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Abstract—In order to stabilize quantum algorithms against decoherence one has to fulfill two requirements.
Firstly, one has to develop an appropriate quantum error correcting code. Secondly, one has to find a set of suit-
able unitary quantum transformations acting on the physical qubits which preserve the properties of this error
correcting quantum code and which allow the implementation of a universal set of quantum gates. This is a chal-
lenging task in particular if we restrict ourselves to a limited class of two-particle interactions by which the
physical qubits can be controlled. For the special cases of four and six physical qubits we discuss a set of such
quantum gates which satisfy these two conditions for the recently developed detected-jump correcting quantum
codes [1]. These quantum codes are capable of stabilizing distinguishable qubits against decoherence arising

from spontaneous decay processes.

1. INTRODUCTION

Current developments in quantum information pro-
cessing demonstrate in an impressive way the practical
potential of quantum physics [2—4]. In quantum com-
putation, for example, characteristic features of quan-
tum systems, such as interference and entanglement,
are exploited for solving computational tasks more effi-
ciently than by any other known classical method. Well
known examples are the celebrated factorization algo-
rithm of Shor [5] or the fast database search algorithm
of Grover [6]. However, interference and entanglement
are fragile phenomena which can be destroyed easily
by uncontrolled unitary transformations or interactions
with an environment. In order to protect quantum infor-
mation against decoherence quantum error correcting
codes have been developed.

Recently, we have introduced a new family of quan-
tum error correcting codes which requires fewer recov-
ery operations and fewer resources for encoding quan-
tum information than other known similar codes. These
detected-jump correcting quantum codes [1] offer the
possibility to stabilize quantum algorithms against
decoherence originating from spontaneous decay of the
physical qubits. Due to their small redundancy these
codes are well suited for current experimental realiza-
tions, such as arrays of trapped ions [7] or nuclear spin
systems [8]. However, in order to be able to perform
quantum computation on these code spaces one has to
demonstrate that it is possible to implement all possible
unitary operations on these code spaces without ever
leaving them during intermediate steps. Thus, a set of
unitary operations is needed which generates any trans-
formation between code words of a detected-jump cor-
recting quantum code and which never results in a
quantum state outside this code space. If the code space

is d dimensional, for example, one has to demonstrate
that any transformation belonging to the group SU(d)
can be implemented this way. In this contribution it is
shown by construction that this can be achieved for the
lowest dimensional cases of detected-jump correcting
quantum codes which involve four and six physical -
qubits.

This contribution is organized as follows: In Section 2
we discuss some basic notions of quantum computa-
tion. In Section 3 we summarize briefly the theoretical
description of decoherence phenomena by master
equations and by quantum trajectory methods. A dis-
cussion of our recently introduced detected-jump cor-
recting quantum codes is presented in Section 4.
Finally, in Section 5 we demonstrate for the special
cases of four and six physical qubits how arbitrary uni-
tary transformations can be implemented on the associ-
ated code spaces with the help of Heisenberg-type two-
body interactions between the physical qubits. Some of
the more technical aspects of this construction are pre-
sented in Appendix A. .

2. QUANTUM COMPUTATION AND QUANTUM
ERROR CORRECTION

Quantum computation relies on the controlled and
coherent manipulation of arbitrary quantum states of
distinguishable physical systems which play the role of
elementary data carriers. Thus, typically a theoretical
model of a quantum computer consists of a register of
n distinguishable d-level systems (qudits). Though in
many cases one focuses on qubits with two energy lev-
els, recently also three level systems (qutrits) and quan-
tum systems with continuous variables have been dis-
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cussed in this context. The internal state of a quantum
computer consisting of n d-level systems is given by

d-1

ly) = 2 Cro, ke Knkn 1 Kok 1)

ky, ..k, =0

with the orthonormal states |k,k, _1...kok,) denoting the
computational basis. ‘

A quantum algorithm involves the preparation of an
appropriate initial state of the quantum computer, a
subsequently performed sequence of unitary transfor-
mations, i.e., of quantum gates [9], and a final measure-
ment which has to extract useful (classical) informa-
tion. In any physical realization quantum gates have to
be implemented by unitary transformations which are
generated by suitable Hamiltonians. With the help of a
universal set of quantum gates it is possible to prepare
any arbitrary quantum state from any initial state of the
computational basis. For unitary one-qubit transforma-
tions, for.example, a universal set of quantum gates is
given by
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Though these matrices form an infinite set due to the
three continuous parameters 6, @, and o one may also
choose finite subsets with which one can approximate
any unitary one-qubit transformation to any degree of
accuracy. Together with the controlled-not (CNOT)
gate, i.e., i

1000

cvor = | 9100 3)
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0010

these one-qubit gates form a universal set of quantum
gates for unitary two-qubit transformations.

