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A new class of error-correcting quantum codes is introduced capable of stabilizing qubits against spon-
taneous decay arising from couplings to statistically independent reservoirs. These quantum codes are
based on the idea of using an embedded quantum code and exploiting the classical information available
about which qubit has been affected by the environment. They are immediately relevant for quantum com-
putation and information processing using arrays of trapped ions or nuclear spins. Interesting relations
between these quantum codes and basic notions of design theory are established.
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Much of the newly emerging field of quantum informa-
tion processing is driven by the desire to push the char-
acteristic quantum effects into the macroscopic domain
as far as possible. For this purpose it is of vital interest
to develop efficient methods for stabilizing the coherence
of quantum systems against destructive environmental
influences. Prominent examples of such environmentally
induced dissipative phenomena are spontaneous decay
processes originating from couplings of a quantum system
to uncontrollable photonic [1] or phononic [2] degrees of
freedom. So far, various efficient quantum error-correcting
strategies have been developed. All of them rely on redun-
dancy as far as the encoding of information in quantum
states is concerned.

In principle, any quantum system can be stabilized
against environmental influences by active quantum error-
correcting codes (QECCs) with the help of repeated
control measurements and appropriately conditioned
recovery operations [3–8] and by exploiting the quantum
Zeno effect [9,10]. But, typically these QECCs require a
large number of measurement and recovery operations. In
physical systems governed by collective spontaneous de-
cay processes originating from couplings to a single reser-
voir it is more advantageous to use quantum error avoiding
codes (QEACs) [11–13] for efficient stabilization. These
QEACs rely on the existence of a sufficiently high
dimensional decoherence free subsystem (DFS) which
stabilizes the dynamics passively without measurements
and recovery operations. However, in the opposite dy-
namical regime of interest in which the spacings between
physical qubits are much larger than the wavelengths of
spontaneously emitted photons or phonons, these qubits
decay into statistically independent reservoirs [1,3]. Effi-
cient error-correcting strategies have also been proposed
for these situations. Typically they use a QECC con-
structed within a DFS [3,14,15]. Errors arising from the
conditional time evolution between two quantum jumps
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are corrected passively by the QEAC while quantum jumps
are corrected actively by the QECC. In this way the total
number of control measurements and recovery operations
required is decreased significantly in comparison with
purely active QECCs. However, so far the redundancy of
these embedded codes is not satisfactory. Plenio et al.
[15] have constructed an embedded code capable of
stabilizing one logical qubit which uses eight physical
ones, but have not found a shorter code. Thus, in view of
present day experimental possibilities [16] it is desirable
to develop alternative error-correcting strategies for these
cases by which it is possible to reduce redundancy even
further without losing the advantage of passive error
correction between successive quantum jumps.

Motivated by this need, in this Letter a new class of
embedded quantum error-correcting codes is introduced
which are capable of stabilizing distinguishable qubits
against spontaneous decay processes. These codes are
based on the idea of embedding an active QECC within a
passive QEAC and simultaneously exploiting the classical
information available about which qubit has been affected
by an environment. Optimal one detected-jump correcting
quantum codes of even length are constructed which
minimize redundancy. It turns out that their redundancy is
significantly smaller than that of previously proposed em-
bedded error-correction schemes [15]. This latter property
makes these new quantum codes particularly attractive for
quantum computation and information processing based
on arrays of trapped ions or nuclear spins. A link to
basic notions of design theory [17] is established which
is expected to be useful for further explorations of this
basic idea.

Let us consider n distinguishable qubits which are
perturbed by statistically independent reservoirs inducing
spontaneous decay processes. Within the Markov approxi-
mation the time evolution of the density operator r of
these n qubits can be described by a master equation
© 2001 The American Physical Society
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Thereby the Lindblad operator La �
p

ka j0�a	1ja char-
acterizes spontaneous decay of qubit a from its excited
state j1�a into its stable state j0�a with rate ka [1]. The
coherent part of the n-qubit dynamics is described by the
Hamiltonian H. In the case of radiative damping of quan-
tum optical systems the derivation of Eq. (1) involves the
Born and the Markov approximations which are typically
very good. These approximations rest on the assumption of
weak couplings between resonantly excited two-level sys-
tems and the vacuum modes of the electromagnetic field
and a sufficiently short correlation time of these vacuum
modes [1,3]. However, in solid state devices where sponta-
neous decay processes typically originate from couplings
to phononic reservoirs this Markov approximation is usu-
ally only applicable for sufficiently high temperatures of
the reservoirs [2]. Within the quantum trajectory approach
[1] the solution of Eq. (1) can be unraveled into a statis-
tical ensemble of pure states. Each element of this en-
semble defines a quantum trajectory which describes the
n-qubit system conditioned on the observation of N quan-
tum jumps of qubits a1, . . . , aN which take place at times
t1 # · · · # tN . The action of these quantum jumps is rep-
resented by a sequence of Lindblad operators La1 , . . . , LaN .
In this quantum trajectory representation the conditional
time evolution between two successive quantum jumps is
determined by the non-Hermitian effective Hamiltonian
H̃ � H 2 i�h̄�2�

