1 From the Foundations of Quantum Theory
to Quantum Technology — an Introduction

Gernot Alber

Nowadays, the new technological prospects of processing quantum informa-
tion in quantum cryptography [1], quantum computation [2] and quantum
communication [3] attract not only physicists but also researchers from other
scientific communities, mainly computer scientists, discrete mathematicians
and electrical engineers. Current developments demonstrate that character-
istic quantum phenomena which appear to be surprising from the point of
view of classical physics may enable one to perform tasks of practical interest
better than by any other known method. In quantum cryptography, the no-
cloning property of quantum states [4] or the phenomenon of entanglement
[5] helps in the exchange of secret keys between various parties, thus en-
suring the security of one-time-pad cryptosystems [6]. Quantum parallelism
[7], which relies on quantum interference and which typically also involves
entanglement [8], may be exploited for accelerating computations. Quantum
algorithms are even capable of factorizing numbers more efficiently than any
known classical method is [9], thus challenging the security of public-key cryp-
tosystems such as the RSA system [6]. Classical information and quantum
information based on entangled quantum systems can be used for quantum
communication purposes such as teleporting quantum states [10, 11].
Owing to significant experimental advances, methods for processing quan-
tum information have developed rapidly during the last few years.! Basic
quantum communication schemes have been realized with photons [10, 11],
and basic quantum logical operations have been demonstrated with trapped
ions [13, 14] and with nuclear spins of organic molecules [15]. Also, cavity
quantum electrodynamical setups [16], atom chips [17], ultracold atoms in
optical lattices [18, 19], ions in an array of microtraps [20] and solid-state
devices [21, 22, 23] are promising physical systems for future developments
in this research area. All these technologically oriented, current developments
rely on fundamental quantum phenomena, such as quantum interference, the
measurement process and entanglement. These phenomena and their distinc-
tive differences from basic concepts of classical physics have always been of
central interest in research on the foundations of quantum theory. However,
in emphasizing their technological potential, the advances in quantum infor-

1 Numerous recent experimental and theoretical achievements are discussed in [12].
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mation processing reflect a profound change in the general attitude towards
these fundamental phenomena. Thus, after almost two decades of impressive
scientific achievements, it is time to retrace some of those significant early de-
velopments in quantum physics which are at the heart of quantum technology
and which have shaped its present-day appearance.

1.1 Early Developments

Many of the current methods and developments in the processing of quantum
information have grown out of a long struggle of physicists with the foun-
dations of modern quantum theory. The famous considerations by Einstein,
Podolsky and Rosen (EPR) [24] on reality, locality and completeness of phys-
ical theories are an early example in this respect. The critical questions raised
by these authors inspired many researchers to study quantitatively the essen-
tial difference between quantum physics and the classical concepts of reality
and locality. The breakthrough was the discovery by J.S. Bell [25] that the
statistical correlations of entangled quantum states are incompatible with the
predictions of any theory which is based on the concepts of reality and lo-
cality of EPR. The constraints imposed on statistical correlations within the
framework of a local, realistic theory (LRT) are expressed by Bell’s inequality
[25]. As the concept of entanglement and its peculiar correlation properties
have been of fundamental significance for the development of quantum infor-
mation processing, it is worth recalling some of its most elementary features
in more detail.

1.1.1 Entanglement and Local, Realistic Theories

In order to clarify the characteristic differences between quantum mechan-
ical correlations originating from entangled states and classical correlations
originating from local, realistic theories, let us consider the following basic
experimental setup (Fig. 1.1). A quantum mechanical two-particle system,
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Fig. 1.1. Basic experimental setup for testing Bell’s inequality; the choices of the
directions of polarization on the Bloch sphere for optimal violation of the CHSH
inequality (1.3) correspond to ¢ = 7 /4 for spin-1/2 systems
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such as a photon pair, is produced by a source s. Polarization properties of
each of these particles are measured subsequently by two distant observers A
and B. Observers A and B perform polarization measurements by randomly
selecting one of the directions a; or ag, and B; or 3,, respectively, in each
experiment. Furthermore, let us assume that for each of these directions only
two measurement results are possible, namely +1 or —1. In the case of pho-
tons these measurement results would correspond to horizontal or vertical
polarization.