In order to protect information against uncontrolla-
ble environmental influences one has to perform error
correction. In the classical context powerful methods
have already been developed for protecting information
against such perturbing influences [10]. A key concept
underlying these developments is redundancy. A larger
amount of qubits allows the encoding of information in
such a way that errors can be distinguished and conse-
quently be corrected.

A simple example demonstrating this main idea is

the majority code. In this code the classical logical
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states (0); and (1), which constitute one bit of classical
information are encoded by three physical bits, i.e.,

(0), = (0,0,0), (1), =(1,1,1). 4)

Let us assume that the only errors affecting these
physical bits are bit flips which exchange the physical
states 0 and 1. Definitely one bit flip affecting one of the
physical qubits can be corrected with the help of this
majority code. For this purpose one counts the number
of zeros and ones of the physical bits. The unperturbed
state is associated with the symbol which occurs more
than once. Thus, according to this majority rule the per-
turbed state (1, 0, 0), for example, has to be corrected to
the state (0, 0, 0) = (0), by a recovery operation. How-
ever, if two or three errors occurred, this majority rule
would lead to wrong results.

The correction of quantum states which are affected
by uncontrollable environmental influences is much
more complicated by several reasons. Firstly, it is not
possible to copy arbitrary quantum states perfectly [11]
so that a straightforward generalization of a classical
majority code, for example, is not possible. Secondly,
control measurements reduce a quantum state and thus
may destroy quantum coherence in an irreversible way.
In order to overcome these difficulties powerful quan-
tum error correcting codes (QECCs) have been devel-
oped recently [12-19]. In order to exemplify basic
ideas of these error correcting quantum codes let us
assume that the influence of the uncontrollable environ-
ment can be characterized by a set of error operators,
say L, (compare with the Lindblad operators discussed
in Section 3). A simple and efficient way of error cor-
rection is possible whenever these error operators pos-
ses a common eigénspace (or decoherence free sub-
space [16-18]) which is sufficiently highly degenerate.
In this case one can use an orthonormal set of basis
states of such a highly degenerate eigenspace as a com-
putational basis. Thus, for every error L, the basis states
(or code words) |c;) fulfill the equation '

Lalci> = 7Loc|Ci> Q)

with a complex number A, which can depend on the
type or error but which is independent of the code
words |c;). Therefore, in such a basis the error operators
L, act like multiples of the unit operator and preserve
quantum coherence. Whenever applicable this method
of passive error correction is very efficient as it does not
require any control measurements or recovery opera-
tions.

In many cases of practical interest a common,
highly degenerate eigenspace of all error operators
does not exist so that passive quantum error correction
is not possible. In these cases one may apply methods
of active quantum error correction. These latter meth-
ods may be viewed as a generalization of methods of
classical error correction to the quantum domain. In
particular, for this purpose one has to choose the
orthonormal code words so that they are mapped onto
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Schematic representation of an array of ions whose decay
times and error positions are monitored by photodetectors.
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distinguishable subspaces by the error operators L.
This mapping has to be achieved in such a way that the
character of the error, i.e., its syndrome, can be mea-
sured without learning anything about the quantum
state. Afterwards a unitary recovery operation is
applied which depends on the measured syndrome.
Thus, this whole procedure involves the combination of
a measurement process and of a unitary recovery trans-
formation. To be able to correct a set of errors repre-
sented by the error operators L, the orthonormal code
words |c;) have to fulfill the necessary and sufficient
conditions [20]

<ci|L;LB|cj> = Aoc[isij (6)

for all possible values of o and . Stated differently,
these conditions express the fact that under the action
of arbitrary errors orthogonal code words remain
orthogonal and that all code words are affected in the
same way by a given error. The efficiency of an active
quantum code depends on the frequency of the control
measurements and on the number of recovery opera-
tions required.

