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Thermodynamic properties of confined interacting Bose gases: A renormalization-group approach
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A renormalization-group method is developed with which thermodynamic properties of a weakly interact-
ing, finite-size Bose gas can be investigated. Thereby effects originating from a confining potential are taken
into account by periodic boundary conditions and by treating the resulting discrete energy levels of the
confined degrees of freedom properly. The resulting density of states modifies the flow equations of the
renormalization group in momentum space. It is shown that as soon as the characteristic length of confinement
becomes comparable to the thermal wavelength of a weakly interacting and trapped Bose gas its thermody-
namic properties are changed significantly. This is exemplified by investigating characteristic bunching prop-
erties of the interacting Bose gas which manifest themselves in the second-order coherence factor.
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I. INTRODUCTION

The experimental realization of Bose-Einstein conden
tion of trapped, ultracold, weakly interacting atomic gas
@1,2# has renewed the interest in their thermodynamic pr
erties. Definitely, many of these properties have already b
studied more than 30 years ago in connection with the th
retical efforts to describe superfluidity of strongly interacti
helium atoms. However, in these recent experimental rea
tions the physics of the trapping process and of the inte
structure of the trapped bosons still pose interesting theo
ical questions which are not yet understood completely@3#.

So far the majority of theoretical approaches aiming
describing thermodynamic properties of weakly interacti
trapped Bose gases has concentrated on mean-field
proaches@3#. At zero temperature these mean-field a
proaches lead to the well-known Gross-Pitaevski equa
and to their multicomponent generalizations. These theo
cal descriptions have proven useful in obtaining first qua
tative understandings of many recent trapping experime
@2#. However, it is known that mean-field theories do n
yield an accurate description of thermodynamic propertie
interacting gases close to the transition point of a phase t
sition @4#. Furthermore, with improving experimental acc
racy it is expected that in the near future possible deviati
from mean-field results might become accessible experim
tally even in regimes far away from transition points.

Motivated by these prospects in this paper a theoret
description of thermodynamic properties of confined, wea
interacting Bose gases is developed which is based
renormalization-group~RG! methods@5–7#. RG methods are
known to yield descriptions of thermodynamic partitio
functions which transcend mean field theories and which
also capable of describing the dynamical region close t
second-order phase transition accurately. Furthermore
these methods certain universal quantities, such as cri
exponents, might even be evaluated by analytical me
Typically the evaluation of thermodynamic partition fun
tions with the help of RG methods is only slightly mo
complicated than by mean-field methods. Thus, these
methods represent a convenient theoretical approach com
menting elaborate numerical Monte Carlo simulations of p
1050-2947/2001/63~2!/023613~10!/$15.00 63 0236
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tition functions with which one may also test limitations
mean-field theories.

In the special case of an unconfined, homogeneous th
dimensional interacting Bose gas such a RG approach
already been developed recently by Bijlsma and Stoof@8#.
However, their quantitative predictions of the dependence
the transition temperature on the scattering length, for
ample, have been more than one order of magnitude la
than corresponding numerical predictions which are based
elaborate Monte Carlo simulations of the relevant partit
function @9#. Recently this discrepancy has been clarifi
@10–12#. These studies are in satisfactory agreement with
RG calculations of Bijlsma and Stoof@8# and with recent
experiments@13# and they attribute the numerical inaccur
cies of the previous Monte Carlo approach to incorrect
trapolation procedures. This example demonstrates that
spite extensive previous work there are still open questi
even in the context of the traditional case of a homogene
and unconfined interacting Bose gas. In addition, the exp
mental possibility to control and manipulate trapped Bo
condensates has raised many interesting physical ques
most of which have not been tackled yet theoretically beyo
the framework of mean-field approximations.

In this paper a RG approach is developed which is
pable of determining thermodynamic properties of wea
interacting and confined Bose gases. This approach aim
describing physical effects of spatial confinement beyond
local-density approximation by modeling effects originati
from confinement by periodic boundary conditions. Ho
ever, contrary to the usual continuum-limit approximati
within our approach the required summations over all p
sible states of the atomic center-of-mass motion are not
placed by integrations but the discrete energy levels resul
from the confined degrees of freedom are taken into acco
Thus the presented approach should yield a valid descrip
even in cases in which the thermal wavelength of an in
acting Bose gas becomes comparable to the characte
length of confinement and in which the local-density a
proximation breaks down. Indeed in the subsequent tr
ment it is demonstrated that as soon as the confinem
length becomes comparable to the thermal wavelength of
interacting Bose gas thermodynamic properties of an in
©2001 The American Physical Society13-1
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GERNOT ALBER PHYSICAL REVIEW A 63 023613
acting Bose gas are changed significantly. This character
behavior is exemplified by investigating various thermod
namic properties of an interacting Bose gas, such as
bunching properties which manifest themselves in
second-order coherence factor and which are accessib
experimental observation. Though the presented RG
proach differs from the one developed by Bijlsma and St
@8# previously it is demonstrated that resulting critical pro
erties, such as the dependence of the transition temper
on the scattering length, are in satisfactory agreement w
these previous RG results and with other recent calculat
@10–12#.

