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Thermodynamic properties of confined interacting Bose gases: A renormalization-group approach
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A renormalization-group method is developed with which thermodynamic properties of a weakly interact-
ing, finite-size Bose gas can be investigated. Thereby effects originating from a confining potential are taken
into account by periodic boundary conditions and by treating the resulting discrete energy levels of the
confined degrees of freedom properly. The resulting density of states modifies the flow equations of the
renormalization group in momentum space. It is shown that as soon as the characteristic length of confinement
becomes comparable to the thermal wavelength of a weakly interacting and trapped Bose gas its thermody-
namic properties are changed significantly. This is exemplified by investigating characteristic bunching prop-
erties of the interacting Bose gas which manifest themselves in the second-order coherence factor.
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[. INTRODUCTION tition functions with which one may also test limitations of
mean-field theories.

The experimental realization of Bose-Einstein condensa- In the special case of an unconfined, homogeneous three-
tion of trapped, ultracold, weakly interacting atomic gasesdimensional interacting Bose gas such a RG approach has
[1,2] has renewed the interest in their thermodynamic propalready been developed recently by Bijlsma and S{&df
erties. Definitely, many of these properties have already beeHowever, their quantitative predictions of the dependence of
studied more than 30 years ago in connection with the thecthe transition temperature on the scattering length, for ex-
retical efforts to describe superfluidity of strongly interactingample, have been more than one order of magnitude larger
helium atoms. However, in these recent experimental realizathan corresponding numerical predictions which are based on
tions the physics of the trapping process and of the internalaborate Monte Carlo simulations of the relevant partition
structure of the trapped bosons still pose interesting theorefunction [9]. Recently this discrepancy has been clarified
ical questions which are not yet understood complefgly  [10-12. These studies are in satisfactory agreement with the

So far the majority of theoretical approaches aiming atRG calculations of Bijlsma and Sto¢8] and with recent
describing thermodynamic properties of weakly interactingexperimentg13] and they attribute the numerical inaccura-
trapped Bose gases has concentrated on mean-field agies of the previous Monte Carlo approach to incorrect ex-
proaches[3]. At zero temperature these mean-field ap-trapolation procedures. This example demonstrates that de-
proaches lead to the well-known Gross-Pitaevski equatiospite extensive previous work there are still open questions
and to their multicomponent generalizations. These theoretieven in the context of the traditional case of a homogeneous
cal descriptions have proven useful in obtaining first quanti-and unconfined interacting Bose gas. In addition, the experi-
tative understandings of many recent trapping experimentsmental possibility to control and manipulate trapped Bose
[2]. However, it is known that mean-field theories do notcondensates has raised many interesting physical questions
yield an accurate description of thermodynamic properties ofmost of which have not been tackled yet theoretically beyond
interacting gases close to the transition point of a phase trarthe framework of mean-field approximations.
sition [4]. Furthermore, with improving experimental accu- In this paper a RG approach is developed which is ca-
racy it is expected that in the near future possible deviationpable of determining thermodynamic properties of weakly
from mean-field results might become accessible experimennteracting and confined Bose gases. This approach aims at
tally even in regimes far away from transition points. describing physical effects of spatial confinement beyond the

Motivated by these prospects in this paper a theoreticdbcal-density approximation by modeling effects originating
description of thermodynamic properties of confined, weaklyfrom confinement by periodic boundary conditions. How-
interacting Bose gases is developed which is based oaver, contrary to the usual continuum-limit approximation
renormalization-grouRG) methodqd5—7]. RG methods are within our approach the required summations over all pos-
known to yield descriptions of thermodynamic partition sible states of the atomic center-of-mass motion are not re-
functions which transcend mean field theories and which arplaced by integrations but the discrete energy levels resulting
also capable of describing the dynamical region close to &om the confined degrees of freedom are taken into account.
second-order phase transition accurately. Furthermore, byhus the presented approach should yield a valid description
these methods certain universal quantities, such as criticalven in cases in which the thermal wavelength of an inter-
exponents, might even be evaluated by analytical meanscting Bose gas becomes comparable to the characteristic
Typically the evaluation of thermodynamic partition func- length of confinement and in which the local-density ap-
tions with the help of RG methods is only slightly more proximation breaks down. Indeed in the subsequent treat-
complicated than by mean-field methods. Thus, these R@ent it is demonstrated that as soon as the confinement
methods represent a convenient theoretical approach complieength becomes comparable to the thermal wavelength of the
menting elaborate numerical Monte Carlo simulations of parinteracting Bose gas thermodynamic properties of an inter-
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acting Bose gas are changed significantly. This characteristignd the number operator of the interacting bosons are de-
behavior is exemplified by investigating various thermody-notedH andN, respectively. For interacting bosons this par-
namic properties of an interacting Bose gas, such as itdtion function can be represented as a functional integral
bunching properties which manifest themselves in theover a complex scalar field. In D spatial dimensions this
second-order coherence factor and which are accessible path-integral representation is given ;15|
experimental observation. Though the presented RG ap-
proach differs from the one developed by Bijlsma and Stoof
[8] previously it is demonstrated that resulting critical prop-
erties, such as the dependence of the transition temperature
on the scattering length, are in satisfactory agreement witiith the (dimensionlessaction
these previous RG results and with other recent calculations ,
[10-12. S(cb,@*):fﬁ ﬁAJ dOd°¢