In many cases it is advantageous to combine active
and passive methods [1, 19, 21] of quantum error cor-
rection by constructing an active quantum code within
a decoherence free subspace. These embedded quan-
tum codes are more efficient than purely active codes
provided as much as possible is corrected passively.
However, typically the construction of an active quan-
tum code within a decoherence free subspace implies
also an increase of redundancy in comparison with
comparable active quantum codes which do not involve
any decoherence free subspaces. Thus, for the develop-
ment of embedded quantum codes with a small degree
of redundancy it is important to exploit as much infor-
mation as possible about the errors affecting the physi-
cal data carriers. In Section 4, an optimal embedded
quantum code is discussed which is capable of protect-
ing distinguishable qubits against spontaneous decay
processes and which exploits not only information
about error times but also about error positions.
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3. DECOHERENCE, QUANTUM JUMPS,
AND QUANTUM TRAJECTORIES

The coupling’of a'quantum system to an environ-
ment whose degrees of freedom are unaccessible to
observation leads to decoherence. Typically, if the cou-
pling to this environment is weak and also its correla-
tion time is sufficiently small, the resulting time evolu-
tion of the reduced density operator p() of the quantum
system can be described by a quantum master equation
of the form [22]

4 .
d_‘; = —%(HeffP—PH:ff)“'zLapL;’ Y

with the non-hermitian effective Hamiltonian

Hy = H——ZL Ly, ®)

Thereby the system Hamiltonian H describes the
coherent dynamics of the quantum system in the
absence of any coupling to the environment. The Lind-
blad operators L, characterize the influence of the envi-
ronment on the quantum system. Typically, the condi-
tions for application of the Born-Markov approxima-
tion underlying the derivation of Eq. (7) are well
fulfilled for quantum optical systems.

For the subsequent development it is of interest to
specialize this master equation to the case of N distin-
guishable qubits which may decay spontaneously from
their excited states |1); to their ground states |0); by pho-
ton (or phonon) emission. Thereby the index i =1, ...,
N denotes the positions of these distinguishable qubits
whose mean nearest neighbor spacing d is assumed to
be large in comparison with the wave lengths A of the
spontaneously emitted particles (compare with the fig-
ure). Under these conditions these N qubits may be
viewed as decaying into N statistically independent res-
ervoirs. Thus, in the corresponding quantum master
equation the spontaneous decay of qubit i from its
excited state |1); into its ground state |0),; with decay rate
K; is characterized by the Lindblad operator [22]

= J‘Zilo>ii<1l‘ 9
If the initial state of the quantum system is pure a

formal solution of the quantum master equation (7) is
given by

p(t) = 2 D _[dt Jdt,, N Jdtl

10
n=0i,..,i,0 ( )
X |E; BBy vy By )KL t,,, bt s 55 By g
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This formal solution is the starting point for simulating
solutions of the quantum master equation (7) by the
quantum jump method [23, 24]. The physical interpre-
tation of this method of simulation.is based on the
observation that for the Lindblad operators of Eq. (9)
the unnormalized pure state |t; t,, i, ...; f;, i) of
Eq. (11) can be interpreted as the pure quantum state of
the N-qubit quantum system which results from sponta-
neous decay processes taking place at ¢, ..., f, and
affecting qubits iy, ..., i, [25]. These decay processes
are characterized by the Lindblad operators L; and the
evolution between two successive quantum jumps is
described by the effective Hamiltonian H g of Eq. (8).
Within this theoretical framework the norm of the
quantum state of Eq. (11) yields the probability with
which a particular quantum trajectory (t,, i,; ...; t;, i})
contributes to the density operator p(¢). The method of
quantum trajectories provides an appropriate frame-
work for simulating the stabilization of quantum algo-
rithms with the help of quantum error correction.