The paper is organized as follows: In Sec. II the gene
theoretical approach is developed. Starting from the pa
integral representation of the grand canonical partition fu
tion an RG method is developed for its evaluation. As effe
of a confining potential are taken into account by perio
boundary conditions which still guarantee translational
variance of the problem the RG procedure is developed
momentum space. As a main approximation the rando
phase approximation~RPA! @14# is used which is applied to
the symmetry broken phase. In Sec. III resulting numer
results are presented. Firstly, we concentrate on charact
tic properties of an unconfined homogeneous thr
dimensional Bose gas which have been of interest rece
Secondly, the influence of finite-size effects is exemplifi
by investigating isothermal properties of the pressure an
the second order coherence factor of an interacting Bose

II. THEORETICAL TREATMENT

In this section a RG approach is developed for the eva
ation of the grand canonical partition function of an intera
ing and confined Bose gas inD spatial dimensions. Effects o
confinement are taken into account by periodic bound
conditions and by proper summations over the discrete e
gies associated with the confined degrees of freedom.
cordingly, the RG approach is developed in moment
space. The RG flow equations are derived for the temp
ture regime below the phase transition with the help of
random-phase approximation@14#. This dynamical regime is
characterized by a nonzero-order parameter. Details of
derivation of these RG equations are given in Appendix
For the sake of completeness the RG equations that app
the dynamical region above the phase transition, i.e., in
region of a vanishing order parameter, are summarized
Appendix B. These latter equations have already been
cussed in detail previously@8,14#.

A. Path-integral representation of the partition function

Thermodynamic properties of an interacting system
bosons can be described by its~grand-canonical! partition
function @15#

Z~z,b!5Tr@e2b(H2mN)# ~1!

with the fugacityz5ebm (m denotes the chemical potentia!
and with the inverse temperatureb51/(kT) (k and T are
the Boltzmann constant and temperature!. The Hamiltonian
02361
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and the number operator of the interacting bosons are
notedH andN, respectively. For interacting bosons this pa
tition function can be represented as a functional integ
over a complex scalar fieldF. In D spatial dimensions this
path-integral representation is given by@7,15#

Z~z,b!5E d@F~j,Q!,F~j,Q!* #e2S(F,F* ) ~2!

with the ~dimensionless! action

S~F,F* !5E
0

b/bLE
VLD

dQdDj

3H F* ~j,Q!F2
1

2
Dj2M1

]

]QGF~j,Q!

1 1
2 E

VLD
dDj8uF~j,Q!u2

3FbLVS j2j8

L D G uF~j8,Q!u2J . ~3!

The volume within which the Bose system is confined to
denotedV. For the sake of simplicity this volume will be
assumed to be of cubic shape and the resulting spatial
finement will be described by imposing periodic bounda
conditions on the complex fieldF(j,Q). In Eq. ~2! scaled
quantities have been introduced which involve a yet arbitr
characteristic momentum (\L) whose associated invers
temperature is given bybL5m/(\2L2). The mass of the
interacting bosons is denotedm. The scaled chemical poten
tial M is defined byM5mbL . The two-body interaction
potential between the bosons is denotedV(x2x8) and j
5xL and Q5t/(\bL) are scaled spatial coordinates a
the scaled imaginary time. The fugacityz appearing in Eq.
~3! is related to the chemical potentialM by @7#

ln z5M2
1

2
bLV~x50!. ~4!

The integration measure appearing in Eq.~2! is defined later
~cf. Eq. ~9!!.

Due to the trace operation involved in the evaluation
the partition function of Eq.~1! the functional integration in
Eq. ~2! has to be performed over all complex fieldsF(j,Q)
which are periodic in the imaginary scaled timeQ, i.e.,
F(j,Q)5F(j,Q1b/bL) @7#. If one also imposes spatia
periodic boundary conditions which still preserve the tra
lational invariance of the problem it is convenient to tran
form the functional integral of Eq.~2! into the momentum-
frequency representation. This is achieved by Fou
transforming the complex fields according to

F~j,Q!5(
m,n

F eikm•j

AVLDGF e2 ivnQ

Ab/bL
Gwmn ~5!

with the Matsubara frequenciesvn52pnbL /b and with the
scaled wave vectorskm

( i )52pm( i )/(LiL) (m( i ) denotes a
3-2



-
-
al
v

.
ie

rti

-

s

s.

ion

n-

nt
-
d in

alu-
n-

oup

ally
um

.
a

n

e-
ar-
r
s
n

tes
the
an
p-

rly
gu-

ero-
po-

he
ion

THERMODYNAMIC PROPERTIES OF CONFINED . . . PHYSICAL REVIEW A63 023613
vector whose components are 0,61, 62,... . Thereby the
quantitiesLi ( i 51, . . . ,D) denote the lengths of the confin
ing cubic volume. Defining (\L) as the ultraviolet momen
tum cutoff of the path integral, which is much larger than
physically significant momenta, implies that the scaled wa
vectors appearing in Eq.~5! are restricted to the region 0
<ukmu<1. Inserting this Fourier decomposition into Eq.~3!
one obtains

S~F,F* !5(
mn

@2 ivn1em2M #uwmnu2

1~VLD!21~b/bL!21

3
1

2 (
m1n1 ; . . . ;m4n4

G~k11k3!~w2m12n1
!*

~6!

