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Abstract

A new class of embedded error correcting quantum codes is discussed. These detected-jump correcting
quantum codes are capable of stabilizing distinguishable qubits against spontaneous decay. Due to their
low redundancy and due to the small number of control measurements and recovery operations re-
quired these new error-correcting quantum codes offer interesting perspectives for quantum computa-
tion. In this contribution main ideas underlying these embedded error correcting quantum codes and
their links to fundamental concepts of combinatorial design theory are discussed. In addition, possibili-
ties are explored for implementing universal quantum gates within these code spaces.

PACS numbers: 03.67.Lx, 89.70.+c

1. Introduction

In many problems of quantum optics it is crucial to maintain quantum coherence and entan-
glement and to protect them against environmental influences. In particular, this is impor-
tant in the areas of quantum computation and quantum communication [1––3] where these
quantum phenomena are exploited for fast computation or secure transmission of secret
messages. This protection of quantum coherence and entanglement against external pertur-
bations may be achieved with the help of quantum error correction.
Recently a new class of error correcting quantum codes has been developed [4]. These

detected-jump correcting quantum codes are capable of stabilizing distinguishable qubits
against spontaneous decay processes which are caused by statistically independent reser-
voirs. This new class of quantum codes relies on embedding an active error correcting code
into a decoherence free subspace and simultaneously taking into account classical informa-
tion about which qubit has been affected by the environment. These quantum codes have
two main advantages. Firstly, by the embedding procedure the number of necessary control
measurements and recovery operations is reduced significantly. Secondly, by exploiting the
classical information about the error position the redundancy required can be lowered sig-
nificantly in comparison with other previously proposed embedding schemes. Due to their
low redundancy, their simple structure and the small number of control measurements and
recovery operations required, these new error-correcting codes offer interesting perspectives
for the implementation of quantum algorithms in numerous physical systems, such as arrays
of trapped ions [5] or nuclear spin systems [6]. However, for this purpose one has to be
able to implement arbitrary quantum algorithms in such a way that the code space is not
left at any time during the computation. In this contribution main basic ideas underlying
these new embedded error correcting quantum codes are discussed and possibilities for
implementing arbitrary quantum algorithms within these code spaces are explored. In addi-
tion, links between this new class of embedded quantum codes and fundamental notions of
combinatorial design theory are established which are expected to be particularly useful for
the development of more general embedded quantum codes with low redundancy.
This contribution is organized as follows: In Sec. 2 the theoretical description of sponta-

neous decay processes in the presence of continuous measurements is summarized briefly.
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In Sec. 3 basic ideas of quantum error correction are recapitulated and in Sec. 4 our re-
cently proposed new class of one-error correcting detected-jump quantum codes [4] is intro-
duced. In Sec. 5 we explore the possibility of constructing universal sets of quantum gates
for quantum computation within these code spaces. Connections between these embedded
quantum codes and fundamental notions of combinatorial design theory are finally dis-
cussed in Sec. 6.

2. Spontaneous Decay of Distinguishable Qubits and Continuous Measurements

Let us start by considering a simple model of a quantum computer [5] consisting of N
distinguishable qubits which are coupled to statistically independent reservoirs and whose
mean distance is much larger than the wave lengths of the photons (or phonons) which are
emitted spontaneously into these reservoirs. Within the Born- and Markov approximation
the time evolution of the density operator qðtÞ of these N qubits can be described by the
master equation [7]

_qqðtÞ ¼ � i

�h
½H; qðtÞ� þ 1

2

Pn
a¼1

f½La; qðtÞ Lya� þ ½LaqðtÞ;Lya�g : ð1Þ

Thereby the Lindblad operator La ¼ ffiffiffiffiffi
ja

p j0i h1ja characterizes spontaneous decay of qubit
a from its excited state j1ia to its stable state j0ia with rate ja. The coherent part of the N-
qubit dynamics is described by the Hamiltonian H. In the context of quantum computation
this coherent time evolution results from the application of quantum gates which constitute
a quantum algorithm. Typically, the Born-Markov approximation underlying Eq. (1) is well
fulfilled in quantum optical systems. However, in many cases their application in solid state
devices also requires additional assumptions, such as sufficiently high temperatures of the
reservoirs involved [8].
If the initial state of the N-qubit system is pure, a formal solution of Eq. (1) is given by