4. DETECTED-JUMP CORRECTING
QUANTUM CODES

Recently, we have introduced a new class of embed-
ded quantum codes which is capable of stabilizing N
distinguishable qubits against spontaneous decay pro-
cesses provided these decay processes can be described
by a master equation of the form of Eq. (7) with Lind-
blad operators as given by Eq. (9). These quantum
codes work ideally provided the mean nearest neighbor
spacing between the qubits is larger than the wave
lengths of the spontaneously emitted photons (or
phonons) and the spontaneous decay rates of all the
qubits are equal. This family of quantum codes is based
on the idea of correcting the modified time evolution
between successive quantum jumps passively and
inverting the quantum jumps originating from the Lind-
blad operators of Eq. (9) actively. Thereby the passive
error correction between successive quantum jumps
guarantees that the number of control measurements
and recovery operations required-is reduced signifi-
cantly in comparison with purely active methods of
error correction. In addition, this encoding also takes
advantage of all the information available about the
errors, namely the times and positions at which they
take place. As the mean distance between adjacent
qubits is assumed to be large in comparison with the
wave length of the spontaneously emitted particles, it is
possible to determine the position i of the qubit which
has decayed to its ground state. In practice this determi-
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nation of error times and error positions can be
achieved by monitoring the spontaneous emission of
the qubits continuously with photodetectors (compare
with the figure). Provided information about both the
error time, say f,, and error position, say i, is available
an active error correcting code has to fulfill the condi-
tions of Eq. (6) for a = B = i; only. Thus, a unitary
recovery operation can be constructed even if condi-
tions (6) are violated for o # 3. This reduced number of
constraints which an active error correcting quantum
code has to fulfill offers the possibility of lowering
redundancy. Typically, disregarding information about
error positions increases redundancy significantly [1, 21].

The simplest example of this new class of embedded
quantum codes which is capable of correcting one error
at a time can be constructed with the help of four phys-
ical qubits. The (unnormalized) code words of this par-
ticular detected-jump correcting quantum code repre-

-sent a logical qutrit and are given by

lc)) = [0011) + [1100),
lc,) = [0101) + [1010),
lc,) = [0110) + [1001).

(12)

Thus this code consists of four-qubit states only in
which half of the qubits are excited. As this one-error
correcting detected-jump correcting quantum code
involves three logical states and four physical qubits
two of which are excited we call it a 1 — JC(4, 2, 3)
code. Thereby the equal number of excited qubits guar-
antees that the effective time evolution between succes-
sive quantum jumps is corrected passively. Another
characteristic feature of this quantum code is the com-
plementary pairing of states with equal amplitudes,
e.g., of the states |1100) and |0011). This latter property
guarantees the validity of the necessary and sufficient
conditions of Eq. (6) as long as o = f.

This construction of a one-error correcting embed-
ded, quantum code can be generalized easily to any

even number of physical qubits. Thus,a 1 -JC (N, N/2,

N .
( N/ — 1)) quantum code is constructed by an analo-

gous complementary paring of N-qubit states with half
of these qubits being excited. This way it is possible to

construct ) orthogonal code words which

( N
N/2-1
form a one-error correcting embedded quantum code
for spontaneous decay processes. The lowest dimen-
sional representative of this infinite family of quantum
codes is the already discussed 1 — JC(4, 2, 3) quantum
code. The next higher dimensional quantum code is the.
1 - JC(6, 3, 10) code which involves 10 logical states.
It can be shown that this family of one-error correcting
quantum codes is optimal in the sense that their redun-
dancy cannot be reduced any further [1].
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Action of the state swapping operators E; ; of Eq. (14) on the
modified basis states of the 1 — JC (4, 2, 3) code

Ei,j leo) ler) lep)
E , lco) ~lea) ~ley)
E; ~ley) ler) —lep)
E 4 —ley) —leo) lep)
E; 3 ley) lco) lea)
Ey 4 lcp) “ler) lco)
Es 4 leo) le2) ley)

Finally, it should also be mentioned that detected-
jump correcting quantum codes can also be constructed
which are capable of correcting more than one error at
a time. An example of such a two-error correcting code
is presented in [1]. '

5. IMPLEMENTING THE UNITARY GROUP
ON DETECTED-JUMP CORRECTING
QUANTUM CODES

Any of the previously discussed 1 — JC(N, N2,

( NA/IZD quantum codes offers interesting perspectives

for stabilizing qubits against spontaneous decay pro-
cesses. However, in order to be useful for purposes of
quantum computation one has to find universal sets of
quantum gates which guarantee that any unitary opera-
tion can be implemented entirely within these code
spaces. In the subsequent sections it is demonstrated for
the special cases of the 1 — JC(4, 2, 3) and the 1 —
JC(6, 3, 10) quantum codes that such desirable univer-
sal quantum gates can be implemented on the basis of
Heisenberg Hamiltonians acting on the physical qubits.