3~w2m22n2
!* wm3n3

wm4n4

3d~m11m21m31m4!

3d~n11n21n31n4! ~7!

with em5km
2 /2. (d denotes the Kronecker-delta function!

The two-particle interaction is characterized by its Four
components

G~k!5E
VLD

dDjeikjbLV~j/L!. ~8!

In the subsequent discussion we assume that the two-pa
interaction is of short range so thatG(k) is independent of
momentum, i.e.,G(k)5G. Thus, introducing the momen
tum cutoff (\L) the path integral of Eq.~2! becomes@7,16#

Z~z,b!5F)
mn

E d2wmn

Nmn
Ge2S(F,F* ). ~9!

The normalization factors

Nmn5
p

zmbL /b2 ivn
~10!

with

2 sinh~zm/2!5e(b/bL)(em2M )/2

guarantee that in the limit of vanishing interactions, i.e.,G
[0, the partition function reduces to the well-known expre
sion for the ideal Bose gas@7#, i.e.,

Z~z,b!5)
m

$@12e2(b/bL)(em2M )#21%. ~11!

As expected on physical grounds,Z(z,b) should become
independent of the momentum cutoff (\L) for b/bL , 1/M
@1. Obviously this requirement is fulfilled for the ideal ga
02361
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B. Renormalization-group approach for the evaluation
of the partition function

One of the simplest methods of evaluating the partit
function of Eq. ~9! is the mean-field approximation@16#.
Thereby one expands the fieldF(j,Q) appearing in Eq.~2!
quadratically around the most probable, uniform field co
figuration

w̄5A~VLD!~b/bL!M /G, ~12!

which is determined by the requireme
dS(F,F* )uF5F* 5w̄/A(VLD)(b/bL)50. The resulting Gauss
ian integrals of this quadratic expansion can be performe
a straightforward way. ForG.0 this most probable field
configuration is nonzero only ifM.0.

A more sophisticated and more accurate method of ev
ating the partition function makes use of renormalizatio
group methods. The basic idea of the renormalization-gr
procedure is to perform the integrations in Eq.~9! succes-
sively @5#. In each step only field componentsdwmn are in-
tegrated out whose momenta are located in an infinitesim
small momentum shell around the maximum moment
(\L), i.e., for whiche2 l,ukmu,1 with 0, l !1. All other
small-momentum field componentswmn outside this momen-
tum shell, which constitute the fieldf, , are left unchanged
If only an infinitesimal momentum shell is integrated out,
quadratic expansion ofS(F,F* ) with respect to the fields
dwmn is sufficient for the further evaluation of the partitio
function @17#.

The desired aim of this integration over the larg
momentum field components is to obtain a new scaled p
tition function which is similar to the original one except fo
possible renormalizations of the characteristic parameterM
and G @4,5#. In particular this new scaled partition functio
has to have the same momentum cutoff (\L). By repeated
application of this transformation one eventually integra
out all momentum components and obtains the value of
partition function. However, in general this desired aim c
be achieved only approximately. Two commonly used a
proximation schemes involved are perturbation theory@5#
and the random-phase approximation~RPA! @14#. In our sub-
sequent treatment the RPA is employed. It is particula
useful in the case of a nonvanishing most probable confi
ration w̄ @8#.

In the subsequent development we separate the z
temperature contribution from the grand thermodynamic
tential V(M ,b)52 ln Z(z,b)/(b/bL) according to

V~M ,b!5V~M ,b→`!1v~M ,b!. ~13!

For the zero-temperature contributionV(M ,b→`) accurate
approximations are available. In the simplest form of t
mean-field approximation this zero-temperature contribut
is given by@16#

V~M ,b→`!52~VLD!
M2

2G
. ~14!
3-3
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GERNOT ALBER PHYSICAL REVIEW A 63 023613
Note that the depletion term@18# is not included in Eq.~14!.
This term is of orderO(ANa3/V) and is thus negligibly
small for a weakly interacting Bose gas.

It is shown in Appendix A that on integrating out mome
tum components of the fieldswmn which are located in the
momentum shelle2 l<ukmu<1 (0, l !1) the RPA yields
the differential scaling relation

dv~ l !

dl
5

~VLD!