What are the restrictions imposed on correlations of the measurement
results if the physical process can be described by an underlying LRT with
unknown (hidden) parameters? For this purpose, let us first of all summarize
the minimal set of conditions any LRT should fulfill.

1. The state of the two-particle system is determined uniquely by a parame-
ter A\, which may denote an arbitrary set of discrete or continuous labels.
Thus the most general observable of observer A or B for the experimental
setup depicted in Fig. 1.1 is a function of the variables (ay, 35, A). If the
actual value of the parameter A is unknown (hidden), the state of the
two-particle system has to be described by a normalized probability dis-
tribution P(X), i.e. [, dXP(X) = 1, where A characterizes the set of all
possible states. The state variable A determines all results of all possible
measurements, irrespective of whether these measurements are performed
or not. It represents the element of physical reality inherent in the ar-
guments of EPR: “If, without in any way disturbing a system, we can
predict with certainty the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity”
[24].

2. The measurement results of each of the distant (space-like separated)
observers are independent of the choice of polarizations of the other ob-
server. This assumption reflects the locality concept inherent in the argu-
ments of EPR: “The real factual situation of the system A is independent
of what is done with the system B, which is spatially separated from the
former” [24]. Thus, taking into account also this locality requirement, the
most general observable of observer A for the experimental setup depicted
in Fig. 1.1 can depend on the variables a; and A (for B, 8; and \) only.

These two assumptions, which reflect fundamental notions of classical physics
as used in the arguments of EPR, restrict significantly the possible cor-
relations of measurements performed by both distant observers. Accord-
ing to these assumptions, the following measurement results are possible:
a(a;,\) = a; = +1 (i = 1,2) for observer A, and b(3;,\) = b; = *1
(i = 1,2) for observer B. For a given value of the state variable A, all these
possible measurement results of the dichotomic (two-valued) variables a; and
b; (i = 1,2) can be combined in the single relation

|((1,1 + az)bl + (CL2 — CL1)b2| = 2. (11)
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It should be mentioned that this relation is counterfactual [26] in the sense
that it involves both results of actually performed measurements and pos-
sible results of unperformed measurements. All these measurement results
are determined uniquely by the state variable . If this state variable is un-
known (hidden), (1.1) has to be averaged over the corresponding probability
distribution P(X). This yields an inequality for the statistical mean values,

T — /A d A P(Na(aw, (B, ) (6,5 =1,2), (1.2)

which is a variant of Bell’s inequality and which is due to Clauser, Horne,
Shimony and Holt (CHSH) [27], namely

| (a1b1)LrT + (a2b1)LrT + (a2b2)LrT — (@1b2)LRT | < 2. (1.3)

This inequality characterizes the restrictions imposed on the correlations be-
tween dichotomic variables of two distant observers within the framework of
any LRT. There are other, equivalent forms of Bell’s inequality, one of which
was proposed by Wigner [28] and will be discussed in Chap. 3.

Quantum mechanical correlations can violate this inequality. For this pur-
pose let us consider, for example, the spin-entangled singlet state

1
V2

where | + 1) and | £ 1) denote the eigenstates of the Pauli spin operators
o2 and 0P, with eigenvalues £1. Quantum mechanically, the measurement
of the dichotomic polarization variables a; and b; is represented by the spin
operators a; = a;-o™ and b; = B,-aB. (o, for example, denotes the vector of
Pauli spin operators referring to observer A, i.e. o = Zi:%y’ . of‘ei, where
e; are the unit vectors.) The corresponding quantum mechanical correlations
entering the CHSH inequality (1.3) are given by

