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Abstract
A new purification scheme is proposed which applies to arbitrary dimensional
bipartite quantum systems. It is based on the repeated application of a special
class of nonlinear quantum maps and a single, local unitary operation. This
special class of nonlinear quantum maps is generated in a natural way by a
Hermitian generalized XOR-gate. The proposed purification scheme offers two
major advantages, namely it does not require local depolarization operations
at each step of the purification procedure and it purifies more efficiently than
other known purification schemes.

PACS numbers: 03.67.-a, 03.67.Hk, 03.65.Bz

1. Introduction

Quantum information processing was proven to be superior to classical information processing
in several respects. The essence of quantum information is its ability to employ the linearity
of quantum mechanics on composite systems for practical purposes. Many of the already
demonstrated procedures [1,2] rely on the use of highly entangled quantum states. Entangled
states are never generated in ideal form. Typically, either the source producing entangled
quantum states or the communication channel with which entanglement is transferred to remote
parties adds noise. In order to be able to exploit entanglement efficiently it is desirable to
remove as much of this additional noise as possible. This goal can be achieved by purifying
or concentrating entanglement.

The manipulation of quantum states is realized using quantum networks. Usually, they are
constructed out of simple elements, so-called quantum gates. Among them the two-particle
quantum XOR-gate [3] plays a fundamental role. In this two-qubit gate, the first qubit controls
the target qubit: if the control is in state |0〉, the target is left unchanged, but if the control
qubit is in state |1〉 the target’s basis states are flipped. Together with one-qubit operations
this gate forms a universal set of quantum gates allowing the implementation of arbitrary
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unitary operations acting on qubits [4]. It has been demonstrated that the quantum XOR-gate
can be used for many practical tasks of quantum information processing, such as quantum
state swapping [5], entangling quantum states [6], performing Bell measurements [7], dense
coding [8], and teleportation [9]. Furthermore, in combination with selective measurements
it can be used for implementing nonlinear quantum transformations which may be used for
optimal state identification and for state purification [10, 11].

For many practical tasks of quantum information processing it is desirable to extend the
basic notion of such a quantum XOR-operation to higher-dimensional Hilbert spaces. Indeed,
most of the physical systems that have been proposed to hold qubits, such as multilevel atoms
or ions [12] and multipath-interferometers [13], could equally well encode larger alphabets.
However, there is a considerable degree of freedom involved in such a generalization.

In this paper we use a Hermitian generalization of the quantum XOR-gate which applies
to arbitrary dimensional Hilbert spaces and which allows to implement a special class of
nonlinear quantum transformations in a natural way. These nonlinear transformations can
be used for the preparation of quantum states and for efficient quantum state purification.
This will be exemplified by discussing state purification of generalized Bell states. These
latter quantum states are of considerable interest in quantum information processing in higher-
dimensional Hilbert spaces. Compared with the other known purification scheme which is
valid in arbitrary dimensional Hilbert spaces (developed by Horodecki and Horodecki [14])
our proposed purification procedure offers two advantages. Firstly, it does not involve a
depolarization operation at each step of the iteration procedure. Typically, it is not easy to
implement such depolarization operations repeatedly. Secondly, it will be demonstrated that
our newly proposed method is more efficient.

The paper is organized as follows. In section 2 the Hermitian generalized XOR-
gate is introduced which allows one to implement the special class of nonlinear quantum
transformations needed for our proposed purification scheme. The resulting class of nonlinear
quantum maps is discussed in section 3. The new quantum state purification scheme, its basic
properties and its efficiency are exemplified in section 4.

2. A Hermitian generalized GXOR-gate

Let us start by summarizing characteristic properties of the XOR-gate as they are known for
qubit systems. For qubits the action of the quantum XOR-gate onto a chosen set of basis states
{|i〉} with i ∈ {0, 1} of the Hilbert space of each qubit is defined by

XOR12 |i〉1 |j〉2 = |i〉1 |i ⊕ j〉2 . (1)

This transformation has the following characteristic properties: (i) it is unitary and thus
reversible, (ii) it is Hermitian and (iii) i ⊕ j = 0 if and only if i = j . The first (second)
index denotes the state of the control (target) qubit and ⊕ denotes addition modulo (2).

