integrated out. We are in principle interested in effective theories for low momentum but not
for low frequency. This may mean that by sending |q| to zero irrespectively of the value of
qn

0 = 2πnT , we may be capturing some thermal features of the theory which are lost if we set
first q0 = 0 (a = 0), as this choice is equivalent to setting T = 0. A deeper understanding of
the physical significance of the two limits would, of course, be desirable.

Comparing the two critical exponents derived above with the known experimental value
(also given by the ε-expansion) ν = 0.670 [38], it seems that the calculation which employs
a �= 0 gives a better estimate of ν than the calculation with a = 0 of [25]. In fact, the estimate
with a �= 0 appears to be better even than the value ν = 0.613 calculated in [25] with the
inclusion of the marginal three-body interaction term in the action. However, it is crucial to
stress that both the a �= 0 and the a = 0 results for the critical exponent have been obtained
after several approximations. We cannot therefore claim that either way yields results closer
to the experiment. We can only claim that we have pointed out an extra factor, the direction in
which the origin of the (|q|, q0) plane is approached, which can affect the calculated value of
the critical exponent ν. Let us now review the approximations we made and examine how they
influence our results. Our discussion of the approximations will be only qualitative; a detailed
numerical study of these approximations would be necessary before any safe conclusions about
the influence of non-zero a on the estimate for ν are reached.

First of all, our calculation is only up to one-loop order and does not, in general, coincide
with the exact renormalization group (ERG).

A further approximation we employed is the derivative expansion;we truncated it at lowest
order. It can be shown that at lowest order in the derivative expansion, the one-loop calculation
presented here coincides with ERG [28] (when derivative terms are included they differ). This
means that the ambiguity we have pointed out in this paper may also be of interest in the ERG
context.

There is a huge literature on the derivative expansion in the context of ERG. When higher
orders are included (for example the second order where the wavefunction renormalization is
taken into account) the calculated value of ν changes. It is, however, known that the derivative
expansion is well behaved, the value of ν as a function of the truncation order of the derivative
expansion seems to converge, e.g. [39, 40], and the results obtained even at lowest order are
fair, at least for a U(1) theory like ours [37]. A comparative study of the convergence of the
derivative expansion in the cases a = 0 and a �= 0 is necessary before we conclude which way
of approaching the origin of the momentum–frequency plane is preferable.

Another approximation that we made is that the infrared cutoff is sharp. In general the
infrared cutoff can be either smooth or sharp. The choice of a sharp cutoff simplifies the
flow equations, e.g. [41], but enhances the non-local nature of the effective action and slows
down the convergence of the critical exponent as a function of the order of truncation of the
derivative expansion [23, p 153], and [39, 41]. A smooth cutoff leads to more complicated
integro-differential flow equations but the cutoff can be chosen so as to minimize the influence
of higher derivatives although some residual dependence persists [41]. At leading order in the
derivative expansion, the sensitivity of the critical exponent to the form of the cutoff disappears,
e.g. [39, 41]. Therefore, at the level of the limited study we performed, the role of the cutoff
is not worth investigating.

Finally, we made a most severe approximation, the polynomial expansion of the effective
potential in powers of the field. This expansion we truncated at the lowest non-trivial level
which includes only the quadratic and quartic couplings. It is known that, when the cutoff is
sharp, the calculated value for the critical exponent ν as a function of the order of truncation of
the polynomial expansion ceases to converge after a certain order and then oscillates with
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fourfold periodicity around the expected value, e.g. [28, 39]. The severe effect of these
oscillations on the estimate of ν both for a = 0 and for a �= 0 is currently under investigation.
An interesting remark which may be relevant to our case is that these oscillations are to
some extent eliminated and the result for ν seems to converge, if the polynomial expansion
is performed around the minimum of the potential [42]. In the case of [42], the form of the
potential allows for symmetry breaking and the expansion is performed around the moving
minimum of this potential. In our case there is no symmetry breaking and the minimum is
situated at zero. It could therefore be that the oscillations are smaller and the convergence
is better than one would normally expect from the polynomial expansion. An additional
advantage of working in the symmetric phase is that we do not run into problems with persistent
infrared divergencies due to massless Goldstone modes, such as those discussed in [43].