The paper is organized as follows: In Sec. Il the general 0 vAD
theoretical approach is developed. Starting from the path-
integral representation of the grand canonical partition func- > | * (¢ @)[ _ EA -M +i
tion an RG method is developed for its evaluation. As effects ' 2°7¢ 0
of a confining potential are taken into account by periodic
boundary conditions which still guarantee translational in-
variance of the problem the RG procedure is developed in
momentum space. As a main approximation the random-
phase approximatiofRPA) [14] is used which is applied to %
the symmetry broken phase. In Sec. Il resulting numerical
results are presented. Firstly, we concentrate on characteris-
tic properties of an unconfined homogeneous three:rhe volume within which the Bose SyStem is confined to is
dimensional Bose gas which have been of interest recentlylenotedV. For the sake of simplicity this volume will be
Secondly, the influence of finite-size effects is exemplified@ssumed to be of cubic shape and the resulting spatial con-
by investigating isothermal properties of the pressure and oinement will be described by imposing periodic boundary

the second order coherence factor of an interacting Bose gagonditions on the complex fiel®(¢,0). In Eq. (2) scaled
quantities have been introduced which involve a yet arbitrary

characteristic momentumz(\) whose associated inverse

temperature is given by,=m/(%#?A?). The mass of the
In this section a RG approach is developed for the evaluinteracting bosons is denoted The scaled chemical poten-

ation of the grand canonical partition function of an interact-tial M is defined byM=pu B, . The two-body interaction

ing and confined Bose gas spatial dimensions. Effects of potential between the bosons is denoMgk—x') and &

confinement are taken into account by periodic boundary=xA and ®=17/(%3,) are scaled spatial coordinates and

conditions and by proper summations over the discrete enethe scaled imaginary time. The fugacityappearing in Eq.

gies associated with the confined degrees of freedom. Ag3) is related to the chemical potentisl by [7]

cordingly, the RG approach is developed in momentum L

space. The RG flow equations are derived for the tempera-

ture regime below the phase transition with the help of the INz=M-3B,V(x=0). (4)

random-phase approximati¢h4]. This dynamical regime is

characterized by a nonzero-order parameter. Details of th€he integration measure appearing in E).is defined later

derivation of these RG equations are given in Appendix A.(cf. Eq. (9)).

For the sake of completeness the RG equations that apply to Due to the trace operation involved in the evaluation of

the dynamical region above the phase transition, i.e., in théhe partition function of Eq(1) the functional integration in

region of a vanishing order parameter, are summarized ikq. (2) has to be performed over all complex field$¢,0)

Appendix B. These latter equations have already been diswhich are periodic in the imaginary scaled tin@, i.e.,

Z(Z,B)=fd[<l>(§,),<I>(§,)*]e’s(q’""*) @

P (£,0)

1] @elao)

s S Jecor). @

Il. THEORETICAL TREATMENT

cussed in detail previoushB,14]. D(£,0)=D(£,0+8/B,) [7]. If one also imposes spatial
periodic boundary conditions which still preserve the trans-
A. Path-integral representation of the partition function lational invariance of the problem it is convenient to trans-

, . . ) form the functional integral of Eq.2) into the momentum-
Thermodynamic properties of an interacting system Ofequency representation. This is achieved by Fourier
bosons [cari be described by iigrand-canonical partition transforming the complex fields according to
function[15

ik & —iwy®
Z(z,8)=Tr[e AH-uN)] (1) (£,0)=3 jﬁ 3% o ®)
m,n A

with the fugacityz=eP* (u denotes the chemical potenjial
and with the inverse temperatue=1/(kT) (k andT are  with the Matsubara frequencies,=27ng, /g and with the
the Boltzmann constant and temperajuféhe Hamiltonian scaled wave vectork()=27mM/(L;A) (m® denotes a
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vector whose components are 41, =2,.... Thereby the
guantitiesL; (i=1,... D) denote the lengths of the confin-
ing cubic volume. Defining#{A) as the ultraviolet momen-
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B. Renormalization-group approach for the evaluation
of the partition function