(@sbjyam = (Wlash;|v) = —ai - B; . (1.5)

Choosing the directions of the polarizations (g, 3,), (81, a2), (a2, 3;) on
the Bloch sphere so that they involve an angle of 7/4 (see Fig. 109), one finds
a maximal violation of inequality (1.3), namely

%) (I+al=1)s—[=1al+1)8), (1.4)

| {arb1)qum + (a2b1)qu + (abo)oum — (@1bo)qm |=2v2 > 2. (1.6)

Thus, for this entangled state, the quantum mechanical correlations between
the measurement results of the distant observers A and B are stronger than
any possible correlation within the framework of an LRT. Obviously, these
correlations are incompatible with the classical notions of reality and local-
ity of any LRT. It is these peculiar quantum correlations originating from
entanglement which have been of central interest in research on the founda-
tions of quantum theory and which are also of central interest for quantum
information processing.
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So far, numerous experiments testing and supporting violations of Bell’s
inequality [29, 30, 31] have been performed.? However, from a strictly logical
point of view, the results of all these experiments could still be explained
by an LRT, owing to two loopholes, namely the locality and the detection
loopholes. The locality loophole concerns violations of the crucial locality as-
sumption underlying the derivation of Bell’s inequality. According to this as-
sumption one has to ensure that any signaling between two distant observers
A and B is impossible. The recently performed experiment of G. Weihs et
al. [31] succeeded in fulfilling this locality requirement by choosing the sep-
aration between these observers to be sufficiently large. However, so far all
experiments have involved low detection efficiencies, so that in principle the
observed correlations which violate Bell’s inequality can still be explained by
an LRT [32, 33]. This latter detection loophole constitutes a major experi-
mental challenge, and it is one of the current experimental aims to close both
the detection loophole and the locality loophole simultaneously [34, 35, 36].

The concepts of physical reality and locality which lead to inequality (1.3)
can also lead to logical contradictions with quantum theory which are not of
statistical origin. This becomes particularly apparent when one considers an
entangled three-particle state of the form

1
7

a so-called Greenberger-Horne—Zeilinger (GHZ) state [37]. Again | & 1)a,
| £1)B, and | + 1)c denote the eigenstates of the Pauli spin operators o2,
0B, and of, with eigenvalues £1. Similarly to Fig. 109, let us assume that
the polarization properties of this entangled quantum state are investigated
by three distant (space-like separated) observers A, B and C. Each of these
observers chooses his or her direction of polarization randomly along either
the = or the y axis.

What are the consequences an LRT would predict? As the three observers
are space-like separated, the locality assumption implies that a polarization
measurement by one of these observers cannot influence the results of the
other observers. Following the notation of Fig. 109, the possible results of the
polarization measurements of observers A, B and C along directions o, 3;
and vy are a; = *1, b; = *1 and ¢; = £1. Let us now consider four pos-
sible coincidence measurements of these three distant observers, with results
(az,bg,cz), (ag,by,cy), (ay,bsz,cy) and (ay,by,cz). As we are dealing with
dichotomic variables, within an LRT the product of all these measurement
results is always given by

[W)euz = —= (| + Dal + sl + L)c = | = 1)a| = )| = 1)c) , (1.7)

Byzr = (0sbats)(asbyey aybsey Jlaybycs) = aibiciaibzcz =1, (1.8)

What are the corresponding predictions of quantum theory? In quantum
theory the variables a;, b; and ¢ are replaced by the Pauli spin operators

2 For a comprehensive discussion of experiments performed before 1989, see [29].
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; = o -0, b; = B - o8 and &, = v - 0. The GHZ state of (1.7) fulfills
the relations

A

Gebata|V)anz = —|¥)cHz ,

&aci)yéyl'(MGHZ = &yi)xéyhb)GHZ = dyl;yéx|w>GHZ - |¢>GHZ . (19)

Therefore the quantum mechanical result for the product of (1.8) is given by

RQM |¢>GHZ = (&xi)méac)(dxi)yéy) (dyéwéy) (dyi’yéw) |¢>GHZ

(=D¥)cuz (1.10)

and contradicts the corresponding result of an LRT. These peculiar quantum
mechanical predictions have recently been observed experimentally [38]. The
entanglement inherent in these states offers interesting perspectives on the
possibility of distributing quantum information between three parties [39)].