Let us now consider the problem of generalizing the quantum XOR-gate to higher-
dimensional Hilbert spaces. The desired generalized quantum XOR-gate (GXOR-gate) should
act on two D-dimensional quantum systems. In analogy with qubits we will call these two
systems qudits. The basis states |i〉 of each qudit are labelled by elements in the ring ZD which
we denote by the numbers i = 0, . . . , D−1 with the usual rules for addition and multiplication
modulo (D). In principle, the GXOR gate could be defined in a straightforward way by using
equation (1) and by performing i ⊕ j modulo (D), i.e.

GXOR12 |i〉1 |j〉2 = |i〉1 |i ⊕ j〉2 . (2)

The GXOR-gate defined in (2) is unitary but not Hermitian for D > 2. Therefore it is no
longer its own inverse. Thus, the inverse GXOR-gate has to be obtained from the GXOR-gate
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of equation (2) by iteration, i.e. GXOR−1
12 = (GXOR12)

D−1 = GXOR†
12 	= GXOR12. All these

inconvenient properties of this preliminary definition (2) can be removed by the alternative
definition

GXOR12 |i〉1 |j〉2 = |i〉1 |i 
 j〉2 . (3)

In equation (3) i
 j denotes the difference i− j modulo (D). In the special case of qubits the
definition of equation (3) reduces to equation (1) as i 
 j ≡ i ⊕ j modulo (2). Furthermore,
this definition preserves all the properties of equation (1) also for arbitrary values ofD, namely
it is unitary, Hermitian and i 
 j = 0 modulo (D) if and only if i = j .

The GXOR-gate of equation (3) admits a natural extension to control and target systems
with continuous spectra. In this case the basis states |i〉 are replaced by the basis states {|x〉} with
the continuous variable x ∈ R. These new basis states are assumed to satisfy the orthogonality
condition 〈x|y〉 = δ(x − y). Furthermore, as the dimension D tends to infinity the modulo
operation entering equation (3) can be omitted. Thus, for continuous variables the action of
the GXOR-gate becomes

GXOR12 |x〉1 |y〉2 = |x〉1 |x − y〉2 . (4)

Let us note that this definition for the case of continuous variables is different from the
generalized XOR-gate proposed in [15]. This latter gate is not Hermitian whereas the GXOR-
gate of equation (4) is both unitary and Hermitian. The GXOR-gate of equation (4) can be
represented in terms of a translation and a space inversion, namely

GXOR12 |x〉1 |y〉2 = �̂2eiP̂ (2)y x̂(1)/h̄ |x〉1 |y〉2 . (5)

Thereby P̂ (2)y denotes the canonical momentum operator which is conjugate to the position

operator ŷ(2) acting on quantum system 2 and �̂2 is the corresponding operator of space
inversion.

Let us discuss a possible physical realization of the GXOR-gate defined by equation (3)
which is based on nonlinear optical elements. For this purpose we assume that the two quantum
systems which are going to be entangled are two modes of the radiation field. The basis
states |i〉1 (i = 0, . . . , D − 1) of the first quantum system are formed by n-photon states
of mode one with 0 � n � D − 1. The basis states of the second quantum system |k〉2

(k = 0, . . . , D − 1) are formed by Fourier transformed n-photon states of this latter mode,
i.e. |k〉2 = 1/

√
D

∑D−1
n=0 exp(i2πkn/D)|n〉2. Let us further assume that the dynamics of these

two modes of the electromagnetic field are governed by the Kerr-effect [16]. Thus, in the
interaction picture their Hamiltonian is given by H = h̄χa

†
1a1a

†
2a2 with the creation and

annihilation operators a†
1,2 and a1,2 of modes 1 and 2, respectively. For the sake of simplicity

the nonlinear susceptibility χ is assumed to be real-valued and positive. Initially preparing
both quantum systems in state |i〉1|k〉2 after an interaction time of magnitude t = 2π/(Dχ)
this two-mode system ends up in state |ψ〉12 = |i〉1|k− i〉2. Applying to this latter state a time
reversal transformation which may be implemented by the process of phase conjugation [16]
we finally arrive at the desired state |i〉1|i − k〉2. Thus this combination of a Kerr-interaction
with a time reversal transformation is capable of realizing the GXOR-gate of equation (3).

