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OPTIMAL TWO-PARTICLE ENTANGLEMENTBY UNIVERSAL QUANTUM PROCESSESGERNOT ALBER ALDO DELGADOAbteilung f�ur Quantenphysik, Universit�at UlmD{89069 Ulm, GermanyIGOR JEXDepartment of Physics, FJFI �CVUTB�rehov�a 7, 11519 Praha 1 - Star�e M�esto, Czech RepublicReceived May 16, 2001Revised August 1, 2001Within the class of all possible universal (covariant) two-particle quantum processes inarbitrary dimensional Hilbert spaces those universal quantum processes are determinedwhose output states optimize the recently proposed entanglement measure of Vidal andWerner. It is demonstrated that these optimal entanglement processes belong to a one-parameter family of universal entanglement processes whose output states do not con-tain any separable components. It is shown that these optimal universal entanglementprocesses generate antisymmetric output states and, with the single exception of qubitsystems, they preserve information about the initial input state.Keywords: Entanglement, universal quantum processes, quantum cloningCommunicated by: S. Braunstein and G. Milburn1. IntroductionOne of the main driving forces in the rapidly developing �eld of quantum informationprocessing is the question whether basic quantum phenomena such as interference andentanglement can be exploited for practical purposes. In this context it has been realizedthat the linear character of quantum theory may impose severe restrictions on the per-formance of elementary tasks of quantum information processing. As a consequence it isimpossible to copy (or clone) an arbitrary quantum state perfectly 1.In view of the signi�cance of entangled states for many aspects of quantum infor-mation processing 2;3;4 the natural question arises whether similar restrictions also holdfor quantum mechanical entanglement processes. Of particular interest are entanglementprocesses which entangle two quantum systems in an optimal way. Though many quan-tum mechanical processes are capable of entangling some input states of a quantum sys-tem with a known reference state of a second quantum system, it is not easy to achievethis goal for all possible input states. This basic di�culty can be realized already inthe simple example of a quantum mechanical controlled-not (CNOT) operation, i. e.CNOT : j�i 
 (j+i + j�i) ! j�i 
 j+i + j�i 
 j�i: This CNOT operation entangles1



2 Optimal two-particle entanglement by universal quantum processesthe orthogonal input states j�i of the �rst qubit with the second (control) qubit pre-pared in the reference state (j+i + j�i). Obviously the two Bell states resulting fromthese input states are optimally entangled. However, due to its linearity this quantumprocess is incapable of entangling the �rst qubit with the second one for all possible inputstates. The input state (j+i + j�i), for example, results in the factorizable output state(j+i+ j�i)
 (j+i+ j�i). In view of this di�culty it is of particular interest to investigateuniversal entanglement processes which are able to entangle all possible input states of aquantum system with a second one in an optimal way. In this context entanglement canbe considered as being optimal if the resulting two-particle output state does not containany separable components.Universal quantum processes act on all possible (typically pure) input states of a quan-tum system in a `similar' way. Consequently, these processes do not specify a preferreddirection in Hilbert space and thus reect its `natural' symmetry. Therefore, the restric-tions imposed on these processes by the linear character of quantum theory are not onlyof practical interest but they also hint at fundamental limits of quantum theory. So farmany properties of universal quantum processes have been analyzed for qubits 5;6;7. Forqubits one can show that there is only one universal entanglement process whose outputstates do not contain any separable components. Independent of the input states, thisprocess always produces the anti-symmetric Bell state as the optimally entangled outputstate 8. For many applications in quantum information processing, such as quantum errorcorrection, universal quantum processes are of interest which do not only entangle di�erentquantum systems in an optimal way but which also preserve information about the origi-nal input state and redistribute this information between the entangled quantum systems.Motivated by this need recently Bu�zek and Hillery have analyzed quantum processes whichentangle two qubits and which also preserve information about the initial input state 6.Though, in the case of qubits, both requirements are incompatible for universal quantumprocesses, universal optimal cloning processes manage to optimize both tasks simultane-ously. However, the resulting output states always contain a separable two-qubit state.From these investigations on qubit systems one may be tempted to presume that a simi-lar incompatibility between optimal universal entanglement processes and preservation ofinformation about input states also holds in higher dimensional Hilbert spaces.In this paper it is shown that, contrary to this tempting presumption, in Hilbertspaces of dimensions higher than two optimal universal entanglement processes are possiblewhich simultaneously also preserve