1.1.2 Characteristic Quantum Effects for Practical Purposes

According to a suggestion of Feynman [40], quantum systems are not only of
interest for their own sake but might also serve specific practical purposes.
Simple quantum systems may be used, for example, for simulating other, more
complicated quantum systems. This early suggestion of Feynman emphasizes
possible practical applications and thus indicates already a change in the
attitude towards characteristic quantum phenomena.

In the same spirit, but independently, Wiesner suggested in the 1960s the
use of nonorthogonal quantum states for the practical purpose of encoding
secret classical information [41]. The security of such an encoding procedure
is based on a characteristic quantum phenomenon which does not involve
entanglement, namely the impossibility of copying (or cloning) nonorthogonal
quantum states [4]. This impossibility becomes apparent from the following
elementary consideration. Let us imagine a quantum process which is capable
of copying two nonorthogonal quantum states, say |0) and [1), with 0 <
|(0|1)| < 1. This process is assumed to perform the transformation

0)lp)|a) — 10)[0)]ao) ,

[Dlp)a) — [HI1)]a1) , (1.11)

where |¢) represents the initial quantum state of the (empty) copy and
la), |ag), |a1) denote normalized quantum states of an ancilla system. This
ancilla system describes the internal states of the copying device. As this
copying process has to be unitary, it has to conserve the scalar product be-
tween the two input and the two output states. This implies the relation
(0]1)(1 — (0|1){ao|a1)) = 0. This equality can be fulfilled only if either states

3 Though this article was written in the 1960s, it was not published until 1983.
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|0) and |1) are orthogonal, i.e. (0|]1) =0, or if (0|]1) = 1 = (ao|a1). Both pos-
sibilities contradict the original assumption of nonorthogonal, nonidentical
initial states. Therefore a quantum process capable of copying nonorthogo-
nal quantum states is impossible. This is an early example of an impossible
quantum process.

Soon afterwards, Bennett and Brassard [42] proposed the first quan-
tum protocol (BB84) for secure transmission of a random, secret key using
nonorthogonal states of polarized photons for the encoding (see Table 1.1).
In the Vernam cipher, such a secret key is used for encoding and decoding
messages safely [6, 43]. In this latter encoding procedure the message and
the secret key are added bit by bit, and in the decoding procedure they are
subtracted again. If the random key is secret, the safety of this protocol is
guaranteed provided the key is used only once, has the same length as the
message and is truly random [44]. Nonorthogonal quantum states can help in
transmitting such a random, secret key safely. For this purpose A(lice) sends
photons to B(ob) which are polarized randomly either horizontally (+1) or
vertically (—1) along two directions of polarization. It is convenient to choose
the magnitude of the angle between these two directions of polarization to be
7/8. B(ob) also chooses his polarizers randomly to be polarized along these
directions. After A(lice) has sent all photons to B(ob), both communicate to
each other their choices of directions of polarization over a public channel.
However, the sent or measured polarizations of the photons are kept secret.
Whenever they chose the same direction (yes), their measured polarizations
are correlated perfectly and they keep the corresponding measured results
for their secret key. The other measurement results (no) cannot be used for
the key. Provided the transmission channel is ideal, A(lice) and B(ob) can
use part of the key for detecting a possible eavesdropper because in this case
some of the measurements are not correlated perfectly. In practice, however,
the transmission channel is not perfect and A(lice) and B(ob) have to process
their raw key further to extract from it a secret key [45]. It took some more

Table 1.1. Part of a possible idealized protocol for transmitting a secret key,
according to [12]