As the GXOR-gate of equation (3) differs from the alternative definition of equation (2)
by local unitary operations both are only expected to exhibit similar properties as far as
entanglement operations are concerned. However, with the help of this GXOR-gate alone,
already a variety of interesting quantum operations can be implemented without having to use
additional local unitary transformations. In addition, as will be shown in sections 3 and 4, this
entanglement operation is particularly useful in the context of quantum state purification for
implementing nonlinear quantum state transformations.
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Figure 1. Schematic representation of the teleportation scheme involving Bell measurements onto
the generalized Bell states of equation (6).

As a first application let us consider the preparation of a basis of entangled states from
separable ones. If |l〉|m〉 with l, m,= 0, . . . , D−1 denotes an orthonormal basis of factorized
states an associated basis of entangled two-particle states is given by

|ψlm〉 = GXOR12[(F |l〉)1|m〉2]. (6)

Thereby F denotes the discrete Fourier transformation, i.e. F |l〉 = (1/
√
D)

∑D−1
k=0

exp(i2πlk/D)|k〉. For qubits this unitary quantum transformation leads to the well known
basis of four Bell states. In the simplest higher-dimensional case of D = 3, for example, the
first four states of this entangled generalized Bell basis are given by

|ψ00〉 = 1√
3

[|00〉 + |11〉 + |22〉]

|ψ10〉 = 1√
3

[|00〉 + ei2π/3|11〉 + e−i2π/3|22〉]

|ψ20〉 = 1√
3

[|00〉 + e−i2π/3|11〉 + ei2π/3|22〉]

|ψ01〉 = 1√
3

[|02〉 + |10〉 + |21〉].

(7)

As the GXOR-gate is Hermitian it can also be used to disentangle this basis of generalized
Bell states again by inverting equation (6). This basic disentanglement property is of practical
significance. It enables one to reduce Bell measurements to measurements of factorized states.
Examples where these latter types of measurements are of central interest are dense coding [8]
and quantum teleportation schemes [9].

The basis of entangled Bell states resulting from equation (6) can be used for teleporting
an arbitrary D-dimensional quantum state from A (Alice) to B (Bob). For this purpose let us
assume that A and B share an entangled pair of particles prepared in state |ψlm〉 as defined by
equation (6). If A wants to teleport an unknown quantum state |χ〉 = ∑D−1

n=0 αn|n〉 to B she has
to perform a Bell measurement which yields one of the entangled basis states of equation (6)
as an output state (compare with figure1). Conditioned on the measurement result of Alice,
Bob has to perform an appropriate unitary transformation onto his particle which prepares this
latter particle in state |χ〉. This arbitrary dimensional teleportation scheme rests on the identity

|χ〉|ψjk〉23 =
D−1∑
l,m=0

|ψlm〉12
e−i2πjm/D

D
Ulm|χ〉

Ulm|n〉 = e−i2πn(l−j)/D|n− k −m〉.
(8)

This basic relation for teleportation for an arbitrary dimensional state |χ〉 can be derived in
a straightforward way from equations (3) and (6). The classical communication requires
2 log2(D) bits, which is the minimum necessary in all quantum teleportation schemes.
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3. Nonlinear quantum maps on density matrices

With the help of the Hermitian GXOR-gate of equation (3) an interesting class of nonlinear
quantum maps can be implemented in a natural way. Together with filtering measurements
acting on a target quantum system t the GXOR-gate of equation (3) induces nonlinear
transformations of quantum states of a control system c. This can be demonstrated most
easily by considering the case of two qudits which are prepared in the quantum states σ t and
σ c initially. Let us perform the quantum operation

T (σ c, σ t ) = A
(
σ c ⊗ σ t

)
A†

Tr[A (σ c ⊗ σ t ) A†]
(9)

on these two qudits with

A = (1c ⊗ P) GXORct . (10)

Thereby 1c denotes the identity operator acting in the Hilbert space of the control system and
P = |p〉t t 〈p| is the projector onto the state |p〉t of the target qudit. With the decomposition

σ c =
D−1∑
ij

σ cij |i〉cc 〈j |

σ t =
D−1∑
ij

σ tij |i〉t t 〈j | .
(11)

Equations (9) and (10) may be rewritten in the form

T (σ c, σ t ) =
∑D−1

ijkl σ
c
ij σ

t
kl |i〉cc 〈j | ⊗ P |i 
 k〉t t 〈j 
 l|P∑D−1

ikl σ ciiσ
t
kl 〈p|i 
 k〉t t 〈i 
 l|p〉 . (12)