[7]

qðtÞ ¼
P1
N¼0

P
a1;...;aN

Ðt
0

dtN
ÐtN
0

dtN�1 . . .
Ðt2
0

dt1 jwðt j fti;aigÞi hwðt j fti;aigÞj ð2Þ

with

jwðt j fti;aigÞi ¼ e�i½ ~HHðt�tN Þ�=�h LaN . . . e
�i½ ~HHðt2�t1Þ�=�h La1 e

�i ~HHt1=�h jwðt ¼ 0Þi : ð3Þ

Each of the unnormalized, pure states of Eq. (2) describes the quantum state of the N-qubit
system conditioned on the observation of N quantum jumps of qubits a1; . . . ;aN which
take place at times t1 � . . . � tN and which originate from the spontaneous emission of
photons (phonons) at these times [9]. The action of these quantum jumps is represented by
the Lindblad operators LaN ; . . . ;La1 in Eq. (3). The norm of the quantum state
jwðtjtNaN ; . . . ; t1a1Þi defines the probability with which the associated quantum trajectory
ðt1a1; . . . ; tNaNÞ contributes to qðtÞ. In this quantum jump representation the time evolution
between two successive quantum jumps (conditioned on the emission of no photons) is
determined by the non-hermitian effective Hamiltonian ~HH ¼ H � ið�h=2Þ

Pn
a¼1 L

y
aLa.

Eqs. (1)––(3) constitute a convenient starting point for the theoretical development of error
correcting schemes which are based on the continuous observation of spontaneously decay-
ing qubits.

G. Alber et al., Quantum Error Correction902
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3. Quantum Error Correction by Embedded Quantum Codes

A necessary prerequisite for quantum computation is the encoding of the possible (classi-
cal) logical input states of a computation, say the binary strings of the form ði1; . . . :; iNÞ, by
orthogonal (i.e. distinguishable) and possibly also normalized quantum states of physical
qubits, say jc1i; . . . ; jcli. The selection of such an orthonormal computational basis is, to a
large extent, arbitrary. In quantum error correction one exploits this freedom of choice for
an ‘appropriate’ encoding which enables one to stabilize the quantum states against external
perturbations. There are two different strategies for quantum error correction which have
been developed so far.
Active quantum error correction [10––13] may be viewed as a generalization of classical

error correcting techniques to the quantum domain. It rests on sequences of appropriately
chosen control measurements which determine the character (syndrome) of an error and on
the subsequent application of appropriate unitary recovery operations inverting this error.
An error which can be characterized by an error operators La is reversible over a code
space by a unitary recovery operation if and only if the basis states jcii of this code space
fulfill the conditions [134]

hcij LyaLb jcji ¼ Labdij ð4Þ

for all possible error operators La and Lb under consideration. These conditions guarantee
that under the action of different errors orthogonal quantum states remain orthogonal and
that all states are affected by given errors in a ‘similar’ way. One of the disadvantages of
active quantum error correction is the typically large number of control measurements
which is needed for the stabilization of a quantum algorithm.
In passive quantum error correction [14––16] this latter disadvantage is overcome by an

encoding in which all code words jcii are affected by the possible errors La in the same
way, i.e. La jcii ¼ la jcii. Thus, one encodes the logical information in a highly degenerate
common eigenspace of all the error operators, i.e. in a decoherence free subspace. However,
typically a practicable passive quantum code can be found only for a few, very special error
operators. Nevertheless, provided passive error correction is possible, it offers the advantage
of stabilizing a quantum algorithm against perturbations without any need for control mea-
surements and recovery operations.
Embedded quantum codes [17] combine the advantages of both methods. They are based

on an active error correcting quantum code which is constructed within a decoherence free
subspace. Thereby one aims at correcting passively as many of the errors as possible and at
using active quantum error correction for the remaining errors. Embedded quantum codes
are particularly useful for the stabilization of quantum algorithms as they reduce the num-
ber of control measurements and recovery operations significantly.