information about the initial input state. For thispurpose a theoretical framework is developed within which all possible bipartite universalquantum processes can be described. For the sake of simplicity we restrict our discussionto the important special case that the dimensions of the Hilbert spaces of both quantumsystems are equal. First of all, the class of all possible universal quantum processes isdetermined which is compatible with the linear character of quantum mechanics. Secondly,the particular subclass is determined which produces entangled two-particle output stateswhich do not contain any separable components. It turns out that for Hilbert spaces withdimensions larger than two these particular universal entanglement processes form a one-parameter family. It is shown that the optimal universal quantum processes whose output



G. Alber, A. Delgado, I. Jex 3states optimize the recently proposed entanglement measure of Vidal and Werner alwaysbelong to this family 9.This paper is organized as follows: In Sec. 2 the basic symmetry (or covariance)property of universal quantum processes is discussed by starting from a simple example.Subsequently a general formalism is developed for describing all possible universal quantumprocesses in arbitrary dimensional Hilbert spaces. The consequences of covariance and ofthe linear character of universal quantum processes are implemented. In Sec. 3 all universalentanglement processes are determined whose output states do not contain any separablecomponents. Subsequently the universal quantum processes are determined whose outputstates optimize the entanglement measure of Vidal and Werner 9. Finally basic propertiesof the resulting optimally entangled output states are discussed.2. Universal quantum processesIn this section the symmetry (or covariance) property of universal quantum processes isexempli�ed by considering two qubits. Based on this covariance property and on therequirement that any quantum process has to be linear with respect to all possible inputstates the general structure of universal (or covariant) quantum processes is discussed forthe case of two arbitrary dimensional quantum systems of equal dimensions. Optimaluniversal quantum cloning processes and optimal universal entanglement processes arespecial cases thereof.2.1. Universal quantum processes and covariance { an exampleLet us consider the following quantum process as an introductory example:Initially we prepare two distinguishable spin-1/2 quantum systems (qubits) in the state�1(m) � �in(m)
 121:The pure input state �in(m) = jmihmj of the �rst quantum system can be described byits Bloch vector m. This Bloch vector can take an arbitrary position on the Poincaresphere. The second quantum system is in a completely unpolarized reference state whichis assumed to be �xed once and for all. Selecting an arbitrary pure input state �in(m) wetransfer the initial state �1(m) into the output state�1(m)! �2(m) = PJ�1(m)PJTr[PJ�1(m)PJ ] : (1)Thereby the projection operator PJ = PM jJMihJM j projects onto two-particle stateswith well de�ned total angular momentum J . This total angular momentum can assumethe possible values J = 1 or J = 0 so that we can distinguish between two quantumprocesses. In a probabilistic way the transformation of Eq.(1) can be achieved by a mea-surement process with probability Tr[PJ�1(m)PJ ]. However, one may also think of realiz-ing this transformation with a probability arbitrarily close to unity by some other means.Choosing the direction of polarization of the input state as the quantization axis the resultof this quantum process is given either by



4 Optimal two-particle entanglement by universal quantum processes�2(m) = p1jJ = 1M = 1ihJ = 1M = 1j+(1� p1)jJ = 1M = 0ihJ = 1M = 0j (2)with p1 = 2=3 or by �2(m) = jJ = 0M = 0ihJ = 0M = 0j (3)depending on whether J = 1 or J = 0. Both quantum processes are universal in the sensethat all input states are treated in a `similar' way. In particular, this implies that theprobabilities entering Eq.(2) are independent of the input state jmi. The only directionthe output state depends on is the one of the input state. Thus these quantum processesare symmetric with respect to unitary transformations U which transform an arbitrarypure one-particle input state, say jm0i, into some other pure one-particle input state, sayjmi � U(m)jm0i. This unitary symmetry or covariance of such a universal quantumprocess is characterized by the relation�2(m) = U(m)
 U(m)�2(m0)U y(m)
 U y(m) (4)(compare with Fig.1). Thus the possible output states of a universal quantum processconstitute a two-particle representation of the group of unitary one-particle transforma-tions. The covariance condition of Eq.(4) already describes how these particular quantumprocesses can be realized. A covariant quantum process is initialized by preparing thetwo-particle quantum system in a particular state, say �2(m0), which is associated withthe particular pure input state jm0i. The output state of any other input state, sayjmi = U(m)jm0i, is obtained by applying to both particles the unitary two-particle op-eration U(m)
 U(m).m0 - m = Um0
? P P?�out(m0) - �out(m) =U
U�out(m0)Uy 
UyFig. 1. Pictorial representation of the symmetry (covariance) condition which characterizes uni-versal quantum processes.