Assuming that both control and target qudit are prepared in the same state initially, i.e. σ c ≡ σ t ,
it turns out that equation (9) is equivalent to the relations

T (σ c, σ t ≡ σ c) = σ coutput ⊗ P

σcoutput =
∑D−1

ij σ ci,j σ
c
i−p,j−p |i〉cc 〈j |∑D−1

i σ ciiσ
c
i−p,i−p

.
(13)

As a result of the quantum operation (9) the combined system formed by the control and the
target qudit forms a factorizable state with the target qudit being in state |p〉〈p|. According
to equation (13) the density matrix elements of σ c with respect to the computational basis |i〉
(i = 0, . . . , D − 1) have been multiplied with each other. The final state of the control qudit
is prepared with probability pc = ∑D−1

i σ ci,iσ
c
i−p,i−p. In the case of qubits, for instance, the

nonlinear transform of the (unnormalized) control density matrix is given by

σ coutput =




(
σ c00

)2 (
σ c01

)2 (
σ c02

)2 (
σ c03

)2

(
σ c10

)2 (
σ c11

)2 (
σ c12

)2 (
σ c13

)2

(
σ c20

)2 (
σ c21

)2 (
σ c22

)2 (
σ c23

)2

(
σ c30

)2 (
σ c31

)2 (
σ c32

)2 (
σ c33

)2


 (14)

if projected onto the state |0〉t . The elements of the original density matrix have been squared.
If one projects onto the state |1〉t , for example, the original density matrix elements are mixed
in a more complicated way and one obtains the (unnormalized) density matrix
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Figure 2. Schematic representation of the GXOR-gates and projections involved in the nonlinear
quantum transformation of equation (18). The qudits are represented by dots. The dots of the
first line represent the M qudits of the control system. The dots of the following lines represent
the M × N qudits of the N target systems t1, t2, . . . , tN . The GXOR-gate GXOR(j)cti acts on the
j th qudit of the control and target system ti with j ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , N}. The
operator P− projects the state of the whole systems onto state |0〉〈0| with |0〉 = |0〉1|0〉2 . . . |0〉MN .

σ coutput =



σ c00σ

c
33 σ c01σ

c
32 σ c02σ

c
31 σ c03σ

c
30

σ c10σ
c
23 σ c11σ

c
22 σ c12σ

c
21 σ c13σ

c
20

σ c20σ
c
13 σ c21σ

c
12 σ c22σ

c
11 σ c23σ

c
10

σ c30σ
c
03 σ c31σ

c
02 σ c32σ

c
01 σ c33σ

c
00


 . (15)

From equation (13) it is easy to verify that the quantum operation (9) has the following
basic properties: (i) it maps density matrices onto density matrices, (ii) it is not injective and
nonlinear, and (iii) there are states invariant under this transformation. It is also possible to
extended the quantum operation of equation (9) to cases in which there is more than one control
system and in which both the control and the target systems are composite quantum systems
each of which consists of M qudits. In this case σ c describes a general M-qudit state of the
form

σ c =
∑
ij

σ cij |i〉cc 〈j| (16)

with i = (i1, . . . , iM) and j = (j1, . . . , jM). In equation (9) the operator A has to be replaced
by

A = (1c ⊗ P)

M∏
j=1

N∏
i=1

GXOR(j)cti (17)

with the projection operators P = ∏N
i=1 ⊗Pti and Pti = |pi〉ti ti 〈pi| onto state |pi〉ti of the

M-qudit target system ti . Thereby the GXOR-gate GXOR(j)cti operates on the j th qudit of the
control and of the ith target system. For the special case of pi = 0 for all ti , for example, the
resulting final state of the control system is given by

σ coutput =
∑

ij(σ
c
ij)

1+N |i〉cc 〈j|∑
i(σ

c
ii)

1+N
(18)

and is prepared with probability pc = ∑
i

(σ cii)
1+N (compare with figure 2).
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4. Bipartite purification in higher-dimensional spaces