One of the simplest methods of evaluating the partition

tum cutoff of the path integral, which is much larger than all,nction of Eq.(9) is the mean-field approximatiofL6].
physically significant momenta, implies that the scaled WaVerhereby one expands the fiell(¢,®) appearing in Eq(2)

vectors appearing in Ed5) are restricted to the region 0
<|kn|=<1. Inserting this Fourier decomposition into Eg)
one obtains

S(QJ,(I)*)Z% [“lw,t+en— M]|¢mn|2

+(VAP) " H(BIBY) T

1 *
X5 2 G(ki+ka)(¢-mn,)
ming; ... MmNy
(6)
><(‘P—mzfnz)*(Pm3n3(Pm4n4
X 6(mq+my+mg+my)
X 8(ny+n,+ng+ny,) %

with em=kﬁ1/2. (6 denotes the Kronecker-delta functipn.

quadratically around the most probable, uniform field con-
figuration

¢=(VAP)(BIBA)MIG, (12)

which is determined by the requirement
55(¢,¢*)|¢=¢*=;,W:0. The resulting Gauss-
ian integrals of this quadratic expansion can be performed in
a straightforward way. Fof5>0 this most probable field
configuration is nonzero only if1>0.

A more sophisticated and more accurate method of evalu-
ating the partition function makes use of renormalization-
group methods. The basic idea of the renormalization-group
procedure is to perform the integrations in Ef) succes-
sively [5]. In each step only field componentg,,, are in-
tegrated out whose momenta are located in an infinitesimally
small momentum shell around the maximum momentum
(hA), i.e., for whiche™'<|ky,|<1 with 0<I<1. All other
small-momentum field components,,, outside this momen-

The two-particle interaction is characterized by its Fourierym shell, which constitute the field , are left unchanged.

components

6= [ dPeeepviein). ®)

If only an infinitesimal momentum shell is integrated out, a
guadratic expansion db(d,®*) with respect to the fields
Somn Is sufficient for the further evaluation of the partition
function[17].

The desired aim of this integration over the large-

In the subsequent discussion we assume that the two-partidBomentum field components is to obtain a new scaled par-

interaction is of short range so th@i(k) is independent of
momentum, i.e.G(k)=G. Thus, introducing the momen-
tum cutoff (A A) the path integral of Eq.2) becomeg7,16]

dz@mn *S((I) (I)*)
2izp) =11 | ——|e ", 9
mn Nmn
The normalization factors
N, = i (10
mn {mBa /,8_ [ Wp

with
2 sin}’( gm/Z) - e(B/IBA)(Em_ M)/2

guarantee that in the limit of vanishing interactions, i@.,

=0, the partition function reduces to the well-known expres-

sion for the ideal Bose g49], i.e.,

Z(z,B) =11 {[1—e ¥EIlem=M] -1y (11)

As expected on physical ground&(z,8) should become
independent of the momentum cutoff ) for B/B,, 1M
>1. Obviously this requirement is fulfilled for the ideal gas.

tition function which is similar to the original one except for
possible renormalizations of the characteristic paraméfers
and G [4,5]. In particular this new scaled partition function
has to have the same momentum cutdff\(). By repeated
application of this transformation one eventually integrates
out all momentum components and obtains the value of the
partition function. However, in general this desired aim can
be achieved only approximately. Two commonly used ap-
proximation schemes involved are perturbation theldy
and the random-phase approximat{&PA) [14]. In our sub-
sequent treatment the RPA is employed. It is particularly
useful in the case of a nonvanishing most probable configu-
ration ¢ [8].

In the subsequent development we separate the zero-
temperature contribution from the grand thermodynamic po-
tential Q(M,B)=—1InZ(z,B8)/(B/B,) according to

QM. B)=Q(M,B—=)+w(M,p). (13

For the zero-temperature contributi®{M, 83— =) accurate
approximations are available. In the simplest form of the
mean-field approximation this zero-temperature contribution
is given by[16]

2

M
Q(M,E—M):—(VAD)%. (14)
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Note that the depletion terfid8] is not included in Eq(14). M(I1=0)=M,
This term is of orderO(y/Na®/V) and is thus negligibly
small for a weakly interacting Bose gas. G(1=0)=G (19)

It is shown in Appendix A that on integrating out momen-
tum components of the fields,,, which are located in the
momentum shele™'<|k,|<1 (0<l<1) the RPA vyields
the differential scaling relation

w(1=0)=0.