A(lice)’s direction ¢ 112|112 |1|2|2|1]2]--
A(lice)’s polarization +1|—1| =1 |+1|+ 1| +1|-1|—-1| =1 |+1| --
B(ob)’s direction % 2011212 (1(2|1|1]2

B(ob)’s measured polarization |+1|—1|—1|—1|+1|+1|—1|+1]—1|+1]|---
Public test of common direction|No|No|Yes|No|Yes|Yes|Yes{No|Yes|Yes|- - -
Secret key —1 +1({4+1]|-1 —1{+1] -

years to realize that an exchange of secret keys can be achieved with the
help of entangled quantum states [46]. Thereby, the characteristic quantum
correlations of entangled states and the very fact that they are incompat-
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ible with any LRT can be used for ensuring security of the key exchange.
After the first proof-of-principle experiments [47, 48], the first practical im-
plementation of quantum cryptography over a distance of about 1 km was
realized at the University of Geneva using single, polarized photons trans-
mitted through an optical fiber [49]. These developments launched the whole
new field of quantum cryptography. Now, this field represents the most devel-
oped part of quantum information processing. Quantum cryptography based
on the BB84 protocol has already been realized over a distance of 23 km
[50]. Recent experiments [30, 31] have demonstrated that photon pairs can
also be entangled over large distances, so that entanglement-based quantum
cryptography over such large distances might become accessible soon. Some
of these experiments are discussed in Chap. 3.

Simultaneously with these developments in quantum cryptography, nu-
merous other physical processes were discovered which were either enabled
by entanglement or in which entanglement led to an improvement of perfor-
mance. The most prominent examples are dense coding [51], entanglement-
assisted teleportation [10, 11, 52] and entanglement swapping [52, 53]. (These
processes are discussed in detail in Chaps. 2 and 3.) In the spirit of Feynman’s
suggestion, all these developments demonstrate that characteristic quantum
phenomena have practical applications in quantum information processing.

1.1.3 Quantum Algorithms

Feynman’s suggestion also indicates interesting links between quantum phy-
sics and computer science. After the demonstration [54] that quantum sys-
tems can simulate reversible Turing machines [55], the first quantum gener-
alization of Turing machines was developed [7]. (Turing machines are general
models of computing devices and will be discussed in detail in Chap. 4.) Fur-
thermore, it was pointed out that one of the remarkable properties of such
a quantum Turing machine is quantum parallelism, by which certain tasks
may be performed faster than by any classical computing device. Deutsch’s
algorithm [7, 56] was the first quantum algorithm demonstrating how the
interplay between quantum interference, entanglement and the quantum me-
chanical measurement process could serve this practical purpose.

The computational problem solved by Deutsch’s algorithm is the follow-
ing. We are given a device, a so-called oracle, which computes a Boolean
function f mapping all possible binary n-bit strings onto one single bit.
Therefore, given a binary n-bit string x as input, this oracle can compute
f(x) € {0,1} in a single step. Furthermore, let us assume that this function
is either constant or balanced. Thus, in the first case the 2™ possible input
values of x are all mapped onto 0 or all onto 1. In the second case half of
the input values are mapped onto either 0 or 1 and the remaining half are
mapped onto the other value. The problem is to develop an algorithm which
determines whether f is constant or balanced.
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Let us first of all discuss briefly the classical complexity of this problem.
In order to answer the question in the worst possible case, the oracle has to be
queried more than 27! times. It can happen, for example, that the first 27!
queries all give the same result, so that at least one more query of the oracle
is required to decide whether f is constant or balanced. Thus, classically, it
is apparent that the number of steps required grows exponentially with the
number of bits.