G. Alber, A. Delgado, I. Jex 5Universal quantum processes in which the step of Eq.(1) can be implemented with aprobability of unity have been investigated in the context of copying (cloning) quantumstates. In particular, it has been demonstrated that optimal quantum cloning can beachieved always by a universal quantum process. Furthermore, in the case of two qubitsthe maximum probability with which an optimal universal quantum cloning process issuccessful is given by 2=3 5. This latter probability is identical with the probability p1appearing in Eq.(2). Thus, provided the process of Eq.(1) with J = 1 is implementedwith a probability of unity this process copies an arbitrary input state in an optimal way.However, if we consider the process projecting onto states with J = 0, we end up in theanti-symmetric Bell state formed by both qubits. This output state is independent of theinput state which we choose. As a Bell state is maximally entangled this latter type ofprocess is an example of a universal optimal entanglement process.Copying quantum states and preparing entangled quantum states are elementary tasksof quantum information processing. Thereby universal quantum processes ful�lling Eq.(4)which exhibit the same symmetry as the set of all possible pure one-particle input statesare of special interest. Though much is already known about universal quantum cloningprocesses almost nothing is known about universal quantum processes which yield opti-mally entangled quantum states, in particular in arbitrary dimensional Hilbert spaces. Themain questions which will be addressed in the following are: Which entangled quantumstates result from universal quantum processes which maximize entanglement? Whichlimitations are imposed on the structure of these states by the universality and linearityof these quantum processes? How do the properties of the resulting optimally entangledquantum states depend on the dimensionality of the Hilbert spaces involved?2.2. General structure of universal quantum processes involving two quantumsystems of equal dimensionsLet us consider the most general universal quantum process of the formP : �in(m)
 �ref ! �out(m): (5)In our previous example the �xed reference state �ref was maximally mixed. In the presentcase we leave its form unspeci�ed. The density operator of the pure input state is denoted�in(m) � jmihmj. For the sake of simplicity let us assume that the dimensions of theHilbert spaces for both quantum systems are equal and of magnitude D � 2. In order toclassify all possible universal quantum processes of the form of Eq.(5) we have to determinethe most general form of output states.The density operator of an arbitrary input state of a D dimensional quantum systemcan always be represented in terms of the generators Aij (i; j = 1; :::; D) of the groupSUD, i.e. �in(m) = 1D (1+mijAij): (6)(We use the Einstein summation convention in which one has to sum over all indices



6 Optimal two-particle entanglement by universal quantum processesi; j 2 f1; ::; Dg which appear in an expression twice.) A representation of these generatorsis given by the D �D matrices(Aij)(kl) = �ik�jl � 1D�ij�kl: (7)These matrices are not hermitian but they ful�ll the relation Ayij = Aji. Due to theconstraint PDi=1Aii = 0 only (D2 � 1) of them are linearly independent so that we maychoose mDD = 0 in Eq.(6). For D = 2 these matrices reduce to the well known sphericalcomponents of the Pauli spin matrices, i.e. 2A11 = �z , 2A12 = �x + i�y and 2A21 =�x � i�y. Furthermore, �in(m) = �in(m)y implies the relations [mij ]� = mji so thatEq.(6) involves (D2 � 1) real-valued and linearly independent parameters which formthe components of a generalized Bloch vector. For i < j one may choose the real andimaginary parts of mij as linearly independent parameters and for 1 � i � D � 1 thediagonal elements mii. The non-negativity of the density operator �in(m) imposes furtherrestrictions on these parameters 10. However, their explicit form is not important for oursubsequent discussion in which we are interested in pure input states only. Without lossof generality, the covariance condition (4) implies that we can restrict ourselves to a pureinput state which coincides with one of the basis vectors, say j1i, of the D-dimensionalHilbert space. The associated density operator of the input state is given by�in(m0 = DA11) = 1D (1+DA11) � j1ih1j (8)with mij = �i1�j1D. According to the covariance condition (4) any output state can beobtained from the associated output state �out(m0 = DA11) by a local, unitary two-particle transformation.In terms of the generators of Eq.(7) the most general two-particle output state isrepresented by a density operator of the form�out(m) = 1D21
 1+ �(1)ij (m)Aij 
 1+�(2)ij (m)1
Aij +Kijkl(m)Aij 
Akl: (9)In order to implement the covariance condition (4) and the linearity requirement of quan-tum processes it is useful to separate the last term of Eq.(9) into terms which are invariantand into terms which transform as the generators Aij under arbitrary unitary transfor-mations of the form U 
U . For this purpose, let us start from the commutation relationsof SUD, namely [Aij ;Amn] = Aab(�jm�ai�bn � �in�am�bj): (10)These relations imply that the tensor products Aji
Asj transform under arbitrary trans-formations of the form U 
U in the same way as Asi transforms under transformation ofthe form U . Furthermore, the tensor product Aij 
Aji is an invariant under arbitrary



G. Alber, A. Delgado, I. Jex 7unitary transformations of the form U
U . However, note that the combinationAij
Asj ,for example, does not transform analogous to Asi. Using these elementary transformationproperties, the covariance condition (4), and the fact that any quantum operation has tobe linear with respect to its input states the density operator of the two-particle outputstate has to be of the form�out(m) = 1D21
 1+ �(1)ij (m)Aij 
 1++�(2)ij (m)1