The RG equationg15—(17) are valid for an arbitrary

do(l) (VAP) . A number of spatial dimensior3 of the interacting Bose gas
a ~ (BIEY d(he = In(1—e™*") (19  as long as effects of confinement can be described by peri-
odic boundary conditions. Effects of confinement are charac-

with o(M,B)=w(l—x). Thereby the quantityx(l) terized by the quantityi(l) which reduces to the result of

—=[B8(1)/ 8] Ve[ e~ +2M(1)] reflects the Bogoliubov dis- Eq. (18) in the continuum limit, i.e., in the absence of any
persion relation at each step of the renormalization with th&onfining influence. If one or more degrees of freedom are
scaled inverse temperaturg(l)=Be 2. The differential ~confinedd(l) is modified as one has to take into account the
scaling of the chemical potentidfi (1) and of the coupling resulting discrete energy levels in the confined degree of
strengthG(1) is governed by the RG equations freedom. In a case where one degree of freedom of the in-
teracting Bose gas is confined, for example, one obtains

dMm(l)
—r— =2M () +d()[B(1)/BA] ” 1
dl Qp 1 izMAe~'L
d=—"55 3 | dzeMie'l
{cot\(1)/2]— 1} (2m)~ em=-e J-1
[2M(D)G(1)—G(l)2e-]
2\ (1) _ Qp mt2a{Le'Al(2m)] 0
AL B L (2m? el
MUon? | 2 sinfN(1)/2] . -
TherebyL, is the length of the confiningsquare-we)l po-
{cot A (1)/2]—1} , tential and[x] denotes the largest integer which is smaller or
7\(') [26>+M(|)] ) (16) equal tOX -
For dimensions less than or equal to 2 one has to recon-
sider the validity of thek-independent approximatioB (k)
dG(h) =—(D-2)G()+d()[B(1)/B4] =G of the int_erparticle poten_tial. If one assumes a spheri-
dl cally symmetric short-ranged interparticle interaction then at
3 low energies one may expan@(k)=Gy+G,k?+Gzk*
{cot{A(D/2] 1}3G(I)2—d(l)[ﬂ(l)/BA]3 +---. It is straightforward to demonstrate that for-o
2N (1) [which implies B(I)=Be ?—0] the trivial scaling of
G, (k=0,2,4...) is given by G(1)=G,el?~(P~2+kIl,
2 k
G() 1 icotiA(h)/2] -1} This implies that already @ =2 not onlyG, but alsoG, is
27 (1)2 | 2 sintf[ N (1)/2] A() no longer irrelevant. Thus for a reliable description of the
) temperature dependence of two-dimensional Bose gases also
X[2e=+M()]% (17) the k dependence of the interparticle interaction has to be

The (scaled energy of the eliminate@nfinitesima) momen taken into account at least to lowest order.
i T It is worth mentioning that Eq916)—(17) reduce to the
tum shell is denoted.. =1/2. The number of states per unit g qe16)-(17)

volume inside such an infinitesimal momenturm_ skl corresponding mean-field results if one neglects fluctuations

<|ky|<1 (0<I<1) is given by[d(I)(API)]. In the con- of the most probable configuratiop. Formally this is

tinuum limit, in D spatial dimensions one obtains the equivalent to setting(1)=0 [or to settingA(®_)=0 in Eq.
Il-ir?éjeperlldént Idensityp I I ! I (A8) of Appendix A]. In this case the scaling of the charac-

teristic parametert (1) andG(l) is governed by the trivial
Q scaling which depends on the dimensibnof the system
d(l)= e (18)  only. Furthermore, these mean-field results also appear in the
(2m)P limit of zero temperature wherg@— .
. ) All thermodynamic properties which are derivable from
with Qp=27"%T(D/2) denoting the surface of ®-  the grand thermodynamic potenti(M,3) can be deter-
dimensional spherel(denotes the Euler-Gamma functipn. mined by these RG equations. Thus pres$u@nd number

Equations(15)—(17) constitute the set of differential RG of particlesN, for example, are determined by the relations
equations from which the temperature-dependent part of the

grand thermodynamic potential(M,8)=w(l—) can be P)\D /
evaluated. They have to be solved subject to the initial con- _Tth —Q(M,B) BlBA (2mBI B,)P", (21)
ditions kT VAP
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with the thermal wavelength A= 274%/(mkT)
=\2m BB/ A. Another physical quantity which is of cur-
rent experimental interest is the spatially averaged second-%
order coherence factor of the interacting Bose gas. In terms§ 1:03
of the conjugate quantized field operatgis<) and#(x) of
the Bose gas it is defined by