X > X >

|a> | a @ f(x)>

Fig. 1.2. Basic operation of a quantum oracle Uy which evaluates a Boolean func-
tion f:x € Z5 — f(x) € Z3 = {0, 1}; |z) is the input state of an n-qubit quantum
system; |a) is a one-qubit state and @ denotes addition modulo 2

Quantum mechanically, the situation is different. The 2" possible binary
n-bit strings & can be represented by quantum states |z), which form a ba-
sis in a 2"-dimensional Hilbert space Hon, which is the state space of n
qubits. Furthermore, we imagine that the classical oracle is replaced by a
corresponding quantum oracle (Fig. 1.2). This is a unitary transformation
Uy which maps basis states of the form |z)|a), where a € {0,1}, to output
states of the form |z)|a & f(z)) in a single step. Here, |a) denotes the quan-
tum state of an ancilla qubit and @ denotes addition modulo 2. If the initial
state is |z)|0), for example, the quantum oracle performs an evaluation of
f(x), resulting in the final state |z)|f(z)). However, as this transformation
is unitary, it can perform this task also for any linear combination of possi-
ble basis states in a single step. This is the key idea of quantum parallelism
[7]. Deutsch’s quantum algorithm obtains the solution to the problem posed
above by the following steps (Fig. 1.3):

1. The n-qubit quantum system and the ancilla system are prepared in
states |0) and (|0) — |1))/+v/2. Then a Hadamard transformation

H: ro>e%<|o>+|1>>,

1
1) — E(|0> - 1) (1.12)
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Fig. 1.3. Schematic representation of Deutsch’s quantum algorithm
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is applied to all of the first n qubits. We denote by H (1) the application
of H to the ith qubit. Thus, the separable quantum state

_ L (TTer® ) = :
|¢1>—\/§[(£[1®H )10)] (10) !1>)—\/§n—+12l (10) = 1)) (1.13)

TEeE2™

is prepared.
2. A single application of the quantum oracle Uy to state |¢1) yields the
quantum state

[2) = Uslth) = —1)7@lz)(j0) ~ 1)) . (1.14)

3. Subsequently a quantum measurement is performed to determine whether
the system is in state |¢1) or not. With the help of n Hadamard trans-
formations (as in step 1), this quantum measurement can be reduced to
a measurement of whether the first n qubits of the quantum system are
in state |0) or not.

If in step 3 the quantum system is found in state |t/1), f is constant, otherwise
f is balanced. One of these two possibilities is observed with unit probability.
The probability p of observing the quantum system in state |t¢) is given by

= | (ile) = o l > (D@2 (1.15)

rEe2n

Taking into account the single application of the quantum oracle in step 2
and the application of the Hadamard transformations in the preparation and
measurement processes, Deutsch’s quantum algorithm requires O(n) steps to
obtain the final answer, in contrast to any classical algorithm, which needs
an exponential number of steps. Thus Deutsch’s quantum algorithm leads to
an exponential speedup.

A key element of this quantum algorithm and of those discovered later is
the quantum parallelism involved in step 2, where the linear superposition
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of the first n qubits comprises the requested global information about the
function f. For most of the possible functions f this intermediate quantum
state is expected to be entangled. An exception is the case of a constant func-
tion f, for which the quantum state |1)2) is separable. Furthermore, it is also
crucial for the success of this quantum algorithm that the final measurement
in step 3 yielding the required answer can be implemented by a fast quantum
measurement whose complexity is polynomial in n. This is a requirement
fulfilled by all other known fast quantum algorithms. The quantum algo-
rithm described above was the first example demonstrating that quantum
phenomena may speed up computations in such a way that an exponential
gap appears between the complexity class of the quantum problem and the
complexity class of the corresponding classical probabilistic problem.

Continuing this development initiated by Deutsch, other, new fast quan-
tum algorithms were discovered in the subsequent years. The most prominent
examples are Simon’s quantum algorithm [57], Shor’s celebrated algorithm
[9] for factorizing numbers, and Grover’s search algorithm [58]. (Quantum al-
gorithms are discussed in detail in Chap. 4.) In addition, possible realizations
of quantum computing devices were suggested which were based on trapped
ions [59] and on cavity quantum electrodynamical setups [60]. These devel-
opments called for new methods for stabilizing quantum algorithms against
perturbing environmental influences, which tend to destroy quantum inter-
ference and quantum entanglement [61]. This led to the development of the
first error-correcting codes [62, 63, 64, 65, 66] by adaptation of classical error-
correcting techniques to the quantum domain. An introduction to the theory
of quantum error correction is presented in Chap. 4.