4. Detected-Jump Correcting Quantum Codes

The dissipative dynamics of N distinguishable qubits as described by Eq. (1) can be stabi-
lized against spontaneous decay in an effective way by embedded quantum codes [14––18].
For this purpose one constructs first of all a decoherence free subspace which stabilizes the
time evolution between two successive quantum jumps passively. This time evolution
(which is conditioned on the emission of no photons) is described by the effective Hamilto-
nian ~HH appearing in Eq. (3). In a second step one inverts the quantum jumps, characterized
by the Lindblad operators La (a ¼ 1; . . . ;N) in Eq. (3), with the help of an active quantum
error correcting code which is constructed within this decoherence free subspace.

Fortschr. Phys. 49 (2001) 10––11 903
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An example of such a one-error correcting embedded quantum code has been developed
by Plenio et al. [19]. It applies to the important special case of equal decay rates of all the
qubits and it is capable of protecting one logical qubit against spontaneous decay. This one-
error correcting embedded quantum code is based on knowledge of the time t1 at which a
quantum jump has occured. As the error position is assumed to be unknown this encoding
has to fulfill the conditions of Eq. (4) for all possible error positions, i.e. for
a;b 2 fa1; . . . ;aNg. It has been demonstrated that this encoding requires at least eight
physical qubits for the stabilization of one logical qubit. Thus, the reduction of control
measurements and recovery operations due to the decoherence free subspace involved in
this encoding procedure gives rise to a significant increase of redundancy in comparison
with an encoding based entirely on active methods.
In the case of distinguishable qubits whose mean distance exceeds the wave lengths of

the spontaneously emitted photons (or phonons) it is in principle possible to determine not
only the jump time, say t1, at which a spontaneous decay process has taken place but also
its error position, say a1. In quantum optical systems, for example, this may be achieved by
continuous observation of the spontaneously emitted photons or of the induced photon
recoil. With the help of this additional information about error positions the redundancy of
such embedded quantum codes can be reduced significantly [4]. If besides the jump time t1
also information about the error position, say a1, is available one has to correct one error
operator only, namely La1. As a consequence, the active quantum error correcting code
which has to be constructed within the decoherence free subspace has to fulfill Eqs. (4) for
a ¼ b � a1 only, i.e.

hcij LyaLa jcji ¼ Ladij: ð5Þ

This violation of the conditions of Eq. (4) for a 6¼ b offers the possibility to construct
embedded quantum codes with a significantly smaller degree of redundancy.
As an example, let us consider again the special case of equal spontaneous decay rates of

all the qubits, i.e. ja ¼ jb � j. A passive error correcting code stabilizing the dynamics
between successive quantum jumps can be constructed from all states with the same num-
ber of excited qubits. Thus, for an even number N of qubits the corresponding code space

with the maximal possible dimension of magnitude d ¼ N
N=2

� �
� N!=½ðN=2Þ!�2 involves all

quantum states in which ðN=2Þ qubits are excited. For N ¼ 4, for example, this decoher-
ence free subspace contains the states fj1100i; j0011i; j1010i; j0101i; j1001i; j0110ig.
Within this six-dimensional decoherence free subspace we can construct three (unnorma-
lized) logical basis states by complementary pairing, namely

jc0i ¼ j1100i þ eij j0011i ; jc1i ¼ j1010i þ eij j0101i ;

jc2i ¼ j1001i þ eij j0110i ; ð6Þ

which involve an arbitrary (relative) phase j. It turns out that this particular encoding with-
in this six-dimensional decoherence free subspace enables one to correct one spontaneous
decay event at a time actively provided one knows the error position. Thus, these three
orthogonal basis states define the simplest example of a one-error correcting quantum code
which involves four physical qubits two of which are excited. We call it a one-error correct-
ing detected-jump quantum code, i.e. a 1� JCð4; 2; 3Þ code. In Sec. 5 we will take advan-
tage of the yet unspecified phase appearing in Eq. (6) for constructing a set of universal
quantum gates which are suitable for quantum computation in this code space.
This 1� JCð4; 2; 3Þ-code can be generalized easily to any arbitrary even number N of

physical qubits. Starting from a decoherence free subspace which involves ðN=2Þ excited
qubits one constructs the code words of the corresponding embedded quantum code again