Aij + CAij 
Aji +�il(m)Aij 
Ajl + �il(m)�Aji 
Alj (11)with �(1;2)ij = �(1;2)mij ; �ij = �mij (12)and with C 2 R being independent of m.So far the output state of Eq.(11) represents the most general hermitian operator whichdepends linearly on the input state �in(m) and which ful�lls the covariance condition (4).Accordingly, a particular universal quantum process is characterized by the set of real-valued parameters C, �(1), �(2) and by the complex valued parameter �. We still haveto solve the more di�cult task to restrict the range of these parameters in such a waythat �out(m) of Eq.(11) represents a non-negative operator. In order to determine thisfundamental range of these parameters we have to investigate the possible eigenvalues ofthe density operator �out(m) of Eq.(11). Due to the covariance condition (4) we mayrestrict this investigation to a particular pure input state, say �in(m0 = DA11) = j1ih1j.Using the matrix representations of Eq.(7) it turns out that the corresponding outputstate can be represented by a direct sum of density operators according to�out(m0 � DA11) = 4Xi=1 �pi�i (13)with the partial density operators�1 = j11ih11j;�2 = DXj=2fj1jih1jj( 12(D� 1) + (�(1) � �(2))m112p2 ) +jj1ihj1j( 12(D � 1) + (�(2) � �(1))m112p2 ) +j1jihj1jC + �m11p2 + jj1ih1jjC + ��m11p2 g;�3 = 1(D � 1) DXj=2 jjjihjjj;



8 Optimal two-particle entanglement by universal quantum processes�4 = DX2=i<jfjijihijj 1(D � 1)(D � 2) +jjiihjij 1(D � 1)(D � 2) +jijihjijCp4 + jjiihijjCp4 g: (14)These partial density operators are normalized so that Tr(�i) = 1 for i = 1; :::; 4. Thecorresponding partial probabilities entering Eq.(13) are given byp1 = 1D2 + (�(1) + �(2))m11(1� 1D ) + C(1� 1D ) +(� + ��)m11(1� 1D )2;p2 = (D � 1)f 2D2 + (�(1) + �(2))m11(1� 2D )�2CD � 2(� + ��)m11(1� 1D ) 1Dg;p3 = (D � 1)f 1D2 � �(1)m11D � �(2)m11D +C(1� 1D ) + (� + ��)m11 1D2 g;p4 = (D � 1)(D � 2)f 1D2 � �(1)m11D � �(2)m11D �CD + (� + ��)m11 1D2 g: (15)The normalization of the density operator, i.e. Tr[�out(m)] = 1, impliesp1 + p2 + p3 + p4 = 1: (16)From Eqs.(14) and (15) one obtains the eigenvalues of �out(m0 = DA11), namely�1 = p1;�2� = p22(D � 1) �r( (�(1) � �(2))m112 )2+ j C +m11� j2;�3 = p3(D � 1) ;�4� = p4(D � 1)(D � 2)� j C j : (17)Therefore the density operator of Eq.(13) is non-negative only if all probabilities pi andall eigenvalues �i of Eqs.(15) and (17) are non-negative and ful�ll Eq.(16). For �(1) = �(2)and � = ��, for example, these conditions on (p2; p3; p4) form a tetrahedron (compare



G. Alber, A. Delgado, I. Jex 9with Fig. 2). Each point in this convex set de�nes a unique universal quantum processwhose possible output states can be obtained from Eq.(13) with the help of the covariancecondition (4). The universal quantum cloning process, for example, is represented by pointB in this �gure and it is characterized by the particular universal process which maximizesp1. Note that it is immediately obvious from Fig. 2 that perfect quantum cloning isimpossible with a universal quantum process as p1 = 1� p2� p3� p4 � 2=(D+1) < 1 forD � 2.
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10 Optimal two-particle entanglement by universal quantum processesIn order to identify a particular universal quantum process uniquely in addition to thesethree probabilities one also has to specify the remaining two independent parameters,namely (�(1) � �(2)) and (� � ��).3. Universal entanglement processesIn this section it is shown that there is a unique one-parameter family of universal entan-glement processes whose resulting output states do not contain any separable components.These processes produce output states which are anti-symmetric with respect to particleexchange. It is demonstrated that the universal quantum processes whose output statesmaximize the recently proposed entanglement measure of Vidal and Werner are alwaysmembers of this one-parameter family 9. Basic properties of the output states resultingfrom these optimal universal entanglement processes are discussed and it is investigatedto which degree these output states preserve information about the input state.3.1. Universal entanglement processes yielding output states without separablecomponentsIs it possible to entangle two quantum systems in such a way by a universal quantumprocess that the resulting output states do not contain any separable components?As discussed by Lewenstein and Sanpera one can decompose any quantum state �of a two-particle system into a separable part, say �sep, and an inseparable contribution�insep, i.e. � = ��sep + (1 � �)�insep with 0 � � � 1 11. Thereby a separable state isa convex sum of product states of the form �A 
 �B where �A and �B refer to quantumsystems A and B respectively. Though in general this decomposition is not unique theoptimal decomposition with maximal � is unique. Thus, with respect to entanglementthose quantum states are of particular interest whose maximum possible value of � equalszero in any such decomposition 12;13.In order to determine the parameters for the universal quantum processes which pro-duce this latter class of entangled states let us start from the output state �out(m0 =DA11) of Eq.(13). A necessary requirement for this state belonging to this class is theabsence of any admixtures of separable states of the form jjjihjjj for j = 1; :::; D. Thus,necessarily a universal quantum process producing entangled states without any separablecomponents has to be characterized by the parametersp1 = 0; p3 = 0: (19)It will be demonstrated by the subsequent arguments that this choice of parameters is alsosu�cient for the generation of entangled output states without separable components. Forthis purpose it has to be proven that for any separable two-particle state j i = j'i 
 j�iand for any positive value of � > 0 the state�0 = �out(m0 = DA11)(ent) � �j ih j (20)is negative de�nite. Thereby the state �out(m0 = DA11)(ent) ful�lls conditions (19).