-
o
e
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FIG. 1. Dependence of the critical temperat{ife /T,] of an
interacting Bose gas on the scattering lengtid=(V/N)¥® de-
with (-) denoting averaging over the thermodynamic equi-notes the mean distance between atoms By the critical tem-
librium distribution of the interacting Bose gas. This defini- perature of an ideal Bose gés.
tion is completely analogous to the corresponding quantity in
the quantum optical context. As apparent from EL. this
quantity is related to the grand thermodynamic potential of IIl. NUMERICAL RESULTS
Eq. (14) by
In this section thermodynamic properties of a confined
interacting Bose gas are investigated on the basis of the RG
@(M 8.G) approach of Sec. Il. We concentrate on cases in which one
@0 o, 96T degree of freedom of a three-dimensional Bose gas is con-
g(0)=2(VA )[99—2' 24 fined partly by changing the size of the confining potential in
[W(M,E,G)} one degree of freedom. According to the theoretical devel-
opments of Sec. Il it is assumed that the resulting physical
effects of such a confinement can be described by periodic

In the partial derivatives entering E@4) the grand thermo- boundary conditions.
dynamic potentiaf) has to be considered as a function of the ~ Let us first of all concentrate on the critical properties of a
fundamental parameter$/(,3,G). In order to keep the no- homogeneous interacting Bose gas in three spatial dimen-
tation as simple as possible this dependenceGomas not  sions. Though the corresponding characteristic critical expo-
been indicated explicitly in all other previous equations.  nents are already well knowl9], nonuniversal thermody-
Besides taking into account effects originating from con-namic properties of a three-dimensional homogeneous Bose
finement the RG flow equationd5—(17) differ from the gas are still the subject of controversial discussions
ones derived previously by Bijlsma and St¢8f also in two  [8,10,11,20. One example of such a thermodynamic prop-
other respects. First of all, separating off the zero-erty which is of topical interest is the critical temperature and
temperature contribution from the grand thermodynamic poits dependence on the scattering lengtbharacterizing the
tential according to Eq(13) changes the properties of the strength of the interparticle interaction. In three spatial di-
flow equations. These changes are particularly prominent ighensions this scattering length is related to the characteristic
the region wherex()>1, i.e., in the regions where the inieraction paramete® of Sec. Il byG=4maA. The ratio
value_of the effective momentum cutoff is still large. The RG between the critical temperatuf@, of an interacting Bose
equations(15)—~(17) have the property that fax(l)>1 the gas and the corresponding value of an ideal Boselgasan

ience of e nonivl sl WG & roboriona 03 i ety om 425 i h el f e -
b y . lation To/To={[(N/V)A3]/2.612 23 [Thereby the rela-

This implies that in the limit of zero temperature, i.e., for 3 .
tion (Ng/Vo)Ni,={(3/2)=2.612 has been used which ap-

B—, we obtain the result(l=0)=G(l—«) which gives _ ! _ T~
rise to the simple relatiorG(1=0)=4maA between the plies to an ideal homogeneous Bose gas at its transition

scattering lengtha and the initial value of the scaled cou- temperatureT,.] For this purpose one has to evaluate the
pling strengthG(1=0). Secondly, evaluating the particle derivatived(}/dM(M,p) along the critical trajectory which
density directly from the grand thermodynamic potential ac-merges into the unstable fixed point and whose properties
cording to Eq.(22) without any further approximations Wwill be discussed later. The resulting predictions based on
yields results which are different from the ones obtainableghe RG approach of Sec. Il are depicted in Fig. 1. One real-
from the approximate flow equation used in ReX]. izes that in this particular case of a repulsive interparticle
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FIG. 2. Dependence of the critical dens[tyN/V))\f’h] of an FIG. 3. Dependence of the second-order coherence factor
interacting Bose gas on the scattering length(\,, denotes the g‘®(0) of an interacting Bose gas on the scattering lermg# the
thermal wavelength. critical temperature.

interaction, i.e.a>0, the critical temperature increases with
increasing scattering length. The quantitative dependen
shown in Fig. 1 is approximated to a high degree of accura
by the polynomial

=(3+/33)/6. The latter eigenvalue which is associated with
Cct%e unstable manifold determines the various critical expo-
Yents of the second-order phase transition. Thus the scaling
of the correlation length of the interacting Bose gas, for ex-
ample, is determined by the characteristic exponent