G. Alber et al., Quantum Error Correction904
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by complementary paring analogous to Eq. (6). This way one obtains the class of all possi-
ble one-error correcting 1� JC N;N=2; N�1

N=2�1

� �� �
codes. It can be shown that these one-

error correcting embedded quantum codes are optimal in the sense that their redundancy
cannot be reduced any further. In order to estimate their redundancy we can compare the
number of physical qubits N with the number of effective logical qubits Lq which can be
encoded. As a measure for this effective number of logical qubits we can use the logarithm
of the number of logical states. Thus for a large number of physical qubits we obtain the
relation

Lq � log2
N � 1
N=2� 1

� �
� N � log2

ffiffiffiffi
N

p
þ Oð1Þ ð7Þ

which demonstrates that asymptotically the number of logical and physical qubits differ
only by a term of order Oðlog2

ffiffiffiffi
N

p
Þ.

5. Quantum Computation within the Code Space of a 1 – JC(4,2,3)-code

Any of the previously discussed 1� JC
�
N;N=2; N

N=2�1

� ��
-codes offers interesting perspec-

tives for stabilizing quantum algorithms against spontaneous decay of physical qubits. How-
ever, for this purpose it is necessary to find universal sets of quantum gates which guaran-
tee that an arbitrary quantum algorithm can be implemented entirely within any of these
code spaces [20, 21]. As a first step towards a general treatment of this problem it is
demonstrated by the subsequent considerations that any unitary operation acting on the
three logical states of our previously discussed 1� JCð4; 2; 3Þ-code can be implemented by
a universal set of quantum gates which operate entirely within this code space.
For this purpose let us start from the rather general assumption that the coherent dy-

namics of the four physical qubits constituting our 1� JCð4; 2; 3Þ-code can be controlled
by a Heisenberg Hamiltonian of the form [6, 22] HðfJgÞ ¼

P
ij Ji;jSi � Sj and that the cou-

pling constants Jij between physical qubits i and j can be tuned arbitrarily. (Si ¼ ðsi
x;s

i
y; si

zÞ
denotes the Pauli vector acting on qubit i.) With a particular tuning of the coupling con-
stants it is possible to implement the state swapping operator Ei;j ¼ ð1þ Si � SjÞ=2 which
exchanges the states of the physical qubits i and j. (Note that the unit operator refers to the
state spaces of qubits i and j only.) By choosing j ¼ p in our 1� JCð4; 2; 3Þ-code (com-
pare with Eq. (6)), it is apparent from Table 1 that the set of all possible state swapping
operators acting on the four physical qubits leaves the code space of our 1� JCð4; 2; 3Þ-
code invariant.
Therefore, any sequence of unitary transformations of the form exp ðit

P
i;j ai;jEi;jÞ with

real-valued coefficients aij will also leave this code space invariant. Starting from this obser-

Fortschr. Phys. 49 (2001) 10––11 905

Table 1 Action of the state swapping operators Ei;j on the basis states of the
1� JCð4; 2; 3Þ code

Ei;j jc0i jc1i jc2i
E1;2 jc0i �jc2i �jc1i
E1;3 �jc2i jc1i �jc0i
E1;4 �jc1i �jc0i jc2i
E2;3 jc1i jc0i jc2i
E2;4 jc2i jc1i jc0i
E3;4 jc0i jc2i jc1i
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vation it is straightforward to demonstrate that any unitary transformation of the group
SUð3Þ can be implemented within our three-dimensional code space by an appropriate se-
quence of these state swapping operations. This possibility relies on the fact that the eight
hermitian operators

A11 ¼
1

3
ðE12 þ E34Þ �

1

6
ðE13 þ E24Þ �

1

6
ðE14 þ E23Þ ;