G. Alber, A. Delgado, I. Jex 11Consequently, the covariance condition (4) and the non-negativity property of densityoperators implies that any arbitrary output state �out(m)(ent) ful�lling Eqs.(19) cannotcontain any separable components.For the proof of this latter statement we start from conditions (19) and Eqs.(15),(17) and (18). According to Eqs.(17) and (18) the condition p3 = 0 implies �4� = 0.Furthermore, from the non-negativity of �2� of Eq.(17) and from Eqs. (18) and (19) weobtain the relations�(1) = �(2);� = ��;�(ent)2 = 12(D � 1) DXj=2fj1jih1jj+ jj1ihj1j �j1jihj1j � jj1ih1jjg;�(ent)4 = 1(D � 1)(D � 2) DX2=i<jfjijihijj+ jjiihjij �jijihjij � jjiihijjg: (21)Thus, the parameters of Eqs.(19) imply that the resulting output state�(ent)out (m0 = DA11) = (1� p4)�(ent)2 � p4�(ent)4 (22)is a convex sum of pure two-particle quantum states which are anti-symmetric with respectto permutations of both quantum systems, i.e. a convex sum of two-particle Slater deter-minants. Let us consider now the state �0 of Eq.(20). For an arbitrary state j i = j'i
j�iwe can always choose a unitary transformation U in such a way that h1jU j'i and h1jU j�iare both non-zero. This unitary transformation may be interpreted passively as a changeof basis in the one-particle Hilbert spaces. Applying the same unitary transformationto state �(ent)out (m0 = DA11) a convex sum of anti-symmetric two-particle states is pro-duced so that h11jU 
 U�(ent)out Uy 
 U yj11i = 0. Thus, assuming the existence of a statej i = j'i
j�i and a probability � > 0 implies that for this particular unitary transforma-tion U the diagonal density matrix element h11jU
U�0Uy
U yj11i = 0��h1jU j'ih1jU j�iis negative. Therefore �0 is negative de�nite for any choice of the states j'i and j�i andfor any � > 0. Correspondingly a non-zero value of � is not possible in Eq.(20). So weconclude that the two-particle state of Eq.(22) does not contain any separable component.By covariance the same property applies to all possible output states. This completes ourproof.3.2. Optimal universal entanglement processesWhich universal quantum processes optimize entanglement according to the recently pro-posed entanglement measure of Vidal and Werner 9?



12 Optimal two-particle entanglement by universal quantum processesIn order to answer this question let us, �rst of all, briey summarize basic aspects ofthis entanglement measure. According to Vidal and Werner the negativity N(�) of anytwo-particle density operator �, i.e. N(�) = jXi �ij; (23)is a measure of entanglement 9. Thereby �i are the negative eigenvalues of the partialtranspose �T 14 of �. This entanglement measure is monotonic under local operations andclassical communication and it is convex, i.e.N(Xi pi�i) �Xi piN(�i) (24)for density operators �i and for pi � 0 with Pi pi = 1 14.The convexity of this measure can be used to determine the universal entanglementprocesses which yield maximally entangled output states. For this purpose it is su�cientto consider the particular output state of the most general bipartite universal quantumprocess given by Eq.(13). The convexity of the entanglement measure N(�) implies theinequality N(�out(m0)) � (p1 + p3)N(p1�1 + p2�3p1 + p3 ) +(p2 + p4)N(p2�2 + p4�4p4 + p4 ) = (p2 + p4)N(p2�2 + p4�4p4 + p4 ) �p2N(�2) + p4N(�4) � pD � 1jC + �m11j+ (D � 2)jCj: (25)The �rst equality involved in (25) follows from the fact that �1 and �3 are diagonal matrices(compare with Eq.(14)) and thus the negativity of any convex sum of these density matricesvanishes. The second inequality involved in (25) follows from a second application of theconvexity of the entanglement measure N(�). The last equality in (25) follows from astraightforward evaluation of the entanglement measures of �2 and of �4 on the basis ofEq.(14). From Eqs. (17) and (18) we obtain the additional upper boundsjCj � p4(D � 1)(D � 2) ;jC + �m11j2 � ( p22(D � 1))2 � ( (�1 � �2)D2 )2: (26)Inserting these latter inequalities into (25) we obtain the relationN(�out(m0)) � p22pD � 1 + p4(D � 1) (27)



G. Alber, A. Delgado, I. Jex 13with P4i=1 pi = 1. For arbitrary values of p4 the right hand side of inequality (27) ismaximal for p1 = p3 = 0. Thus we obtain the �nal inequalityN(�out(m0)) � 12pD � 1 + p4( 1D � 1 � 12pD � 1) (28)with 0 � p4 � 1. For dimensions D < 5 the right hand side of inequality (28) is maximalfor p4 = 0 which is equivalent to p2 = 1. Therefore, according to Eq.