T.=T,[1.000+ 3.423a/d) — 29.986a/d)> =1/\,=0.686139 Whic_h compares well with the knpwn re-
sult of »=0.67[19] which is based on a perturbative ap-
+145.183a/d)°]. (25)  proach to the RG above the transition point. Though the

implementation of the RG method presented in Sec. Il in-

_ _ o volves approximations whose accuracy is difficult to access,
This polynomial dependence is indistinguishable from thehis good agreement between the critical exponents suggests
RG results of Fig. 1 for scattering lengtasin the range 0 that the presented RG approach should be particularly reli-
<a=0.0A. [d=(V/N)'?is the mean distance between the apje close to the transition point.
interacting bosongTherefore this polynomial dependence is  One of the quantities which is accessible experimentally
not depicted in Fig. 1 explicitly. From this approximation we and which has received attention recerily is the spatially
conclude that in the limit of a vanishing interparticle inter- averaged second-order coherence factor of an interacting
action, i.e.,a—0, one obtaing(T.—T,)/T,]=3.423@/d)  Bose gas. This quantity can be determined directly from the
+0[(a/d)?]. Thus Eq.(25) is in satisfactory agreement RG equationg15)—(17) of Sec. Il by using relatiori24). Its
with other recent theoretical resulf8,10-13. The low-  critical value at the transition point and its dependence on the
density slopes predicted by these authors differ from ougcattering length are depicted in Fig. 3. For vanishingly small
low-density slope of magnitude 3.423 by less than 40%. Thealues of the interatomic interaction this second-order coher-
recently observed experimental value for this low-densityence factor approaches the value of 2. This particular value is
slope is 5.3 0.9 [13] and is slightly larger. In view of the also known to characterize photon bunching of a chaotic
uncertainty of the experimental results the agreement beslectromagnetic field. With increasing scattering leraythe
tween these theoretical predictions and these experimentafitical value of the second-order coherence factor decreases
results is satisfactory. thus indicating that with increasing repulsive interactions the

The critical density and its monotonically decreasing de+osons tend to avoid each other.
pendence on the scattering length is shown in Fig. 2. Note |et us now investigate the influence of confining this ho-
that in the limit a—0 one obtains the resultN(V)\},  mogeneous interacting Bose gas with respect to one degree
—2.612 as expected for an ideal Bose gas. of freedom, say the direction. Furthermore, let us assume

The critical quantities depicted in Figs. 1 and 2 can bethat the influence of this confinement can be described quan-
obtained from the RG approach described in Sec. Il in &aitatively by periodic boundary conditions. In such a case the
straightforward way from the knowledge of the critical tra- resulting density of stated(l) which enters the RG equa-
jectory. This critical trajectory is the stable manifold of the tions (15)—(17) is given by Eq.(20). In Fig. 4 isotherms of
unstable fixed point foD=3. This unstable fixed point is the pressure of the interacting Bose gas are depicted for vari-
given by M.,=1/2 and g.=w?2 with g(I)=G(l)/ ous values of the characteristic confinement lergtin the
[B(1)/B4]. The associated eigenvalues of the linearized RG direction. Thereby above the phase transition, i.e., for nega-
equations forM(1) and g(I) are \;=(3—+/33)/6 and\, tive values of the scaled chemical potentiali(l),
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FIG. 4. Isotherm of an interacting Bose gas for various values of FIG. 5. Isotherm of the second-order coherence fagf3¢0) of
the characteristic length of confinement (solid line,L,/a=10"%; an interacting Bose gas far,/a=10'? (solid line) andL,/a=30
dashed linel.,/a= 30; dotted linel.,/a=20). The scaled pressure (dashed lingand for the same temperature as in Fig. 4.
[p)\f’h/(k‘l')] is depicted as a function of the scaled volume
[(V/N))\{hs]. The thermal wavelength is;,= 10y27a which cor-
responds to a temperatufie=1.98x 10" ¢ K for rubidium atoms
with a scattering lengt=5.3 nm.

veloped which is based on a RG approach. Thereby physical
effects which originate from the presence of confinement
have been taken into account by periodic boundary condi-
renormalization-group equations have been used which apions. Thus this approach yields a proper description of ther-
ply to a vanishing order parametgs]. modynamic properties also in cases in which the character-

The temperature of these isotherms is chosen soNfat istic length of confinement becomes comparable to the
=10y2ma~25a. For rubidium atoms, for example, with a thermal wavelength of a Bose gas and in which local-density
scattering length of magnitude=5.3 nm t_he'ss condition 555 oximations break down. A more realistic and more com-
corresponds to a temperature D& 1.98<10° K. If the plete treatment of boundary conditions will be postponed to

length of confinement, is large in comparison with both :
the thermal wavelengti,, and the scattering length(com- sybsequent work. It hgs _been demon;trated tha’g this apprloach
gives a reliable description of the critical behavior of an in-

pare with full curve, the characteristic signatures of a well : M X i .
pronounced second-order phase transition are realized atteracting Bpse gas which is consistent with recent.theoretlcal
critical volume of magnitude \(/N))\;h?:zo_456 in agree- and experlmenta_l work. F_urtherm_ore, concentratmg on the
ment with the result of Fig. 2. As soon as the length ofPunching properties of an interacting Bose gas the influence
confinementl, becomes comparable to the thermal wave-Of the confinement length on the characteristic aspects of the
length\, the pressure dependence is modified significantlyphase transition has been worked out.