In general, for N = 1 the nonlinear quantum transformation of equation (18) has states
which are not only invariant with respect to Pt1 = |0〉t1t1〈0| but also with respect to other
projectors Pt1 . This suggests to use this nonlinear quantum transformation for the purification
of quantum states of a two-qudit system. For the special case of a control system consisting of
two-qubits such a purification scheme which is based on the nonlinear quantum transformation
of equation (18) has already been proposed previously [11]. In order to discuss an analogous
purification scheme in arbitrary dimensional Hilbert spaces we start from the observation that
forM = 2 the entangled basis state |ψ00〉 of equation (6) is a fixed point of the nonlinear two-
particle quantum map of equation (18). Inspection of the two ‘squared’ matrices (14) and (15)
shows that this is true not only for the projector Pt1 = |0〉t t 〈0| but also for Pt1 = |1〉t t 〈1|.
Therefore, this nonlinear quantum transformation may be used for purifying quantum states
towards the entangled state |ψ00〉. Thereby the possibility to use both projectors in the
purification process increases its efficiency considerably.

Purification in higher-dimensional Hilbert spaces has been considered previously by
Horodecki and Horodecki [14]. These authors generalized the approach of Bennett et al [10]
to arbitrary dimensional Hilbert spaces. The purpose of their protocol is to distill Bell states
from a noisy channel. Their protocol combines two basic steps, namely a nonlinear quantum
map which ‘squares’ the density matrix elements and a depolarizing channel converting the
resulting output state into a Werner state. The depolarizing channel guarantees that at each
step of the purification protocol an initially prepared Werner state is mapped again onto a
Werner state with a higher admixture of the Bell state. This protocol is capable of purifying
all non-separable Werner states in arbitrary dimensional Hilbert spaces. The depolarization
operation involved in this purification protocol requires that suitably chosen local unitary
operations have to be applied to a sufficiently large number of two-qudit systems. For the case
of qubits it has been shown that such a depolarization may be achieved with a set of 12 suitably
chosen unitary operations [17]. For qudits with D > 2 suitable minimal numbers of unitary
operations are not known at present. In view of these inconveniences in implementing a
depolarizing operation it appears desirable to develop alternative purification strategies which
do not involve such a depolarization procedure. For the case of qubits such a procedure has
already been developed by Deutsch et al [18]. In the following we propose such a method
which applies to arbitrary dimensional Hilbert spaces. It is based on the nonlinear quantum
transformation of equation (18) (with N = 1) followed by a single local unitary operation
acting on both qudits.

In order to exemplify basic properties of our purification scheme let us consider the
purification of a Werner state of the form

σ c = λ|ψ00〉〈ψ00| + (1 − λ)1/D2 (19)

where the parameter λ is related to the fidelity F = 〈ψ00|σ c|ψ00〉 through the expression

F = λ +
1 − λ

D2
. (20)

The state (19) may result from a physical situation where two spatially separated parties, say
A(lice) and B(ob), want to share the entangled basis state |ψ00〉 but with a probability of (1−λ)
the transmission of this entangled pair through a quantum channel leads to unwanted noise
represented by the chaotic state 1/D2. This initial quantum state σ c is non-separable if and
only if λ > λD = (1 + D)−1 [19] so that a purification scheme can succeed only for those
values of λ.
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We propose a purification scheme which is based on a two-step iteration procedure. In
the first part of each iteration step we apply the nonlinear quantum map of equation (18) (with
N = 1) by projecting onto an arbitrary two-qudit target state |ii〉〈ii| (i = 0, . . . , D − 1).
Correspondingly, independent of the target state |ii〉, the initially prepared Werner state (19)
is converted into the quantum state

σ
c(1)
output = λ1

ND
|ψ00〉〈ψ00| +

λ2

ND
1/D2 +

λ3

ND

D−1∑
k=0

|kk〉〈kk|
D

(21)

with the coefficients λi depending on the initial choice of λ only, i.e.

λ1 = λ2

λ2 = (1 − λ)2

D

λ3 = 2λ(1 − λ)

D

(22)

and

ND = λ1 + λ2 + λ3. (23)

However, it turns out that both the pure state |ψ00〉〈ψ00| and the mixed state
∑D−1

k=0 |kk〉〈kk|/D
are fixed points of the nonlinear quantum transformation of equation (18). Therefore, an
additional local unitary transformation is required in order to guarantee convergence of the
iteration procedure towards the desired final state |ψ00〉〈ψ00|. Thus, in the second part of each
iteration step parties A and B perform a local twirling operation [14] U ⊗ U ∗, i.e.