In order to put the problem into perspective let us
assume that it is possible to control the dynamics of the
physical qubits to such a degree that the time evolution
resulting from any Heisenberg Hamiltonian of the type

H = YOO8 (13)

)

ijo
can be realized with arbitrary tunings of the coupling
constants J ,-(f) . Thereby S, = (o, , (5; , 0, ) denotes the

Pauli spin vector with components S,-(a) acting on
qubit i. Thus, with one particular tuning of the coupling
constants, for example, it is possible to realize the
Hamiltonian :

1

which exchanges the states of the physical qubits i
and j. This particular swapping Hamiltonian has been

(14)
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discussed in detail by Bacon et al. [26] in connection
with quantum computation on decoherence free sub-
spaces. With another choice of the coupling constants,
for example one can realize the Hamiltonian

1 i g
Fy= §(1+cszcsj) (15)

which will be useful for our subsequent discussion.

5.1. The 1 - JC(4, 2, 3) Quantum Code and Unitary
Transformations of the Group SU(3)

With the help of Heisenberg Hamiltonians of the
form of Eq.(14) it is possible to generate a universal set
of quantum gates acting entirely within the code space
of a1 -JC(4, 2, 3) quantum code provided we intro-
duce an additional phase in the code words of Eq. (12).
This can be achieved by applying a 6, on the first qubit,
for example, which preserves our decoherence free
subspace and which allows the same active error cor-
rection as before. The resulting modified (unnormal-
ized) code words of the 1 — JC(4, 2, 3) quantum
code are

lcoy = [0011) —[1100), |c;) = [0101) - [1010),
lc,) = [0110) - |1001).
It is apparent from the table that the swap operators of
Eq. (14) preserve this codespace.

Therefore, any sequence of unitary transformations
of the form exp(itzij a;E;) with real-valued coeffi-

cients a;; also leaves this code space invariant. Thus, it
is straightforward to demonstrate that any unitary trans-
formation of the group SU(3) acting within the code
space can be implemented with an appropriate
sequence of state swapping transformations. In particu-
lar, the eight operators

1 1 1 |
Ay = g(E12+E34)—6(E13+E24)_6(E14+E23)’
1 1 1
Ay = —6(E12+E34) + §(E13 +Ey) - 6(E14+E23)’
¥ 1 + 1
B, = E(Eza*Em)’ Bj; = E(E24—E13), (16)
B 1 = ot +
By = §(E34_E12)’ By, = i[By3, Byl,

By = il B, 8], Bas = ilB; 8]
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are linearly independent generators of the group SU(3).
In the code space the action of the state swapping trans-
formations E;; can be represented by the matrices

100 0 0-1
Ebp,=100-11| Es= 0 1.0 Js%ess(17)
0-10 -10 0

Correspondingly, in the code space the action of the
eight generators is represented by the matrices

1200 -10 0
An=¢ 0-10 | An=¢ 020 |
00 -1 0 0-1
010 001
Bp=1100| Ba=|000}
000 100
000 010
By =|0011] B2=1i -100 |
010 000
) 001 000
By=i 0001 Bs=1i 001
-100 0-10

From the additional relations

i i%A i%B
lim(e e )

n—»eo

n

ei(ocA +pB) _

(18)

and

n

N 2, By 2 Bp
e'('mA’BB” = lim (eﬁ' e"/;l e o e i J (19)

n — oo

which are valid for arbitrary hermitian operators A and
B it becomes apparent that any unitary transformation
of the group SU(3) can be approximated with the help
of the state swapping Hamitonians E;;.

5.2. The 1 —JC(6, 3, 10) Quantum Code and Unitary
Transformations of the Group SU(10)

The previously discussed procedure can be
extended also to the 1 — JC(6, 3, 10) quantum code.
This detected-jump correcting quantum code consists
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of 10 code words, say |cg), ..., |co). Therefore, in this
case the action of the state swapping transformations of
Eq. (14) in the logical state space is represented by
10 x 10 matrices, such as

1000000000
0100000000
0010000000
0001000000
0000000001
0000000010
0000000100
0000001000
0000010000
0000100000

In order to obtain a universal set of quantum gates act-
ing entirely within the 1 — JC(6, 3, 10) code space we
also need the Heisenberg Hamiltonians F;; of Eq. (15)
withi,j e {1, ..., 6}. In the 10-dimensional code space
their matrix representations are diagonal with ones at
all those positions k (k =0, 1, ..., 9) for which qubits i
and j are both in the same state in the corresponding
code words |c,). By linear combinations of these oper-
ators, all possible diagonal matrices D; (k =0, ..., 9)
can be constructed which have zeroes everywhere
except at the kth diagonal position. Thus, the matrix
representation of Dy = 1/2(-1 + Fj, + Fi3 + Fy3), for
example, is given by