The most prominent feature of the depicted pressure depen-

dence is the disappearance of the characteristic signature of

the second-order phase transition and the smoothing of this ACKNOWLEDGMENT

pressure dependence.

In view of the recent interest in the behavior of the This work is supported by the Deutsche Forschungsge-
second-order coherence factors of interacting Bose gases iiseinschaft within the Forschergruppe “Quantengase.”
isothermal dependence on the density of the interacting Bose
gas is depicted in Fig. 5. The parameters chosen are the same
as the ones used in Fig. 4. Again for very large values of the APPENDIX A
confinement lengthL, one notices a well pronounced
second-order phase transition at the same critical volume as In this appendix the derivation of the RG transformation
in Fig. 4. Far below the transition point, i.e., for very small of Sec. Il is outlined in which an infinitesimal momentum
densities, the second-order coherence factor approachesshell of the partition functioiZ(z, 8) is integrated out. These
value of 1 which is the expected value for a Bose condensatequations are valid in the dynamical regime below the tran-
at zero temperature. Lowering the length of confinemsgnt sition temperature which is characterized by a nonzero order
in the z direction the characteristic signature of the SeCOI’ldparameter and a positive renormalized chemical potential
order phase transition disappears. M(1).

The starting point is the path-integral representation of
Eqg. (9) with the (scaled action functional of Eq(6). Intro-

In summary, a theoretical description of thermodynamicducing a symmetry-breaking, real-valued uniform field con-
properties of an interacting confined Bose gas has been déiguration¢ this action functional can be written in the form

IV. SUMMARY
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* 2 1 4
S(P,0*)=1—Mo +50¢

+[ oot @30][—M5+953]+m2n [—iwn+ €m—M+29¢%]| @mnl?

1 _
2
+%‘1‘ Eg‘P [‘mefn‘Pmn_F(Ptmfn(PEn]_F 2 ‘Pg[‘Ptml—nl‘sznz(Pm3n3+‘Ptml—nlgotmzfnz@mr&n;'

mq,Nq---Mg3,N3

1
X 8(Ny+Ny+ng)S(my+my+ m3)+§ >

* *
9@ m, —n, P-—m,—n,Pmsn,Pm,n
mq,Nq---MyNy 1 "1 212 33 474

X 8(ny+Ny+Nng+ny) (Mg +my+mg+my) (A1)

with g=(VAP®)~Y(B/B,) 'G. In order to eliminate the in-  5¢,,, are kept for which the sum of the momenta and of the
finitesimal momentum shell around the maximum momen-{viatsubara frequencies vanishes. Performing the Gaussian in-

tum (iA), for which e '<|ky|<1 (0<I<1), one ex- tegrations over the fieldsg, one obtains

pands thescaled action functional of Eq(6) up to second

order in the large-momentum field componeéfts,,, , i.e., ﬁ d?@mn
mn f Nmn

Z(z.8)= e Sel®< P2 (ap)

1
S(CD,(D*)=S(<I><,CI>’;)+§6§DTM5¢ (A2)
with the new effective action

with
Shel( @<, PZ)=S(P_, %)
8o =(...,00mn,(80mn)* 00 _m_n,(60_m_n)*,...). w
mn mn m-n m—n (A3 _E E’ 2 Ir(é’mnﬂA/ﬁ)2+ a)%
_ 29 A%+ w2—|B|?

Thereby one chooses the symmetry-breaking fiellenti-
cal to the most probable uniform field configuration of Eq. =S(d_,P%)
(12) so that terms linear inpyy vanish in Eq.(Al). The BB (e M)
small-momentum field componengs,,, which are not inte- 1 elPA) (e

grated out and which are kept constant constitute the field 245 In4 sinf[\(P_)/2]" (A7)
®_ . The symmetric matriM is given by

Thereby the relation

0 A+io, B 0 -

2
X
sinkP(x)/x?= + —)
A+|0)n 0 0 B* ( ) n:—];lgn:;t() nmT
M=l B 0 0 A-i (A4)
. ] ' has been used to perform the summation over all Matsubara
0 B A-lwy, 0 frequencies. The quantity(®_) is given by