~b/bL!
d~ l !e2Dl ln~12e2l( l )! ~15!

with v(M ,b)[v( l→`). Thereby the quantity l( l )
5@b( l )/bL#Ae.@e.12M ( l )# reflects the Bogoliubov dis
persion relation at each step of the renormalization with
scaled inverse temperatureb( l )5be22l . The differential
scaling of the chemical potentialM ( l ) and of the coupling
strengthG( l ) is governed by the RG equations

dM~ l !

dl
52M ~ l !1d~ l !@b~ l !/bL#

3
$coth@l~ l !/2#21%

2l~ l !
@2M ~ l !G~ l !2G~ l !2e.#

2d~ l !@b~ l !/bL#3
M ~ l !G~ l !

2l~ l !2 H 1

2 sinh2@l~ l !/2#

1
$coth@l~ l !/2#21%

l~ l ! J @2e.1M ~ l !#2, ~16!

dG~ l !

dl
52~D22!G~ l !1d~ l !@b~ l !/bL#

3
$coth@l~ l !/2#21%

2l~ l !
3G~ l !22d~ l !@b~ l !/bL#3

3
G~ l !2

2l~ l !2 H 1

2 sinh2@l~ l !/2#
1

$coth@l~ l !/2#21%

l~ l ! J
3@2e.1M ~ l !#2. ~17!

The ~scaled! energy of the eliminated~infinitesimal! momen-
tum shell is denotede.51/2. The number of states per un
volume inside such an infinitesimal momentum shelle2 l

<ukmu<1 (0, l !1) is given by@d( l )(LDl )#. In the con-
tinuum limit, in D spatial dimensions one obtains th
l-independent density

d~ l !5
VD

~2p!D
~18!

with VD52pD/2/G(D/2) denoting the surface of aD-
dimensional sphere. (G denotes the Euler-Gamma function!

Equations~15!–~17! constitute the set of differential RG
equations from which the temperature-dependent part of
grand thermodynamic potentialv(M ,b)[v( l→`) can be
evaluated. They have to be solved subject to the initial c
ditions
02361
e
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M ~ l 50!5M ,

G~ l 50!5G, ~19!

v~ l 50!50.

The RG equations~15!–~17! are valid for an arbitrary
number of spatial dimensionsD of the interacting Bose ga
as long as effects of confinement can be described by p
odic boundary conditions. Effects of confinement are char
terized by the quantityd( l ) which reduces to the result o
Eq. ~18! in the continuum limit, i.e., in the absence of an
confining influence. If one or more degrees of freedom
confined,d( l ) is modified as one has to take into account t
resulting discrete energy levels in the confined degree
freedom. In a case where one degree of freedom of the
teracting Bose gas is confined, for example, one obtains

d~ l !5
VD

~2p!D

1

2 (
M52`

` E
21

1

dz eizMLe2 l Lz

5
VD

~2p!D

p12p@Lze
2 lL/~2p!#

Lze
2 lL

. ~20!

TherebyLz is the length of the confining~square-well! po-
tential and@x# denotes the largest integer which is smaller
equal tox.

For dimensions less than or equal to 2 one has to rec
sider the validity of thek-independent approximationG(k)
5G of the interparticle potential. If one assumes a sphe
cally symmetric short-ranged interparticle interaction then
low energies one may expandG(k)5G01G2k21G4k4

1•••. It is straightforward to demonstrate that forl→`
@which implies b( l )5be22l→0] the trivial scaling of
Gk (k50,2,4, . . . ) is given by Gk( l )5Gke

[22(D221k)] l .
This implies that already atD52 not onlyG0 but alsoG2 is
no longer irrelevant. Thus for a reliable description of t
temperature dependence of two-dimensional Bose gases
the k dependence of the interparticle interaction has to
taken into account at least to lowest order.

It is worth mentioning that Eqs.~16!–~17! reduce to the
corresponding mean-field results if one neglects fluctuati
of the most probable configurationw̄. Formally this is
equivalent to settingd( l )[0 @or to settingD(F,)[0 in Eq.
~A8! of Appendix A#. In this case the scaling of the chara
teristic parametersM ( l ) andG( l ) is governed by the trivial
scaling which depends on the dimensionD of the system
only. Furthermore, these mean-field results also appear in
limit of zero temperature whereb→`.

All thermodynamic properties which are derivable fro
the grand thermodynamic potentialV(M ,b) can be deter-
mined by these RG equations. Thus pressureP and number
of particlesN, for example, are determined by the relation

Pl th
D

kT
52V~M ,b!

b/bL

VLD
~2pb/bL!D/2, ~21!
3-4
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Nl th
D

V
52~2pb/bL!D/2

]V

]M
~M ,b! ~22!

with the thermal wavelength l th[A2p\2/(mkT)
5A2pb/bL/L. Another physical quantity which is of cur
rent experimental interest is the spatially averaged seco
order coherence factor of the interacting Bose gas. In te
of the conjugate quantized field operatorsĉ(x) andĉ†(x) of
the Bose gas it is defined by

g(2)~0!5

1

VE dDx^ĉ†~x!ĉ†~x!ĉ~x!ĉ~x!&

F 1

VE dDx^ĉ†~x!ĉ~x!&G2 ~23!

with ^•& denoting averaging over the thermodynamic eq
librium distribution of the interacting Bose gas. This defin
tion is completely analogous to the corresponding quantit
the quantum optical context. As apparent from Eq.~1! this
quantity is related to the grand thermodynamic potentia
Eq. ~14! by

g(2)~0!52~VLD!