1000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

o
Il

The full set of equations which relate all operators D, to
the diagonal matrices F; are given in Appendix A. By
linear combination of operators E;; and D) one can con-
struct exchange operators G;; which act on parts of the
code words thereby leaving the remaining code words
invariant. An example is the operator Gy, = Ej, — (D, +
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D, + D, + D;) with the matrix representation

0000000000
0000000000
0000000000
0000000000
0000000001
0000000010
0000000100
0000001000
0000010000
0000100000

This way 15 non-diagonal hermitian operators can be
constructed. Commutators of these operators generate
another set of 15 non-diagonal hermitian operators K;;,
such as

0000000000
00000000 0O
00000000 0O
00000000 0O
00000000 0 —i
00000000 - 0
0000000-i0 O
000000i000O0
00000i000O0
0000:i0000O0

K, = i[GIS’ Gyl =

Therefore, another set of 15 linearly independent gen-
erators can be constructed. In summary, commutators
of all these operators generate a total amount of 90 non-
diagonal, linearly independent generators. Together
with the 10 linearly independent diagonal operators D,
they form a complete set of generators by which it is
possible to implement arbitrary unitary operations on
the 1 —JC(6, 3, 10) code space.

6. CONCLUSIONS

We have discussed main ideas underlying the
recently introduced detected-jump correcting quantum
codes by which it is possible to protect distinguishable
qubits against spontaneous decay processes. Due to
their low redundancy these quantum codes are attrac-
tive for stabilizing quantum algorithms against this par-
ticular source of decoherence. However, in order to be
useful for these purposes one has to investigate the
question whether it is possible to implement arbitrary
quantum gates on these code spaces without leaving
these spaces at any time. As a first step towards this
final goal we have presented first results which apply to

ALBER et al.

detected-jump correcting quantum codes involving
four and six physical qubits. For these cases we have
shown by construction that it is possible to realize any
unitary transformation within these codes spaces with
the help of Heisenberg Hamiltonians which act on the
physical qubits.
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APPENDIX A:
EQUATIONS FOR THE SU(10) OPERATORS

In this appendix explicit expressions for all linear
independent generators of the group SU(10) are pre-
sented in terms of the Heisenberg-type Hamiltonians Ej;
and F;. Note that for the physical operators Ej;, F;, and
G; the indices indicate the physical qubit on which
these operators act. For all other operators defined in
this appendix the indices indicate the code words on

which they act in the code space. The operators D, (k =

0, ..., 9) with a single nonzero matrix element on the
diagonal are defined by
Dy = 1/2(=1+ F, + Fi3+ Fy3),
D, = 1/2(=1+4 F,+ Fi,+ Fyy),
D, = 1/2(=1+ F,+ Fi5+ Fys5),
Dy = 172(=1+ F,+ Fig+ Fa),
D, = 12(-1+ F3+ Fiy + F3,),
St i i O
Dy = 1/2(=1+ F 3+ Fis+ Fy),
Dy = 1/2(=1+ F 4+ Fi5+ Fys),
Dy = 1/2(=1+ F4+ Fig+ Fy),
Dy = 1/2(=1+4 Fi5+ Fig+ Fs).
The exchange operatbrs are given by
Gy = E;,—(Do+ Dy + D, + Ds),
Gy = E3—(Dy+ Dy + Ds+ D),
"Gy = Efy—= (D, +Dy+ D;+ D),
Gis = Eis—(Dy+ Ds+ D7+ Dy),
Gi6 = Eic— (D3 + D+ Dg + Dy),
Gy = Ep3—(Dy+ Dq+ Dg+ Dy),
Gy = E)y— (D + Ds+ Dg+ Dy),
LASER PHYSICS Vol. 12 No. 4 2002




Gys = Eys— (Dy+ Dy + Dg + Dy),

QUANTUM ERROR CORRECTION

(A2)

Gy = Eyg— (D3 + Dy + Ds + D,),

Gy = E3y—(Dy+ D3+ Dy + Dy),

Gss = E3s— (D, + D3+ Dg+ D5),
Gso = E3— (D, + D, + Dg+ D5),
Gys = E4s—(Do+ D3+ Dg + D),
Gy = Es— (Dy+ D, + Ds + Dy),

G56 = ESG—(DO+D1 +D4+D9)

i[-K, (K14 + D))]
i[-K 13, (Kpu+ D)1
i[=Kse, (K B3]
Heslig (K g 0]
i[-Ky, (Kis+ D,)]
i[-K 4 (Kps+ D,)]
i[-Ky, (Ki5+ D,)]