σ
c(1)
output → σ

c(2)
output ≡ U ⊗ U ∗σ c(1)outputU

† ⊗ U ∗†. (24)

Ultimately this transformation achieves convergence towards our desired final state |ψ00〉〈ψ00|
by altering the mixed state

∑D−1
k=0 |kk〉〈kk|but still leaving state |ψ00〉〈ψ00| invariant. Therefore,

the depolarization operation of the protocol of Horodecki et al [14] is replaced by a single
twirling operation. For the unitary transformation involved in this twirling operation we
propose to choose a discrete Fourier transform, i.e.

U |k〉 = 1√
D

D−1∑
n=0

exp(i2πkn/D)|n〉. (25)

This choice is motivated by the desire to increase the success probability of the purification
process and to maximize the radius of convergence of the iteration procedure. As both the
intermediate output state of equation (21) and the unitary transformation of equation (25)
are invariant under transformations of the basis states of the form |i〉 → |i + 1〉 (i =
0, . . . , D − 1), all the projections Pt1 = |ii〉〈ii| yield the same success probability thus
increasing efficiency. Iterating the two-step procedure based on the nonlinear quantum
transformation of equation (18) and the local twirling operation of equation (24) yields our
proposed purification procedure. Thus, after the nth iteration the two-particle state σ c(2n)output is
given by

σ
c(2n)
output = λ̃

(n)
1

ND
|ψ00〉〈ψ00| +

λ̃
(n)
2

ND
1/D2 +

λ̃
(n)
3

ND

D−1∑
k=0

|kk〉〈kk|
D

+
λ̃
(n)
4

ND

D−1∑
k=0

U ⊗ U ∗ |kk〉〈kk|
D

U † ⊗ U ∗† (26)
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with

λ̃
(n)
1 =

[(
λ̃
(n−1)
1

)2
+

2λ̃(n−1)
1 λ̃

(n−1)
3

D

]

λ̃
(n)
2 =

[(
λ̃
(n−1)
2

)2
+ 2λ̃(n−1)

2 λ̃
(n−1)
3

D

]

λ̃
(n)
3 =

[(
λ̃
(n−1)
4

)2
+

2λ̃(n−1)
1 λ̃

(n−1)
2

D
+

2λ̃(n−1)
1 λ̃

(n−1)
4

D
+ 2λ̃(n−1)

2 λ̃
(n−1)
4 +

2λ̃(n−1)
3 λ̃

(n−1)
4

D

]

λ̃
(n)
4 =

(
λ̃
(n−1)
3

)2

D

(27)

and

ND = λ̃
(n)
1 + λ̃2

(n)
+ λ̃(n)3 + λ̃(n)4 . (28)

The initial condition corresponding to the Werner state of equation (19) is given by λ̃(0)1 =
λ, λ̃

(0)
2 = λ̃

(0)
3 = λ̃

(0)
4 = 0.

Numerical simulations performed for dimensions 2 � D � 20 demonstrate that this
purification procedure is capable of purifying almost all non-separable Werner states of the
form of equation (19). Thereby, a depolarization operation is needed only once, namely in the
possible preparation of this Werner state. The dependence of the range of convergence of this
purification scheme on the dimension D of the Hilbert space is apparent from figure 3. The
dashed curve indicates the minimum values Fc = 1/D of the fidelity for which the Werner
state of equation (19) is still non-separable. The purification protocol of Horodecki et al [14]
converges for all initial values F > Fc. The solid curve represents the minimal initial value of
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Figure 3. Dependence of the minimal initial fidelity Fc needed to purify a Werner state (compare
with equation (19)) as a function of the dimension D: our protocol (full curve), Horodecki’s
protocol (dashed curve).
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Figure 4. This scheme illustrates the calculation of the efficiency η. The initial collection of qudits
is split into two equal parts. One part forms the control, the other the target qudits. The success
probability of the process after the first step is p1, the total number of ‘squared’ qudits is given by
(1/2)Ninitialp1. The procedure is repeated until the required fidelity Ffinal for the resulting state is
reached after n steps.

the fidelity for which our protocol purifies. It is clear from figure 3 that the range of convergence
of our purification scheme is slightly smaller but approaches the ideal limit Fc with increasing
dimension D of the Hilbert space. Already for moderately large dimensions D our range of
convergence approaches the ideal range closely.