1.2 Quantum Physics and Information Processing

What are the common features of these early developments? The common
element of these early developments in quantum cryptography and quan-
tum computation is that they all involve the practical processing of informa-
tion and they are all founded on and facilitated by characteristic quantum
phenomena. These phenomena, among which the most prominent is entan-
glement, are in conflict with the classical concepts of physical reality and
locality. Obviously, these early developments hint at a profound connection
between the concept of information and some fundamental concepts of quan-
tum theory, which is also promising from the technological point of view.
It is these technologically oriented aspects of quantum information theory
[67, 68, 69] which are at the heart of quantum information processing.
Methods for processing quantum information have developed rapidly dur-
ing the last few years [12]. Owing to significant experimental advances, ba-
sic interference and entanglement phenomena which are of central interest
for processing quantum information have been realized in the laboratory in
various physical systems. Basic schemes for quantum communication have
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been demonstrated with photons [10, 11, 49, 70]. Realizations of elementary
quantum logical operations have been based on trapped ions [13, 14] and on
nuclear magnetic resonance [15]. Recent experiments indicate that besides
cavity quantum electrodynamical setups [16], trapped neutral atoms which
are guided along magnetic wires (atom chips) might also be useful for quan-
tum information processing [17]. There have also been theoretical proposals
on using ultracold atoms in optical lattices [18, 19], on ions in an array of
microtraps [20] and on solid-state devices [21, 22, 23] for the implementation
of quantum logical gates.

By now, quantum information processing has become an interdisciplinary
subject which attracts not only physicists but also researchers from other
communities. The common interest is the practical, technologically oriented
application of characteristic quantum phenomena. At this stage of develop-
ment, it appears necessary to examine recent achievements and to emphasize
the underlying, general, basic concepts, which have been developing gradu-
ally and which are now commonly adopted by all researchers in this field.
This is one of the main intentions of the rest of the book.

In Chap. 2, Werner introduces the basic concepts of quantum information
theory and describes the fundamental mathematical structures underlying re-
cent and current developments. In particular, this chapter addresses a natural
question appearing in connection with Feynman’s suggestion, namely what
can be done with the help of quantum systems and what cannot be done. A
first example of an impossible quantum process, the copying of nonorthogonal
quantum states, has already been mentioned. Other examples of possible and
impossible quantum processes are discussed in detail in this contribution.

First experimental realizations of basic quantum communication schemes
based on entangled photon pairs are discussed in Chap. 3 by Weinfurter and
Zeilinger. These first experiments on entanglement-based quantum cryptog-
raphy, dense coding and quantum teleportation demonstrate the important
role photons play in current experiments. Furthermore, these experiments
also emphasize once again the fundamental significance of entanglement for
quantum information processing.

The basic theoretical concepts of quantum computation and the mathe-
matical structure underlying quantum algorithms are discussed in Chap. 4
by Beth and Rotteler. In particular, it is demonstrated how recent results in
the theory of signal processing can be used for the development of new fast
quantum algorithms. A short introduction to the theory of quantum error
correction is also presented.

A comprehensive account of the mathematical structure of entanglement
and of the significance of mixed entangled states for quantum information
processing is presented in Chap. 5 by M. Horodecki, P. Horodecki and R.
Horodecki. One of the most surprising recent developments in this context
has been the discovery of bound entanglement [71]. Though much is still
unknown, this section gives a state-of-the-art presentation of what is known




1 From the Foundations of Quantum Theory to Quantum Technology 13

about this new form of entanglement and its implications for processing quan-
tum information.