NP o)=(BIBr)e-[e~+2M]-A(D_)  (A8)

with with
< < - w
A=e.—M+2g| o2+ + *
€~ gl ¢ @mn Pmn Emn (@mn) A(®<)=C% n;m [‘Pmn""(‘Pmn)*]
<
E )* < )
+
mn (@mn)” @mn | +D% n;w [emn®-m-—nt (@mn)* (¢-m-n)*]
< < < )
B=g ¢2+ZEmn (‘Pmn)*+% (‘Pmn)*(ﬁomn)*:|- +(2D+Clo)> > |eml? (A9)
m n=—c
(A5)
The guantitye- = 1/2 denotes the scaled energy of the elimi- C=(—4e-—2M)M/¢,
nated momentum shell. According to the RP®], in Eq. -
(A2) only products of large-momentum field components D=—3M?/¢?.
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The symbol< in the summations of EqA9) indicates that

only momenta have to be taken into account which have not 2 (,3/,3A)2 y [cothA/2)—1]D
yet been integrated out. The prime in the sum of E&J)

indicates summation over all the eliminated momentum com-

© 1 1
ponents. In the continuum limit this latter summation reduces +2:(PM - Z' =(BIBL)*—
to ¢ mo2 4\?
X - +1[ th(\/2)— 1] C?
! —_— Co —
2 (0<I<1).  (A10) 2sintf(\/2) A

(Al16)

For the derivation of the RG transformation we first of all

split off the zero-temperature contribution according to The quantitiesC andD are defined by EqA9). The corre-

sponding change of the scaled two-body coupling streigth
Spen( P, B*)=S(D_ ,®*)+(BIB4) SUM, B—o0) is determined by the requirement that
e < ¥ <) <1 ¥ <L A 1Y g

+8S(M, B). (A11) Onew= (VALY (BIBAIM new/Gnew (A17)

The remaining temperature-dependent contributioH.n accordance with Eq12). This implies that

8S(M, B) is then expanded up to second order in the small- —G+
momentum field components which constitute the fiéld, Gnew=G+AG (AL8)
ie., with
oS(M,B) AM  Ag
AG=G V—Z— (A19)
o1 et ¢
m 2 4sintf(\/2) Equations(A13)—(A16) and (A18) and (A19) characterize
the Kadanoff transformatiofd], i.e., the elimination of the
2 A
+1 M > ne— infinitesimal momentum shell for whicb*'<|km|<1 with
2 2\ = AN 4 sinkf(\/2) |<1. The RG transformation is completed by performing the
5 ) ) scaling transformations which restore the original momen-
11 (BIB)A(PS) ok 1d tum cut-off (:A), namely,
2 2\ = 2 d\2
Ko =kme',
e)\
XIn———— A12 W =w,e?,
4 sinff(\/2) (AL2) v
V'=ve D (A20)
with A=A(P_=0) and withA (P _) as defined by EqA9).
Note that the terms involving* result from the separation of B'=pe 2,
the zero-temperature contribution according to @®). This
expanded effective action involves terms linear in the field o =mme .
®_ . These linear terms can be absorbed in a redefinition of n'm
the most probable configuration, i.e., With M(1)=(M+AM)e?, G(1)=(G+AG)e? D', ()
_ _ =pBe ? these scaling relations together with the Kadanoff
Crev=0+AQ (A13)  transformations of Eq§A13)—(A16), (A18), and(A19) im-
ply the RG equations of Eq$15)—(17).
with
APPENDIX B
Z (,8/,8A)2 [cotf’()\IZ) 1]C. (A19) For the sake of completeness in this appendix the RG

equations are summarized which apply to the case of a van-
ishing order parameter above the transition point. In this dy-
Equation(A12) implies a change of the chemical potential, namical regime the scaled chemical potenti&(l) might

e, become negative. The RG equations which apply to this re-
gime of negative values oM(l) can be obtained in a
Mpew=M+AM (A15)  straightforward way with the help of second-order perturba-
tion theory by assuming a vanishing order paramg2et4).
with Thus, forM(1)<0 one obtains the RG flow equations
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do(l) _ (VAP) DI (1 — e (BB (ew —M(1)
TR (B/,BA)d(I)e In(1l—e A )s
dMm(l) 1
—ar ‘ZM(')“’“)G“)[tanr{(/s/m>[e>—M(l)]/z}_1'
(B1)
@— 2—-D)G(I)—d(1)G?(1) ! !
dl = ( ( tanR (B/ B e=—M(1) 112} 2(BIB )Y e~ —M(1)]

+(B/ .
(BIP A)Sinf?[(B/BA)[6>—M(l)]/2]]

Starting from a positive chemical potential, i.81(1=0)=M >0, one has to switch from Eg&l6) and(17) to Eq. (B1) as
soon asM(l) becomes negative in the process of renormalization. If one starts from a negative chemical potential, i.e.,
M(l=0)=M<0, one has to solve E¢B1) with the intial conditions

w(1=0)=0,
M(l=0)=M<D0, (B2)
G(1=0)=G.

The corresponding grand thermodynamic potential is givef by, B) = w(l —»).
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