Let us now compare the efficiency of our purification protocol with the one proposed by
Horodecki et al [14]. In particular, we are interested in answering the question, how many
iterations are needed to obtain state |ψ00〉 with a prescribed final fidelityFfinal = 〈ψ00|σ cfinal|ψ00〉
for a given dimension D? In order to clarify the calculation of this efficiency let us
briefly reconsider the basic steps involved in a purification protocol. They are represented
schematically in figure 4. Initially the purification process starts with an ensemble of Ninitial

Werner states each of which is described by equation (19). In each step of the iteration
procedure the ensemble of two-qudit states is divided into two equal parts which serve as
control and target systems. The nonlinear quantum transformation is performed by projecting
onto one of the target statesPt1 = |ii〉〈ii| (i = 0, . . . , D−1). As our initial state and our unitary
transformation of equation (25) are invariant under the transformation |i〉 → |i+1〉 of the basis
states, all these projections are equally probable despite the fact that our purification procedure
does not yield a Werner state at each step of the iteration procedure. This nonlinear quantum
transformation is followed by a local twirling transformation (compare with equation (24))
which is based on the discrete Fourier transformation of equation (25). Thus, after the first
step of our purification procedure we are left with [p1 ×Ninitial/2] purified two-qudit systems.
Thereby p1 denotes the probability of obtaining the target qudit in one of its basis states |i〉
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Figure 5. Dependence of the efficiency η (compare with equation (29)) on the initial fidelity F for
a fixed final fidelity Ffinal = 1 − 10−5 and for dimension D = 6. The solid curve gives the results
of the proposed method and the dashed curve the results of Horodecki’s protocol.
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Figure 6. Dependence of the efficiency η (compare with equation (29)) on the initial fidelity F for
a fixed final fidelity Ffinal = 1 − 10−7 and for dimension D = 9. The solid curve gives the results
of the proposed method and the dashed curve the results of Horodecki’s protocol.
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(i = 0, . . . , D − 1). Continuing this iteration procedure after n iterations the number of
remaining purified two-qudit systems is given by

Npurified = Ninitial

2n

n∏
l=1

pl. (29)

Accordingly, the efficiency η of this purification process is given by η = Npurified/Ninitial.
In figures 5 and 6 the dependence of the efficiency η on the initial fidelity of the Werner

state F (compare with equation (20)) is depicted for dimensionsD = 6 and 9 and for different
values of the final fidelity Ffinal = 〈ψ00|σ cfinal|ψ00〉. From these figures it is apparent that
our protocol requires fewer steps than the protocol of Horodecki et al [14]. Furthermore,
numerical studies also indicate that in both purification protocols the success probabilities pl
entering equation (29) are comparable in magnitude. Thus, the overall better efficiency of our
purification protocol which is apparent from figures 5 and 6 reflects the fewer number of steps
nwhich are required for achieving a given final accuracy. With increasing accuracy of the final
purified state this difference in efficiencies between both purification protocols becomes larger
and larger. From figures 5 and 6 one also notices a second characteristic feature which has been
found also in other numerical simulations. For a given value of the final fidelity the differences
between the efficiencies of both protocols becomes smaller with increasing dimension D of
the Hilbert space involved.

5. Conclusions

A novel purification scheme has been proposed. It is based on the iterative application
of a special class of nonlinear quantum maps and a single, local unitary transformation.
The required nonlinear quantum map can be implemented conveniently by a Hermitian
generalized quantum XOR-gate. The proposed purification scheme has several attractive
features. Firstly, it applies to arbitrary dimensional bipartite quantum systems. Secondly, it
does not require a depolarization operation at each step of the iteration procedure. In general,
such a depolarization operation is required only for the preparation of the initial Werner state.
The proposed scheme rests on a single twirling operation which is performed at each step
of the iterative purification scheme. Thirdly, the proposed procedure achieves purification
in a very efficient way. In particular, it has been demonstrated that it achieves purification
of Werner states in a more efficient way than the other known purification protocol which
has been introduced by Horodecki et al [14]. Furthermore, its almost maximal range of
convergence indicates that the employed local twirling operation which is based on a discrete
Fourier transform is a good choice. Such a transformation can be implemented easily in many
quantum systems.

The proposed purification method may also be generalized to multi-partite quantum
systems. In this context it would be particularly interesting to develop efficient purification
protocols for GHZ-like quantum states.
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