]V

]G
~M ,b,G!

F ]V

]M
~M ,b,G!G2 . ~24!

In the partial derivatives entering Eq.~24! the grand thermo-
dynamic potentialV has to be considered as a function of t
fundamental parameters (M ,b,G). In order to keep the no
tation as simple as possible this dependence onG has not
been indicated explicitly in all other previous equations.

Besides taking into account effects originating from co
finement the RG flow equations~15!–~17! differ from the
ones derived previously by Bijlsma and Stoof@8# also in two
other respects. First of all, separating off the ze
temperature contribution from the grand thermodynamic
tential according to Eq.~13! changes the properties of th
flow equations. These changes are particularly prominen
the region wherel( l )@1, i.e., in the regions where th
value of the effective momentum cutoff is still large. The R
equations~15!–~17! have the property that forl( l )@1 the
influence of the nontrivial scaling which is proportional
the characteristic level densityd( l ) is exponentially small.
This implies that in the limit of zero temperature, i.e., f
b→`, we obtain the resultG( l 50)5G( l→`) which gives
rise to the simple relationG( l 50)54paL between the
scattering lengtha and the initial value of the scaled cou
pling strengthG( l 50). Secondly, evaluating the partic
density directly from the grand thermodynamic potential
cording to Eq. ~22! without any further approximation
yields results which are different from the ones obtaina
from the approximate flow equation used in Ref.@8#.
02361
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III. NUMERICAL RESULTS

In this section thermodynamic properties of a confin
interacting Bose gas are investigated on the basis of the
approach of Sec. II. We concentrate on cases in which
degree of freedom of a three-dimensional Bose gas is c
fined partly by changing the size of the confining potential
one degree of freedom. According to the theoretical dev
opments of Sec. II it is assumed that the resulting phys
effects of such a confinement can be described by perio
boundary conditions.

Let us first of all concentrate on the critical properties o
homogeneous interacting Bose gas in three spatial dim
sions. Though the corresponding characteristic critical ex
nents are already well known@19#, nonuniversal thermody-
namic properties of a three-dimensional homogeneous B
gas are still the subject of controversial discussio
@8,10,11,20#. One example of such a thermodynamic pro
erty which is of topical interest is the critical temperature a
its dependence on the scattering lengtha characterizing the
strength of the interparticle interaction. In three spatial
mensions this scattering length is related to the character
interaction parameterG of Sec. II byG54paL. The ratio
between the critical temperatureTc of an interacting Bose
gas and the corresponding value of an ideal Bose gasTo can
be determined easily from Eq.~22! with the help of the re-
lation Tc /To5$@(N/V)l th

3 #/2.612%22/3. @Thereby the rela-
tion (No /Vo)l th

3 5z(3/2)'2.612 has been used which a
plies to an ideal homogeneous Bose gas at its transi
temperatureTo .# For this purpose one has to evaluate t
derivative]V/]M (M ,b) along the critical trajectory which
merges into the unstable fixed point and whose proper
will be discussed later. The resulting predictions based
the RG approach of Sec. II are depicted in Fig. 1. One re
izes that in this particular case of a repulsive interparti

FIG. 1. Dependence of the critical temperature@Tc /To# of an
interacting Bose gas on the scattering lengtha. @d5(V/N)1/3 de-
notes the mean distance between atoms andTo is the critical tem-
perature of an ideal Bose gas.#
3-5
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GERNOT ALBER PHYSICAL REVIEW A 63 023613
interaction, i.e.,a.0, the critical temperature increases wi
increasing scattering length. The quantitative depende
shown in Fig. 1 is approximated to a high degree of accur
by the polynomial

Tc5To@1.00013.423~a/d!229.986~a/d!2

1145.183~a/d!3#. ~25!

This polynomial dependence is indistinguishable from
RG results of Fig. 1 for scattering lengthsa in the range 0
<a<0.02d. @d5(V/N)1/3 is the mean distance between t
interacting bosons.# Therefore this polynomial dependence
not depicted in Fig. 1 explicitly. From this approximation w
conclude that in the limit of a vanishing interparticle inte
action, i.e.,a→0, one obtains@(Tc2To)/To#53.423(a/d)
1O@(a/d)2#. Thus Eq. ~25! is in satisfactory agreemen
with other recent theoretical results@8,10–12#. The low-
density slopes predicted by these authors differ from
low-density slope of magnitude 3.423 by less than 40%. T
recently observed experimental value for this low-dens
slope is 5.160.9 @13# and is slightly larger. In view of the
uncertainty of the experimental results the agreement
tween these theoretical predictions and these experime
results is satisfactory.