4. Flow equations and non-analyticity at zero and finite temperature

Non-analyticity in the context of RG has been discussed before by Shankar in [31]. In this
work, the author gives a detailed overview of the RG approach to interacting, non-relativistic
fermions in one, two and three dimensions and in certain instances (pages 161, 166, 170, 178)
refers to the non-analyticity (or lack thereof) which appears in the one-loop RG corrections to
the quartic interaction among fermions. This is highly reminiscent of the case we are studying,
the essential difference being that we are dealing with bosons instead of fermions. This would
render the main point of this paper—the study of a non-analyticity in the flow equation for the
interaction—rather trivial and expected by extending [31] to bosons.

This is not the case, however; the non-analyticity we are studying is of a completely
different nature from the one studied in [31]. The RG calculations in [31] are at T = 0
whereas ours are at T �= 0 and the non-analyticity we are referring to is essentially thermal
and vanishes at T = 0. To further clarify this point, let us consider the ‘zero-sound’ (ZS)
graph which is studied in equation (315), page 161 of [31].

4.1. Zero-temperature non-analyticity

4.1.1. Zero-sound integral. In the ZS calculation of [31], the following integral appears:

S1[�, q] =
∫ �

−�

dk

2π

∫ ∞

−∞
dω

2π

1

[iω − k][i(ω + �) − k − q]
(37)

where �, q are the external frequency and momentum and ω, k are the internal frequency and
momentum respectively. The external momentum is constrained by the same cutoff as the
internal momentum, −� � q � �.

We focus on the integral over ω. When the external momentum and frequency are zero,
the integrand has a double pole and therefore S1[0, 0] = 0; see figure 2.

For non-zero external frequency and momentum, the integrand has two single poles. Let
us assume that k > 0. If k + q > 0, both poles are in the lower half-plane and closing the
contour from above yields S1[�, q] = 0. However, if k + q < 0, the two single poles are in
different half-planes and closing the contour either from above or below yields

S1[�, q] =
∫ �

−�

dk

2π

i

� + iq
.

Assuming k < 0 we can argue the same way, so, only when k and k + q have different signs,
the ω-integral is non-zero.
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Figure 2. The integrand of the ω-integration has one double pole and the integral is zero. Any
non-zero external momentum splits the double pole into two single poles. There is always a range
of k for which the two single poles reside in different half-planes and consequently the integral is
non-vanishing.
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Figure 3. The integrand of the ω-integration has one double pole and the integral is zero. The
introduction of non-zero external momentum splits the double pole into two single poles. However,
because the k-integration is over the infinitesimal shell near the cutoff and the external momentum
q takes a value below the infinitesimal shell, the two single poles are always on the same half-plane
and the integral remains zero.

Because of the k-integration, there is always a range of k values for which k and k + q
have different signs; see figure 2. Therefore any non-zero q results in a non-vanishing

S1[�, q] =
∫ �

−�

dk

2π

i

� + iq
[θ(k) − θ(k + q)]

which depends sensitively on how the limit {�, q} → {0, 0} is taken [31],

lim
�→0

lim
q→0

S1[�, q] = 0 �= lim
q→0

lim
�→0

S1[�, q] = −1.

4.1.2. Renormalization integral. In the RG calculation of [31], a one-loop correction to the
interaction is of the form

S2[�, q] =
[∫ −�+d�

−�

+
∫ �

�−d�

]
dk

2π

∫ ∞

−∞
dω

2π

1

[iω − k][i(ω + �) − k − q]
. (38)

As before, for zero external frequency and momentum, S2[0, 0] = 0.
For non-zero external frequency and momentum, we note that S2 differs from S1 only

in the range of integration of the momenta, k ∈ [−�,−� + d�] ∪ [� − d�,�] and
q ∈ [−� + d�,� − d�]. This means that |k| > |q| and consequently k, k + q have always
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the same sign throughout the integration over k; see figure 3. Therefore S2[�, q] = 0, which
has no dependence on how the limits of the external frequency and momentum are taken [31].

The conclusion is that, when performing RG calculations, non-analyticities at the origin
of external frequency and momentum space vanish, even when they are present in the
corresponding ZS calculations.

4.2. Thermal non-analyticity

4.2.1. Zero-sound integral. Now consider what happens at T �= 0. In ZS calculations one
has to perform the integral

ST
1 [�m, q] =

∫ �

−�

dk

2π

1

β

n=∞∑
n=−∞

1

[iωn − k][i(ωn + �m) − k − q]
(39)

where ωn = (2n + 1)π/β, �m = (2m + 1)π/β are the discretized internal and external
frequencies respectively.