Pn
a�1 Ly

aLa .
The dynamics described by Eq. (1) can be stabilized

against these dissipative influences in an effective way by
embedded quantum codes. For this purpose one constructs
first of all a DFS which stabilizes the conditional time evo-
lution between two successive quantum jumps passively.
In a second step one inverts the occurring quantum jumps
with the help of an active QECC which is constructed
within this DFS [3,11,12,14,15]. Thus, for this stabiliza-
tion it is necessary to observe the n-qubit system continu-
ously. Whenever a quantum jump occurs the appropriate
unitary recovery operation is applied within a time interval
short in comparison with the decay times and with the co-
herent evolution time of the system [3]. The mean number
of required recovery operations is determined by the spon-
taneous decay rates ka of the qubits. For the simplest case
possible of encoding only one logical qubit Plenio et al.
[15] have presented a one-error correcting embedded quan-
tum code which applies to the important special case of
equal decay rates of all the qubits. Their active QECC
constructed within the DFS fulfills the conditions

	cijL
y
aLbjcj� � Labdij (2)

for any qubits a, b and any logical states jci�, jcj� with
	ci j cj� � dij. These conditions are necessary and suffi-
cient for the existence of appropriate recovery operations
[8] in all cases where an unknown qubit has been affected
by a quantum jump at a known jump time. Being consis-
tent with conditions (2) Plenio et al. [15] were not able to
reduce the redundancy of their code any further.

In the subsequent treatment, however, it is demonstrated
that the redundancy of embedded quantum codes can be
reduced significantly by also taking into account the avail-
able information about which qubit has been affected by a
quantum jump. If the qubits of a quantum computer couple
to independent reservoirs then information about the jump
time, say t, and about the jump “position,” say a, is avail-
able. Therefore, it is natural to exploit this additional in-
formation about the position of a quantum jump for a more
efficient encoding. If one can determine not only the jump
time t but also the jump position a by continuously moni-
toring the n-qubit quantum system, one has to correct the
error operator La only for this particular value of a. As
a consequence the corresponding active QECC has to ful-
fill Eq. (2) only for a � b. The violation of conditions
(2) for a fi b offers the possibility to construct embedded
codes with a significantly smaller degree of redundancy. It
should be mentioned that a similar violation of conditions
(2) has also been realized previously in the treatment of
the quantum erasure channel [18].

Let us concentrate on the important special case of equal
spontaneous decay rates of all the qubits, i.e., ka � kb 

k. If the number of physical qubits n is even, the DFS
of maximal dimension with respect to the conditional time
evolution between successive quantum jumps is formed by
all n-particle quantum states with �n�2� excited and �n�2�
unexcited qubits. This DFS is the eigenspace of the op-
erator

Pn
a�1 Ly

aLa with eigenvalue k�n�2� and with di-
mension d � � n

n�2 � 
 n!���n�2�!�2. Thus, the conditional
time evolution between successive quantum jumps is not
perturbed by the reservoirs. Furthermore, for a given num-
ber of physical qubits n the dimension of this DFS is maxi-
mal so that the degree of redundancy is minimal. For the
correction of quantum jumps we have to develop an ac-
tive QECC within this DFS. Thereby we want to exploit
the fact that we have to correct quantum jumps only which
take place at a known position, say a. Let us start with the
simplest case possible, namely, the encoding of a single
logical qubit. We propose the following four-qubit encod-
ing (omitting normalization)

jc0� � j1100� 1 j0011�, jc1� � j0110� 1 j1001� (3)

formed by complementary pairs within this DFS. Thereby
jc0� and jc1� encode the logical states j0�L and j1�L. The
complementary pairs appearing in Eq. (3) involve an ex-
cited state at any position. Provided the error position a is
known this encoding represents an active QECC correcting
t � 1 detected-jump error and is formed by superpositions
of basis states of the DFS with dimension d � 6. This
encoding violates Eq. (2) for a fi b as 	c0jL