(14), in this casethe universal quantum process with p2 = 1 yields optimally entangled output states whichsaturate the upper bound of inequality (28). For dimensions D > 5 the maximum value ofthe right hand side of inequality (28) is achieved for p4 = 1. Thus, in this latter case theuniversal quantum process with p4 = 1 yields optimally entangled output states saturatingthe upper bound of inequality (28). The case of D = 5 is special in the sense that universalquantum processes with arbitrary values 0 � p4 � 1 and with p2 = 1� p4 yield optimallyentangled output states.Thus, the optimal universal entanglement processes whose output states maximizethe entanglement measure of Vidal and Werner always ful�ll the condition p1 = p3 =0 for arbitrary dimensions D 9. Thus, they are always members of the one-parameterfamily of entanglement processes which do not yield any separable components and whichwere discussed in the previous subsection. In �ve dimensional one-particle Hilbert spacesoptimal universal entanglement processes are special in the sense that they coincide withthis previously discussed one-parameter family of entanglement processes.3.3. Basic properties of the resulting entangled output statesThe parameters 0 � p4 � 1; p1 = 0; p3 = 0; �(1) = �(2); � = �� (29)characterize all possible universal quantum processes which produce entangled two-particleoutput states which do not contain any separable components. One particular processwithin this one-parameter family of universal entanglement processes produces optimallyentangled output states. For D < 5 this optimal entanglement process is characterizedby the additional condition p2 = 1 and for D > 5 it is characterized by the additionalrequirement p4 = 1. The case D = 5 is special in the sense that all universal entanglementprocesses of Eq.(29) are optimal entanglement processes. The output states of the one-parameter family of universal quantum processes of Eq.(29) are statistical mixtures ofanti-symmetric states. Explicitly they are given by Eq.(14) and by applying the covariancecondition (4). In addition, these state also exhibit other noteworthy properties which willbe discussed in the following.The partial transpose of the output state �(ent)out (m0 = DA11) of Eq.(22) has always anegative eigenvalue of magnitude� = � p42(D � 1) � f p24(D � 1)2 + (1� p4)2D � 1 g1=2: (30)



14 Optimal two-particle entanglement by universal quantum processesTherefore, by covariance the one-parameter family of universal entanglement processes ofEq.(29) produces free entangled states 15.Due to covariance all output states resulting from the same universal optimal entan-glement process have the same von Neumann entropy of magnitudeS(p4) = p4ln (D � 1)(D � 2)2p4 + (1� p4)ln(D � 1)1� p4 : (31)Thus, for D > 4 the universal entanglement process with p4 = 0 produces output stateswith the smallest possible von Neumann entropy, namelySmin � S(p4 = 0) = ln(D � 1): (32)For D < 4 this process of minimal von Neumann entropy is characterized by p4 = 1 andthe corresponding minimal entropy is given bySmin � S(p4 = 1) = ln(D � 1)(D � 2)2 : (33)For D = 4 both processes, i.e. p4 = 0 and p4 = 1, yield the same von Neumann entropyfor the output states. As apparent from Fig. 3, this possibility of a `coexistence' of twouniversal entanglement processes with the same von Neumann entropy resembles some ofthe signatures of a second order phase transition. Within the one-parameter family ofuniversal entanglement processes of Eq.(29) the process characterized by p4 = (D� 2)=D(or equivalently C = �1=[D(D � 1)]) gives rise to output states with the largest possiblevalue of the von Neumann entropy, namelySmax � S(p4 = (D � 2)D ) = lnD(D � 1)2 : (34)Thus this process generates an output state which is a maximal mixture of all possible(D � 1)(D � 2)=2 anti-symmetric two-particle states.The index of correlation of the possible output states is de�ned byIC(�) = S(R1(m)) + S(R2(m))� S(�out(m)) (35)with the reduced density operators of the �rst and second quantum systemR1(m) � Tr2f�out(m)g; R2(m) � Tr1f�out(m)g: (36)This index of correlation or mutual entropy serves as a measure for the classical andquantum correlations between both quantum systems 16. Due to the covariance condition(4) it is a property of a particular universal quantum process and is independent of theinput state. For the one-parameter family of universal entanglement processes of Eq.(29)the index of correlation is given byIC(p4) = ln 41 + p4 + p4ln 2p4(D � 1)(1 + p4)(D � 2) : (37)
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Fig. 3. Minimal values of the von Neumann entropy of optimal universal entanglement processes(compare with Eqs.(32) and (33)) as a function of D.From this relation it is apparent that IC(p4) has a local minimum for p4 = (D � 2)=D.Thus, the entanglement process with the largest possible von Neumann entropy producesoutput states with the smallest possible mutual entropy. Furthermore, the output statesof the entanglement process with p4 = 0 have the largest possible index of correlation, i.e.IC(p4 = 0) = 2ln2. It is remarkable that this latter index of correlation is independent ofthe dimension of the Hilbert spaces D and that this value is equal to the mutual entropyof a Bell state.It is also of interest to which extent the entangled output states resulting from theone-parameter family of universal entanglement processes of Eq.(29) preserve informationabout the initial pure input state �in(m). This information about the input state ischaracterized by the generalized Bloch vector m. In the output state of Eq.(11) thisinformation is contained in the terms proportional to the parameters �(1), �(2) and �.The parameters �(1) and �(2) characterize the information about the initial pure inputstate which is still contained in the two-particle output state in each subsystem separately,i.e. in the reduced statesR1(m) = 1D +D�(1)mijAij ; R2(m) = 1D +D�(2)mijAij (38)of the �rst and second quantum system. The parameter � characterizes the informationabout the input state which is distributed over both quantum systems. This latter propertyis apparent from the fact that this parameter appears in Eq.(11) with tensor products ofthe form Aij 