When the external frequency and momentum are zero, we find

ST
1 [0, 0] = −

∫ �

−�

dk

2π

β

4
cosh−2

[
kβ

2

]
T →0−→ −1. (40)

For non-zero external frequency and momentum, we obtain

ST
1 [�m, q] =

∫ �

−�

dk

2π

i

�m + iq

1

2

{
tanh

[
kβ

2

]
− tanh

[
(k + q)β

2

]}
(41)

which gives the correct zero-temperature limit ST →0
1 [�m, q] = S1[�, q]. At T �= 0,

lim
�m→0

lim
q→0

ST
1 [�m, q] = 0

T →0−→ 0, (42)

lim
q→0

lim
�m→0

ST
1 [�m, q] = −

∫ �

−�

dk

2π

β

4
cosh−2

[
kβ

2

]
T →0−→ −1 (43)

and therefore the non-analyticity of the zero-temperature ZS calculation persists at finite
temperatures; see figure 4.

4.2.2. Renormalization integral. As at T = 0, the integral appearing in RG calculations
differs from ST

1 only in the range over which the internal and external momentum are integrated.
When the external frequency and momentum are zero, we find

ST
2 [0, 0] = −

[∫ −�+d�

−�

+
∫ �

�−d�

]
dk

2π

β

4
cosh−2

[
kβ

2

]
T →0−→ 0. (44)

For non-zero external frequency and momentum, we obtain

ST
2 [�m, q] =

[∫ −�+d�

−�

+
∫ �

�−d�

]
dk

2π

1

β

∞∑
n=−∞

1

[iωn − k][i(ωn + �m) − k − q]
. (45)

Poisson summation yields (see figure 4)

ST
2 [�m, q] =

[∫ −�+d�

−�

+
∫ �

�−d�

]
dk

2π

i

�m + iq

1

2

{
tanh

[
kβ

2

]
− tanh

[
(k + q)β

2

]}
(46)

which gives the correct zero-temperature limit

ST →0
2 [�m, q] = 0.
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Figure 4. The integrand of the ω-integration has one double pole. The introduction of non-zero
external momentum splits the double pole into two single poles and the integral is non-vanishing
regardless of whether the two single poles are on different half-planes or not.

However, unlike the zero-temperature renormalization integral, the finite-temperature
renormalization integral is non-analytic, because

lim
�m→0

lim
q→0

ST
2 [�m, q] = 0

T →0−→ 0, (47)

lim
q→0

lim
�m→0

ST
2 [�m, q] = −

[∫ −�+d�

−�

+
∫ �

�−d�

]
dk

2π

β

4
cosh−2

[
kβ

2

]
T →0−→ 0. (48)

Therefore, at finite temperature, the non-analyticity of the ZS one-loop graph persists but
there is also an extra, purely thermal non-analyticity appearing in the finite-temperature
renormalization one-loop graph.

The zero-temperature non-analyticities are due to the splitting of a double pole into two
single poles residing in different half-planes. The finite-temperature non-analyticities are due
only to the splitting of a double pole and appear even if the resulting two single poles reside
in the same half-plane. Therefore it is only natural that extra non-analyticities appear at finite
temperature in addition to those existing at zero temperature.

5. Conclusions

We investigated thermal non-analyticities at the origin of the momentum–frequency plane in
the context of Wilsonian momentum-shell renormalization. The system we chose in order
to exemplify our ideas is the symmetric phase of an interacting bosonic gas in three spatial
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dimensions. We pointed out that, because of the non-analytic structure of the thermal effective
action around the origin of the momentum–frequency plane, the estimate for the critical
exponent of the correlation length depends on the direction in which the origin is approached.
Furthermore, we showed that, although there is an infinite number of ways of approaching the
origin, the critical exponent can take only two different values; one for approaching the origin
through the horizontal momentum axis and another for approaching the origin through any ray
with non-zero slope a.

We have pointed out that our results are only qualitative. The estimates of the critical
exponent for a = 0 and for a �= 0 are heavily influenced by the approximations employed in
the course of the calculation and cannot be taken at face value. Further investigation of the
role of the approximations is in progress.

Finally, we have pointed out that when one applies Wilsonian renormalization at finite
temperature, one may encounter non-analytic behaviour which is different in nature from the
non-analyticity (or lack thereof) discussed in [31].
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