749

i[Gas G1y + D]
i[Gy3, Gy + D]
i[Gse) Gou+ Ds)
i[Gig, Gos + D]
i[Gy3, Gys+ D,]
i[Gy4, Gys + Ds)

= i[Gy, G5+ D,]

st = i[_K137 (K25+D2)]

The hermitian operators constructed by commutators of Wy = i[Gy3, Gos + D, ] (A4)
these generators are defined by Ve = il-Kop (Kis+ Dy)] Wiy = ilGop Grg+ D]
Ky, = i[G3, Gl Ky3 = i[Gyy, Gyl v (Ko (Kog+ D) W i[G " e |
Ky = i[Gip, Gul  Kis = i[Gyy, Gosl V34 i[—Kls, (K26 . DB)] W34 i[GlS, G26 " DS]
Ky = i[Gup Gos] Ky = ilGrp Gys] V35 i[~K14» (K26+D3)] | W35 i[GMa G26+Da]
Ky = i[Gio Gl Kps = i[Gyy, Gys] (A3) V36 i[—K23’ (Km . D3)] W36 i[G23’ G16 i D3]
Ky = i[Gy, Gigl K3y = i[Gy3, G4l ki ke . i i 5 R ’
Ky = i[Gis, Gis]” Kag = i[Gys, Gl Vig = i[-Kp, (Kig+ D3)]  Wag = i[Gyy, Gy + D)
K= TG Gisl Kt = i G Gl Vi = i[-Kas, (Kig+ D3)] Wiy = i[Gys, Gy + Ds)
B =i B Vis = i[-Kys, (Kpo+ Dy)1 - Wiys = i[Gys, Gog + Dyl
Vie = il[-Kye (Kos+ Dy)]l Wis = i[Gye, Gos + Dyl

. Finally, the exchange operations

words are given by

between two code

i[-K3s, (Ky6+ Dy)]

i[G3s, Gog + Dy

Vor = il=Ksy, (K12 + Do)l Wy = i[Gy, Gip + Do) Vi = i[-Ksg (Kys + Dy)]  Wig = i[Gag G5 + D]
Voo = i[=Kss, (Kip+ Do)l Wop = i[Gss, Gy + Dol Vi = i[-Kyy, (Ksy + Dy)]  Wig = i[Gyy, Gy + D]
Vo = il (Kip+Doll | Wor = ilGs6 Gt Dol -y = il Ky, (Kay# D)l W = G G+ D]
Vo = il-Kap (Kis+ Do)l Wog = HGu Ot Dl -y, = il iy (Rig+ D)1 Wer = i1Gus, Gpo+ Dl
Vos = i[-Kss, (K13 + Do)l Wos = i[Gas, G5 + Dyl Vig = i[~Kip (Kas + D5)] - Wi = i[Gy, Gag+ Ds]
Ve = i[-Kse (K13+ Do)l Wos = i[Gys, Gi3 + Dol Vo = i[-Kse, (Ki5+ Ds)]  Ws; = i[Gag, Gys+ Ds]
Vir = il[-Kie (Kys+ D)l Wy = i[G6, Gz + Do) Ve = i[-Kip (Ksg+ Dg)] Wy = i[Gyy, G + Dl
Voo = il=Kis, (K + Do)l W = ilGis, O+ Dol -y = iRy, (Ko + De)] - Weg = ilGay, Gis + D]
Voo = il[-Ky4, (K3 + Do)l Wog = i[G 14, Gz + Dy Vo = i[-Kas, (Kpy + D5)] Wy = i[Gas, Gy + Dg]
Vio = il[-Kius, (K3 + D1)] - Wiy = i[Gys, Gag + Dy ] Vg = i[~Kse, (Kg3+ D7)]  Wag = i[Gsg Gy + D5]
Vis = il-Kig (K35 + D)1 Wis = ilGug Gas + D1l Vig = i[-Kus (Kpz+ D7)] Wag = i[Gye, Gz + D]
Vig = i[-Kyp, (Kig+Dy)] Wiy = ‘i[ng, G+ D] Vo = i[-Kus, (Kps + Dg)]  Wso = i[Gys, Gy + Dyl
Vis = i[-Kie (K + D))l Wis = i[Gyg Gy + D]

Vie = i[-Kis, (Ky + D)) Wis = i[Gys, Goy + D] REFERENCES
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