The critical density and its monotonically decreasing d
pendence on the scattering length is shown in Fig. 2. N
that in the limit a→0 one obtains the result (N/V)l th

3

→2.612 as expected for an ideal Bose gas.
The critical quantities depicted in Figs. 1 and 2 can

obtained from the RG approach described in Sec. II in
straightforward way from the knowledge of the critical tr
jectory. This critical trajectory is the stable manifold of th
unstable fixed point forD53. This unstable fixed point is
given by Mc51/2 and gc5p2/2 with g( l )5G( l )/
@b( l )/bL#. The associated eigenvalues of the linearized
equations forM ( l ) and g( l ) are l15(32A33)/6 andl2

FIG. 2. Dependence of the critical density@(N/V)l th
3 # of an

interacting Bose gas on the scattering lengtha. (l th denotes the
thermal wavelength.!
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5(31A33)/6. The latter eigenvalue which is associated w
the unstable manifold determines the various critical ex
nents of the second-order phase transition. Thus the sca
of the correlation length of the interacting Bose gas, for e
ample, is determined by the characteristic exponentn
51/l250.686 139 which compares well with the known r
sult of n50.67 @19# which is based on a perturbative a
proach to the RG above the transition point. Though
implementation of the RG method presented in Sec. II
volves approximations whose accuracy is difficult to acce
this good agreement between the critical exponents sugg
that the presented RG approach should be particularly
able close to the transition point.

One of the quantities which is accessible experimenta
and which has received attention recently@2# is the spatially
averaged second-order coherence factor of an interac
Bose gas. This quantity can be determined directly from
RG equations~15!–~17! of Sec. II by using relation~24!. Its
critical value at the transition point and its dependence on
scattering length are depicted in Fig. 3. For vanishingly sm
values of the interatomic interaction this second-order coh
ence factor approaches the value of 2. This particular valu
also known to characterize photon bunching of a chao
electromagnetic field. With increasing scattering lengtha the
critical value of the second-order coherence factor decre
thus indicating that with increasing repulsive interactions
bosons tend to avoid each other.

Let us now investigate the influence of confining this h
mogeneous interacting Bose gas with respect to one de
of freedom, say thez direction. Furthermore, let us assum
that the influence of this confinement can be described qu
titatively by periodic boundary conditions. In such a case
resulting density of statesd( l ) which enters the RG equa
tions ~15!–~17! is given by Eq.~20!. In Fig. 4 isotherms of
the pressure of the interacting Bose gas are depicted for v
ous values of the characteristic confinement lengthLz in the
z direction. Thereby above the phase transition, i.e., for ne
tive values of the scaled chemical potentialM ( l ),

FIG. 3. Dependence of the second-order coherence fa
g(2)(0) of an interacting Bose gas on the scattering lengtha at the
critical temperature.
3-6
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renormalization-group equations have been used which
ply to a vanishing order parameter@8#.

The temperature of these isotherms is chosen so thal th

510A2pa'25a. For rubidium atoms, for example, with
scattering length of magnitudea55.3 nm this condition
corresponds to a temperature ofT51.9831026 K. If the
length of confinementLz is large in comparison with both
the thermal wavelengthl th and the scattering lengtha ~com-
pare with full curve!, the characteristic signatures of a we
pronounced second-order phase transition are realized
critical volume of magnitude (V/N)l th

2350.456 in agree-
ment with the result of Fig. 2. As soon as the length
confinementLz becomes comparable to the thermal wav
lengthl th the pressure dependence is modified significan
The most prominent feature of the depicted pressure de
dence is the disappearance of the characteristic signatu
the second-order phase transition and the smoothing of
pressure dependence.

In view of the recent interest in the behavior of th
second-order coherence factors of interacting Bose gase
isothermal dependence on the density of the interacting B
gas is depicted in Fig. 5. The parameters chosen are the
as the ones used in Fig. 4. Again for very large values of
confinement lengthLz one notices a well pronounce
second-order phase transition at the same critical volum
in Fig. 4. Far below the transition point, i.e., for very sm
densities, the second-order coherence factor approach
value of 1 which is the expected value for a Bose conden
at zero temperature. Lowering the length of confinementLz
in the z direction the characteristic signature of the seco
order phase transition disappears.

IV. SUMMARY

In summary, a theoretical description of thermodynam
properties of an interacting confined Bose gas has been

FIG. 4. Isotherm of an interacting Bose gas for various value
the characteristic length of confinementLz ~solid line,Lz /a51012;
dashed line,Lz /a530; dotted line,Lz /a520). The scaled pressur
@pl th