A22 ¼ � 1

6
ðE12 þ E34Þ þ

1

3
ðE13 þ E24Þ �

1

6
ðE14 þ E23Þ ;

Bþ
12 ¼

1

2
ðE23 � E14Þ ; Bþ

13 ¼
1

2
ðE24 � E13Þ ; Bþ

23 ¼
1

2
ðE34 � E12Þ ;

B�
12 ¼ i½Bþ

13;B
þ
23� ; B�

13 ¼ i½Bþ
12;B

þ
23� ; B�

23 ¼ i½Bþ
12;B

þ
13� ;

ð8Þ

for example, are linearly independent generators of the group SUð3Þ. From the additional
relations

eiðaAþbBÞ ¼ lim
n!1

feianA ei
b
nBgn ; eiði½aA;bB�Þ ¼ lim

n!1
fei

affiffi
n

p A ei
bffiffi
n

p B e�i affiffi
n

p A e�i bffiffi
n

p Bgn ;

which are valid for arbitrary hermitian operators A and B, it becomes apparent that any unitary
transformation of the group SUð3Þ can be approximated with the help of the state swapping
operators Eij within the 1� JCð4; 2; 3Þ-code space to any given degree of accuracy.

6. Combinatorial Design Theory and Many-Error Correcting Embedded
Quantum Codes

Interesting links can be established between the one-error correcting detected-jump quantum
codes of Sec. 4 and fundamental notions of combinatorial design theory. These links are
expected to be particularly useful for the further development of many-error correcting
embedded quantum codes with low redundancy.
In order to demonstrate some basic aspects of these links let us consider the previously

discussed optimal 1� JCð4; 2; 3Þ-code as an example. This embedded quantum code has
been constructed within the six-dimensional decoherence free subspace which involves all
quantum states of four qubits two of which are excited. These six quantum states can be
represented graphically by the system of four points and six lines depicted in Fig. 1. Each
point in this diagram represents a qubit. Each basis state of this decoherence free subspace
is represented by a line connecting the two qubits which are excited.
This system of points and lines has a few interesting properties, namely
(1) any two points define a unique line;
(2) there are at least two points on each line;
(3) there are three points which are not on a line;
(4) to each line g and each point P not contained in g there exists a uniquely determined

line h which has no point in common with g (axiom of parallels).

G. Alber et al., Quantum Error Correction906
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In combinatorial design theory a structure fulfilling these axioms is called an affine
plane. The three code words of our previously discussed 1� JCð4; 2; 3Þ-code (compare
with Eq. (6)) correspond to the three possible parallel pairs or parallelisms of the affine
plane of Fig. 1. Thus, the affine plane of Fig. 1 may be viewed as a generating design for
the parallelisms which are associated with the basis states of the 1� JCð4; 2; 3Þ-code.
These analogies suggest to pursue these connections with basic notions of combinatorial

design theory further by using its powerful methods for the construction of more general
many-error correcting embedded quantum codes. In particular, these analogies suggest that
for this purpose we have to investigate parallelisms over finite incidence structures [23].
Thus it appears natural to start from a finite affine plane of nine points for the construction
of a two-error correcting detected-jump quantum code (compare with Fig. 2).
Indeed, as apparent from Fig. 2 some of the parallelisms of this affine plane together

with their permutations constitute a detected-jump correcting quantum code capable of cor-
recting up to two quantum jumps simultaneously.

7. Conclusions

In summary, detected-jump correcting quantum codes are well suited for stabilizing dis-
tinguishable qubits against spontaneous decay. Their small redundancy offers interesting
perspectives for quantum computation. However, for this purpose it is necessary to find
universal sets of quantum gates which operate entirely within these code spaces. It has
been demonstrated that state swapping operations constitute such a set of universal
quantum operations for our three-dimensional 1� JCð4; 2; 3Þ-code. Furthermore, the dis-
cussed connections with combinatorial design theory provide powerful methods for de-
veloping more general many-error correcting embedded quantum codes with low redun-
dancy.
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