y
4 L2jc1� �

	c0jL
y
3 L1jc1� fi 0, for example. Provided a quantum jump

La has occurred at position a the immediate application
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of the unitary recovery operator Ra � pa�
Q

afib Cab� 3

paHa restores the unperturbed quantum state again. Here
pa , Ha , and Cab represent a p rotation, a Hadamard
transformation of qubit a, and a conditional CNOT opera-
tion with control and target qubits a and b. On the code
space formed by all linear combinations of the logical
states of Eq. (3) Ra is the left inverse of the quantum jump
operator La . For the construction of such a left-inverse
unitary recovery operator Ra [8] the code words have to
fulfill the necessary and sufficient conditions

	cijL
y
aLajcj� � Ladij . (4)

These conditions reflect the fact that the invertibility con-
ditions of Eq. (2) have to be fulfilled only for a � b. It
should also be mentioned that it is also possible to en-
code a third logical quantum state j2�L within the above
mentioned DFS by the state jc2� �

1
p

2
�j1010� 1 j0101��.

Thus, the three logical quantum states jc0�, jc1�, jc2� rep-
resent a three-dimensional one detected-jump correcting
quantum code formed by four physical qubits, two of
which are excited. Correspondingly we denote this code
by 1-JC(4, 2, 3).

It is straightforward to generalize this construction to
arbitrary large numbers of logical states. In analogy to
Eq. (3) one starts from an even number n of physical qubits
and from the corresponding DFS of dimension d � � n

n�2 �.
A basis of this DFS consists of all n-qubit states with �n�2�
excited and �n�2� unexcited qubits. Within this DFS one
forms the logical states of the active QECC from all equally
weighted complementary pairs of states. The resulting
embedded quantum code can correct t � 1 detected-jump
error. It is optimal in the sense that for a given number n of
physical qubits the number of logical states l �

1
2 � n

n�2 � is
maximal. Thus, for a large number of physical qubits n the
associated number of logical qubits that can be encoded is
given by log2l � n 2

1
2 log2n 1 O�1�.

The optimality of this encoding can be shown by the
following estimate of dimension. For a given number n of
physical qubits with k excited states and a given number t
of errors at known positions a1, . . . , at the number of logi-
cal states l is bounded by the inequality l # � n2t

k2t �. This
upper bound originates from the fact that after t quantum
jumps t qubits are in state j0� at known positions. As the
logical states have to be recovered from these latter states
by a unitary transformation the dimension of this latter
Hilbert space also determines the maximum possible num-
ber of orthogonal logical states. By the basic symmetry
property of the binomial coefficients the maximum number
of logical states is achieved for k � �n�2�. (�x� denotes
the largest integer smaller or equal to x.) Thus we arrive
at the final result that for t � 1 the maximum number of
logical quantum states is given by l � � n21

n�221 � 
 1
2 � n

n�2 �.
These one detected-jump correcting quantum codes can

be generalized so that they are capable of correcting an ar-
bitrary number t of errors of an arbitrary number of qubits.
Correspondingly, we define a t detected-jump correcting
4404
quantum code, denoted by t-JC�n, k, l�, by a set of l code
words �jci�, i � 1, . . . , l� formed by the linear superposi-
tions of n-qubit states each of which involves k excited and
n 2 k unexcited states. Analogous to Eq. (4) these code
words have to fulfill the conditions

	cijL
y
e Lejcj� � Ledij (5)

which are necessary and sufficient for the existence of
a unitary recovery operation. Thereby the error opera-
tor Le denotes an arbitrary product of Lindblad opera-
tors, say Lam . . . La1 , corresponding to a jump pattern e 

�a1, . . . , am� of length m. Equation (5) has to be ful-
filled for all jump patterns e of lengths m not greater
than t. According to this terminology the previously con-
structed optimal one detected-jump correcting quantum
codes are of the type 1-JC�n, n�2, 1

2 � n
n�2 �� with n being

even. Furthermore, the above dimension estimate implies
that t detected-jump correcting quantum codes of the type
t-JC�n, n�2, � n2t