3 /(kT)# is depicted as a function of the scaled volum
@(V/N)l th

23#. The thermal wavelength isl th510A2pa which cor-
responds to a temperatureT51.9831026 K for rubidium atoms
with a scattering lengtha55.3 nm.
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veloped which is based on a RG approach. Thereby phys
effects which originate from the presence of confinem
have been taken into account by periodic boundary con
tions. Thus this approach yields a proper description of th
modynamic properties also in cases in which the charac
istic length of confinement becomes comparable to
thermal wavelength of a Bose gas and in which local-den
approximations break down. A more realistic and more co
plete treatment of boundary conditions will be postponed
subsequent work. It has been demonstrated that this appr
gives a reliable description of the critical behavior of an
teracting Bose gas which is consistent with recent theoret
and experimental work. Furthermore, concentrating on
bunching properties of an interacting Bose gas the influe
of the confinement length on the characteristic aspects of
phase transition has been worked out.
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APPENDIX A

In this appendix the derivation of the RG transformati
of Sec. II is outlined in which an infinitesimal momentu
shell of the partition functionZ(z,b) is integrated out. These
equations are valid in the dynamical regime below the tr
sition temperature which is characterized by a nonzero o
parameter and a positive renormalized chemical poten
M ( l ).

The starting point is the path-integral representation
Eq. ~9! with the ~scaled! action functional of Eq.~6!. Intro-
ducing a symmetry-breaking, real-valued uniform field co
figurationw̄ this action functional can be written in the form

f FIG. 5. Isotherm of the second-order coherence factorg(2)(0) of
an interacting Bose gas forLz /a51012 ~solid line! and Lz /a530
~dashed line! and for the same temperature as in Fig. 4.
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S~F,F* !5H 2M w̄21
1

2
gw̄4J 1@w001w00* #@2M w̄1gw̄3#1(

m,n
@2 ivn1em2M12gw̄2#uwmnu2

1(
m,n

1

2
gw̄2@w2m2nwmn1w2m2n* wmn* #1 (

m1 ,n1•••m3 ,n3

w̄g@w2m12n1
* wm2n2

wm3n3
1w2m12n1

* w2m22n2
* wm3n3

#

3d~n11n21n3!d~m11m21m3!1
1

2 (
m1 ,n1•••m4n4

gw2m12n1
* w2m22n2

* wm3n3
wm4n4

3d~n11n21n31n4!d~m11m21m31m4! ~A1!
en

q

e

i

ts

he
n in-

ara
with g5(VLD)21(b/bL)21G. In order to eliminate the in-
finitesimal momentum shell around the maximum mom
tum (\L), for which e2 l,ukmu,1 (0, l !1), one ex-
pands the~scaled! action functional of Eq.~6! up to second
order in the large-momentum field componentsdwmn , i.e.,

S~F,F* !5S~F, ,F,* !1
1

2
dwTMdw ~A2!

with

dwT5„ . . . ,dwmn ,~dwmn!* ,dw2m2n ,~dw2m2n!* , . . . ….
~A3!

Thereby one chooses the symmetry-breaking fieldw̄ identi-
cal to the most probable uniform field configuration of E
~12! so that terms linear inw00 vanish in Eq.~A1!. The
small-momentum field componentswmn which are not inte-
grated out and which are kept constant constitute the fi
F, . The symmetric matrixM is given by

M5S A A A A

0 A1 ivn B 0

A1 ivn 0 0 B*

B 0 0 A2 ivn

0 B* A2 ivn 0

A A A A

D ~A4!

with

A5e.2M12gF w̄21w̄(
mn

,

wmn1w̄(
mn

,

~wmn!*

1(
mn

,

~wmn!* wmnG ,

B5gF w̄212w̄(
mn

,

~wmn!* 1(
mn

,

~wmn!* ~w2m2n!* G .

~A5!

The quantitye.51/2 denotes the scaled energy of the elim
nated momentum shell. According to the RPA@14#, in Eq.
~A2! only products of large-momentum field componen
02361
-

.

ld

-

dwmn are kept for which the sum of the momenta and of t
Matsubara frequencies vanishes. Performing the Gaussia
tegrations over the fieldsdwmn one obtains

Z~z,b!5F)
mn

, E d2wmn

Nmn
Ge2Snew(F, ,F,

* ) ~A6!

with the new effective action

Snew~F, ,F,* !5S~F, ,F,* !

2
1

2 (
m

8 (
n52`

`

ln
~zmnbL /b!21vn

2

A21vn
22uBu2

5S~F, ,F,* !

2
1

2 (
m

8 ln
e(b/bL)(e.2M )

4 sinh2@l~F,!/2#
. ~A7!

Thereby the relation

sinh2~x!/x25 )
n52`,nÞ0

` F11S x

np D 2G
has been used to perform the summation over all Matsub
frequencies. The quantityl(F,) is given by

l~F,!5~b/bL!Ae.@e.12M #2D~F,! ~A8!

with

D~F,!5C(
m

,

(
n52`

`

@wmn1~wmn!* #

1D(
m

,

(
n52`

`

@wmnw2m2n1~wmn!* ~w2m2n!* #

1~2D1C/w̄ !(
m

,

(
n52`

`

uwmnu2, ~A9!