Ajl and Aji 
Alj . According to Eqs.(18) and (29) for a given value of p4(with p1 = p3 = 0) these characteristic quantities are given by
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Fig. 4. Dimensional dependence of the ratio between �(1)max as de�ned by Eq.(40) and thecorresponding value �(1)clone characterizing the optimal universal cloning process. It is for D = 2only that in the optimal universal entanglement process all information about any input state islost. �(1) + �(2) = (D � 2)D2(D � 1) � p4D(D � 1) ;� + �� = � 1D(D � 1) + p4(D � 2)(D � 1) : (39)Thus, the universal entanglement process with p4 = 0 yields the maximal possible valuefor �(1) � �(2), namely �(1)max = (D � 2)=[2D2(D � 1)] (40)and preserves the maximum amount of information about the initial state in each sub-system separately. It is instructive to compare this maximum value for �(1)max with thecorresponding maximal value achievable by an optimal quantum cloning process. Thislatter optimal value is given by �(1)clone = (D � 2)=[2D2(D � 1)] + 1=[D(D � 1)(D + 1)] �(D+2)=[2D2(D+1)] 5. Thus, for D > 2 �(1)clone and �(1)max di�er by terms of relative mag-nitude O(1=D) so that their di�erence tends to zero with increasing dimension D of theone-particle Hilbert spaces. This demonstrates that for D � 2 a universal entanglementprocess with p4 = 0 preserves almost as much information about the initial quantum stateas an optimal universal cloning process (compare with Fig. 4).Within the one-parameter family of Eq.(29) the universal entanglement process withp4 = (D�2)=D yields �(1) = �(2) = � = 0 so that all information about the orientation ofthe initial quantum state �in(m) is lost. The resulting output state is independent of theinput state and is a scalar with respect to unitary transformations of the form U 
U andwith respect to permutations between both particles. This particular process is the only
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Fig. 5. Dimensional dependence of the entanglement measure N(�) of Eq.(28) for the optimaluniversal entanglement processes discussed in Sec. 3.2.one within the one-parameter family of Eq.(29) which ful�lls the additional requirementR1(m) = R2(m) = 1=D. Though this property is characteristic for all Bell states it doesnot hold for the output states which are generated by the optimal universal entanglementprocesses discussed in Sec. 3.2.As discussed in Sec. 3.2 optimal universal entanglement processes are characterized byp2 = 1 for D < 5 and by p4 = 1 for D > 5. The corresponding dimensional dependenceof the entanglement measure N(�) of these optimally entangled output states is depictedin Fig. 5. It is apparent that for D = 5 this entanglement measure is continuous but notdi�erentiable. At this particular dimension the optimal universal entanglement processesdiscussed in Sec. 3.2 coincide with the one-parameter family of entanglement processes ofSec. 3.1 which yield entangled output states without any separable components.3.4. ExamplesIn order to exemplify basic properties of entangled output states resulting from the one-parameter family of universal entanglement processes of Eq.(29) let us consider somespecial cases of low dimensions in more detail.D = 3: Let us �rst of all consider a three-dimensional one-particle Hilbert space inwhich we choose the basis in such a way that the pure input state is identical with one ofthe basis vectors, say j1i, i.e. �in(m0 = DA11) � j1ih1j. According to Eqs.(21) it is alsoconvenient to introduce the pure, anti-symmetric two-particle statesj(ij)i = 1p2(jiji � jjii) (41)