n�22t �� would be optimal.
The constructed one detected-jump correcting quantum

codes are particularly well suited for stabilizing quantum
algorithms against spontaneous decay of the qubits into
statistically independent reservoirs. Thus, for example,
they may be applied for stabilizing trapped-ion systems
[19] against radiative or for stabilizing nuclear spin arrays
[20] against phononic damping provided the mean distance
between the ions or spins representing the qubits is larger
than the wavelengths of the spontaneously emitted pho-
tons or phonons. For this purpose one has to determine
which qubit has been affected by the spontaneous decay
process. For spontaneously emitted photons, for example,
this may be achieved by photodetection techniques or by
measuring the recoil of the affected particle. This latter
method may also be used in phononic decay processes.
Furthermore, one has to ensure that in the absence of errors
the quantum system remains within the appropriate DFS
throughout the entire computation. Recent investigations
by Bacon et al. [21] demonstrate that this latter require-
ment may be achieved with the help of suitably chosen
universal quantum gates which do not leave this DFS dur-
ing their application. In solid state implementations such
gates may be realized by appropriately tuning the coeffi-
cients of the Heisenberg-type exchange terms [21] by ex-
ternally applied electric or magnetic fields. Similarly, such
a tuning appears also feasible for ions in arrays of micro-
traps [19] by applying appropriate laser pulses which push
the ions out of their equilibrium positions in a state depen-
dent way. At the time of writing this Letter the controlled
manipulation of four qubits in ion traps seems to be in
reach [16]. Therefore, already the most simple example of
the presented optimal one detected-jump correcting codes,
namely, the 1-JC(4, 2, 3) code, might give rise to interest-
ing experimental settings. We also want to point out that
strictly speaking all the presented detected-jump correcting
quantum codes stabilize qubit systems only with identical
spontaneous decay rates for all qubits. However, recent
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FIG. 1. Graphical representation of the affine plane of four
points and six lines. The partition into three disjoint parallel
classes of lines defines the states of the 1-JC(4, 2, 3).

investigations on stability properties of concatenated quan-
tum codes indicate [22] that these codes are expected to
stabilize also other qubit systems to a satisfactory degree
as long as all relative differences between spontaneous
decay rates remain small.

For code words consisting of linear superpositions of
quantum states with identical amplitudes we can establish
a surprising and far reaching connection with the area
of combinatorial design theory [17]. This link seems to
be particularly fruitful for further explorations of general
t-JC�n, k, l� codes. In order to exhibit basic ideas of this
connection let us finally reconsider the previously intro-
duced optimal 1-JC(4, 2, 3) code. Its three code words
jc0�, jc1�, jc2� can be represented graphically by the
connected diagram depicted in Fig. 1. Each point of this
diagram is associated with a qubit. Two connected points,
i.e., a block, indicate that these two qubits are in the excited
state j1�. Within the framework of finite geometry [17]
this connected diagram forms an affine finite plane over
the binary field. In this context the six blocks of Fig. 1
represent lines, i.e., one-dimensional subspaces of this ge-
ometry. The three code words jc0�, jc1�, jc2� correspond to
the three disjoint pairs of lines. We call this combinatorial
structure given by the partition of the set of lines of
Fig. 1 a t � 1 spontaneous-emission-error design,
1-SEED(4, 2, 3), on n � 4 points of block size k � 2
with l � 3 disjoint classes. Generalizing this notion to
arbitrary values of �t, n, k, l� we arrive at the notion of
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FIG. 2. This arrangement of 27 blocks of size three into dis-
joint rows of three parallel classes forms a 2-SEED(9, 3, 3).
Superposition of the nine blocks in each row of diagrams yields
the states jc0�, jc1�, and jc2� of a 2-JC(9, 3, 3).
a t-SEED�n, k, l�. As an example, let us consider the
2-SEED(9, 3, 3) depicted in Fig. 2. Here the lines connect-
ing three points indicate states of nine qubits in which three
are excited. The sets of these points are called blocks.
Superposition of the nine blocks of size three contained in
the three parallel classes depicted by any of the three rows
of diagrams in Fig. 2 gives the three code words jc0�,
jc1�, jc2� of a 2-JC(9, 3, 3), e.g., jc0� � j111 000 000� 1

j000 111 000� 1 j000 000 111� 1 j100 001 010� 1

j010 100 001� 1 j001 010 100� 1 j100 010 001� 1

j010 001 100� 1 j001 100 010�. For the construction of
an arbitrary t-SEED�n, k, l� design theory [17] offers
powerful combinatorial methods which will be described
in a subsequent article.

In summary, a new class or error-correcting quantum
codes have been introduced for stabilizing qubits against
spontaneous decay into independent reservoirs. It is based
on the idea of using embedded quantum codes and simulta-
neously exploiting classical information about the error po-
sition. Thus, redundancy can be reduced significantly. The
systematic construction and classification of t-JC�n, k, l�
codes with t $ 2 which minimize redundancy is still a
challenging task which is currently under active investiga-
tion. Here the newly discovered relation to design theory
seems to play a key role, especially for the construction of
t-SEEDs with large t.
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