C5~24e.22M !M /w̄,

D523M2/w̄2.
3-8



n

m
ce

all

io
al

f

el
n

l,

h

he
en-

off

RG
an-

dy-

re-

a-

THERMODYNAMIC PROPERTIES OF CONFINED . . . PHYSICAL REVIEW A63 023613
The symbol, in the summations of Eq.~A9! indicates that
only momenta have to be taken into account which have
yet been integrated out. The prime in the sum of Eq.~A7!
indicates summation over all the eliminated momentum co
ponents. In the continuum limit this latter summation redu
to

(
m

8 5~VLD!
VD

~2p!D
l ~0, l !1!. ~A10!

For the derivation of the RG transformation we first of
split off the zero-temperature contribution according to

Snew~F, ,F,* !5S~F, ,F,* !1~b/bL!dV~M ,b→`!

1dS~M ,b!. ~A11!

The remaining temperature-dependent contribut
dS(M ,b) is then expanded up to second order in the sm
momentum field components which constitute the fieldF, ,
i.e.,

dS~M ,b!

52(
m

8
1

2
ln

el

4 sinh2~l/2!

1
1

2

~b/bL!2D~F,!

2l (
m

8
d

dl
ln

el

4 sinh2~l/2!

2
1

2 F ~b/bL!2D~F,!

2l G2

(
m

8
1

2

d2

dl2

3 ln
el

4 sinh2~l/2!
~A12!

with l5l(F,[0) and withD(F,) as defined by Eq.~A9!.
Note that the terms involvingel result from the separation o
the zero-temperature contribution according to Eq.~13!. This
expanded effective action involves terms linear in the fi
F, . These linear terms can be absorbed in a redefinitio
the most probable configuration, i.e.,

w̄new5w̄1Dw̄ ~A13!

with

Dw̄5
1

4M (
m

8 ~b/bL!2
1

2l
@coth~l/2!21#C. ~A14!

Equation~A12! implies a change of the chemical potentia
i.e.,

Mnew5M1DM ~A15!

with
02361
ot

-
s

n
l-

d
of

DM52(
m

8 ~b/bL!2
1

2l
@coth~l/2!21#D

12
Dw̄

w̄
M2(

m
8

1

2
~b/bL!4

1

4l2

3H 1

2 sinh2~l/2!
1

1

l
@coth~l/2!21#J C2.

~A16!

The quantitiesC andD are defined by Eq.~A9!. The corre-
sponding change of the scaled two-body coupling strengtG
is determined by the requirement that

w̄new5A~VLD!~b/bL!Mnew/Gnew ~A17!

in accordance with Eq.~12!. This implies that

Gnew5G1DG ~A18!

with

DG5GFDM

M
22

Dw̄

w̄
G . ~A19!

Equations~A13!–~A16! and ~A18! and ~A19! characterize
the Kadanoff transformation@4#, i.e., the elimination of the
infinitesimal momentum shell for whiche2 l,ukmu,1 with
l !1. The RG transformation is completed by performing t
scaling transformations which restore the original mom
tum cut-off (\L), namely,

km85kmel ,

vn85vne2l ,

V85Ve2Dl , ~A20!

b85be22l ,

wn8m8
8 5wnme2 l .

With M ( l )5(M1DM )e2l , G( l )5(G1DG)e(22D) l , b( l )
5be22l these scaling relations together with the Kadan
transformations of Eqs.~A13!–~A16!, ~A18!, and~A19! im-
ply the RG equations of Eqs.~15!–~17!.

APPENDIX B

For the sake of completeness in this appendix the
equations are summarized which apply to the case of a v
ishing order parameter above the transition point. In this
namical regime the scaled chemical potentialM ( l ) might
become negative. The RG equations which apply to this
gime of negative values ofM ( l ) can be obtained in a
straightforward way with the help of second-order perturb
tion theory by assuming a vanishing order parameter@8,14#.
Thus, forM ( l ),0 one obtains the RG flow equations
3-9
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dv~ l !

dl
5

~VLD!

~b/bL!
d~ l !e2Dl ln~12e2(b/bL)„e.2M ( l )…!,

dM~ l !

dl
52M ~ l !2d~ l !G~ l !H 1

tanh$~b/bL!@e.2M ~ l !#/2%
21J ,

~B1!
dG~ l !

dl
5~22D !G~ l !2d~ l !G2~ l !H 1

tanh$~b/bL!@e.2M ~ l !#/2%

1

2~b/bL!2@e.2M ~ l !#

1~b/bL!
1

sinh2@~b/bL!@e.2M ~ l !#/2#
J .

Starting from a positive chemical potential, i.e.,M ( l 50)[M.0, one has to switch from Eqs.~16! and ~17! to Eq. ~B1! as
soon asM ( l ) becomes negative in the process of renormalization. If one starts from a negative chemical potent
M ( l 50)[M,0, one has to solve Eq.~B1! with the intial conditions

v~ l 50!50,

M ~ l 50!5M,0, ~B2!

G~ l 50!5G.

The corresponding grand thermodynamic potential is given byV(M ,b)[v( l→`).
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