18 Optimal two-particle entanglement by universal quantum processeswith i; j 2 f1; ::; Dg. Eq.(22) implies that for D = 3 the entangled output states resultingfrom the one-parameter family of universal quantum processes of Eq.(29) are convex sumsof the two two-particle states�(ent)2 = 12fj(12)ih(12)j+ j(13)ih(13)jg; �(ent)4 = j(23)ih(23)j: (42)For p4 = 1 the resulting output state �(ent)out (m0 = DA11) = �(ent)4 is pure so its vonNeumann entropy vanishes. This state is the uniquely determined anti-symmetric, puretwo-particle state which can be formed by the remaining two orthogonal basis states j2iand j3i. Geometrically, this output state may be viewed as representing the uniquelydetermined plane which is orthogonal to the input state j1i. This way this entangledoutput state preserves information about the input state. The index of correlation of thisparticular output state assumes the maximum possible value of IC(p4 = 1) = 2ln2. Theoptimal universal entanglement process characterized by p2 = 1 produces the mixed outputstate �(ent)out (m = DA11) = �(ent)2 . Its index of correlation also assumes the largest possiblevalue of IC(p4 = 0) = 2ln2. This optimal entanglement process maximizes the overlapsbetween the input state j1i and between the reduced one-particle states R1(m = DA11)and R2(m = DA11) of Eqs.(38). Thus, it preserves information about the initial inputstate in an optimal way. For universal entanglement process characterized p4 = 1=3(p1 = p3 = 0) the resulting output state is given by�(ent)out (m = DA11) = (2=3)�(ent)2 + (1=3)�(ent)4 �13fj(12)ih(12)j+ j(13)ih(13)j+ j(23)ih(23)jg: (43)Its von Neumann entropy assumes the largest possible value of magnitude S(p4 = 1=3) =ln3. This output state is a maximally disordered mixture of all possible anti-symmetrictwo-particle states which can be constructed from the underlying three-dimensional one-particle Hilbert spaces. In this particular universal entanglement process all informationabout the pure input state j1i is lost which is reected by the fact that �(1) = �(2) = 0.D = 4: For D = 4 the one-parameter family of output states of �in(m0 = DA11) �j1ih1j is a convex sum of the two mixed states�(ent)2 = 13fj(12)ih(12)j+ j(13)ih(13)j+ j(14)ih(14)jg;�(ent)4 = 13fj(23)ih(23)j+ j(24)ih(24)j+ j(34)ih(34)jg: (44)The optimal universal entanglement process with p2 = 1 yields the mixed output state�(ent)out (m = DA11) = �(ent)2 which implies maximal overlaps between the reduced one-particle states R1(m = DA11) and R2(m = DA11) of Eqs.(38) and the input state.Universal entanglement process with p4 = p2 = 1=2 produce a maximally disorderedmixture of all possible anti-symmetric two particle states, i.e.�(ent)out (m = DA11) = (1=2)�(ent)2 + (1=2)�(ent)4 �



G. Alber, A. Delgado, I. Jex 1916fj(12)ih(12)j+ j(13)ih(13)j+ j(14)ih(14)j+j(23)ih(23)j+ j(24)ih(24)j+ j(34)ih(34)jg: (45)In this universal entanglement process all information about the input state is lost.D = 2: Let us close with some �nal remarks concerning the special case of qubitsfor which some of the considerations of this chapter have to be modi�ed. According toEqs.(21) in this case �(ent)4 � 0 and thus disappears from Eq.(22). Consequently only oneuniversal entanglement process is possible which does not yield any separable components.It is characterized by p1 = p3 = p4 = 0 and by the pure, anti-symmetric output state�(ent)out (m0 � DA11) = j(12)ih(12)j: (46)Thus, in this case the one-parameter family of universal entanglement processes of Eq.(29)collapses to a single process whose output state is independent of the input states.4. ConclusionsIt has been demonstrated that in Hilbert spaces of dimensions larger than two the linearcharacter of quantum mechanics is compatible with the existence of optimal universaltwo-particle entanglement processes which preserve information about input states. Thissituation is completely di�erent from the case of qubits where only one optimal universaltwo-particle entanglement process is possible in which all information about any inputstate is lost. The presented optimal universal entanglement processes are members of aone-parameter family of universal quantum processes which yield entangled output stateswithout any separable components. Optimal universal entanglement processes involvingtwo �ve dimensional quantum systems are exceptional in the sense that they coincidewith this latter one-parameter family of universal entanglement processes. For all otherdimensions the optimal universal entanglement process is one particular member of thisone-parameter family of quantum processes. One of the characteristic features of this classof universal entanglement processes is that they always yield anti-symmetric output stateswhich, with the single exception of qubit systems, preserve information about the inputstate.The presented investigations indicate that convex sums of anti-symmetric quantumstates resulting from the optimal universal entanglement processes discussed might alsoplay an important role in universal entanglement processes which involve more than twoquantum systems. Furthermore, entanglement processes which also preserve informationabout input states might have interesting applications in various branches of quantum in-formation processing, such as quantum cryptography and quantum error correction. Thus,the presented results indicate that further exploration of quantum information processingbeyond qubits may o�er unexpected and useful surprises.AcknowledgementsThis work is supported by the DFG within the SPP `Quanteninformationsverarbeitung', bythe programmes `QUBITS' (IST-1999-13021) and `QUEST' of the European Commission,
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