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ABSTRACT

Stabilizing quantum algorithms against external perturbations and preserving quantum coherence are main challenges
in the area of quantum information processing. In this contribution main ideas underlying a new class of recently
proposed embedded error-correcting quantum codes are discussed. These detected-jump correcting quantum codes
are capable of stabilizing distinguishable qubits against spontaneous decay provided these decay processes originate
from couplings to statistically independent reservoirs. Exploiting the classical information about which qubit has been
affected by the environment these embedded quantum codes minimize the number of required control measurements
and recovery operations as well as redundancy. Their stabilizing properties are exemplified by applying them to
Grover’s quantum search algorithm.
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1. INTRODUCTION

In order to exhibit characteristic quantum phenomena, such as quantum interference and entanglement, one has to
protect physical systems against environmental influences which tend to destroy quantum coherence. A research area
where this is particularly important is quantum information processing.!® Research in this field is motivated to a
large extent by the desire to push quantum phenomena into the macroscopic domain as far as possible in order to
be capable of exploiting these phenomena for practical purposes. Quantum error correction is an important method
for achieving this goal.

So far two main approaches have been developed for preserving coherence in quantum systems. Active quantum
error-correcting codes (QECC) use basic ideas of classical error correction, generalized to the quantum domain. For
this purpose quantum information is encoded in physical states in such a way that certain classes of errors can be
detected without affecting coherence and entanglement. For the correction of these errors an appropriate sequence
of unitary recovery operations has to be applied which is conditioned on previous control measurements. The basic
strategy of passive error-correcting schemes is different. Thereby quantum information is encoded in those quantum
states which are insensitive to a particular class of errors. Thus, perfect passive error correction does not require any
control measurement or recovery operations.

In this contribution a recently introduced® new class of error correcting quantum codes is discussed which is
capable of stabilizing distinguishable qubits against spontaneous decay. This quantum error correction method relies
on embedding an active error correcting quantum code into a passive one and simultaneously exploiting classical
information about which qubit has been affected by the environment. This embedding method leads to a significant
reduction of the number of required control measurement in comparison with purely active error correction methods.
Furthermore, by exploiting classical information about the ‘position’ of the error redundancy can be reduced sig-
nificantly in comparison with other previously proposed embedding schemes. In addition, an interesting surprising
connection between these new codes and combinatorial design theory can be established. This connection might turn
out to be particularly useful for future generalizations of these error-correcting techniques. In order to exemplify
basic stabilizing properties of this new class of error-correcting quantum codes numerical results are presented in
which it is applied to stabilizing Grover’s quantum search algorithm.® Due to their low redundancy, their simple
structure and the small number of control measurements, these new error-correcting codes are particularly relevant
for quantum computation which is based on trapped ions® or nuclear spins.”

This article is organized as follows: For the sake of completeness in Sec. 2 clementary facts about Grover’s
quantum search algorithm are recapitulated. In Sec. 3 basic ideas of quantum error correction are discussed and
in Sec. 4 the recently proposed® new class of detected-jump correcting quantum codes is introduced. Codes which




are capable of correcting one error at a time are constructed for an arbitrary even number of physical qubits and
basic properties of more general many error-correcting codes are outlined. Finally the connection between these
detected-jump correcting quantum codes and elementary notions of combinatorial design theory is indicated.

2. GROVER’S QUANTUM SEARCH ALGORITHM

Recently, several quantum algorithms have been proposed which demonstrate that characteristic quantum phenom-
ena, such as quantum interference and entanglement, may be exploited for performing computational tasks faster
than by any other classical means. Most prominent examples are the quantum algorithms of Deutsch,® Simon,”
Shor,' and Grover.!! In this section elementary notions of quantum algorithms are introduced by recapitulating
Grover’s quantum search algorithm. In this latter algorithm a particular sequence of quantum gates enables one to
find a specific item out of an unsorted database much faster than by any other known classical mean. This quantum
algorithm was already realized experimentally for a small number of qubits.'?

2.1. Quantum algorithms

A quantum algorithm consists of a sequence of unitary transformations (gates) applied on several distinguishable
two-level quantum systems (qubits). A qubit therefore is in a state |¢p) = a|0) + §|1), where [0) and [1) are the two
base states of the two level system. The combination of n qubits (quantum register) can be in a highly entangled
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To realize every possible quantum algorithm, one must be able to realize one qubit rotations and at least one
two-qubit gate, i.e. an interaction between two different qubits. A simple example for a one-qubit gate is a rotation
by =, i.e.

ity yin). (1)

al0) + BI1) = Bl0) + of1). (2)

The controlled not gate is the most frequently used two-qubit gate (CNOT or XOR). We write C'y2, where the first
qubit is the control-qubit and the second one the target qubit. The target bit is flipped depending on whether the
control bit is zero or one. Applied to the basis states of a combined two-qubit system, the CNOT has the following
effect
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2.2. Grover’s algorithm

Let us first of all consider a classical version of Grover’s search algorithm. Consider an unsorted database with N
items and a certain item zo you are searching for. As a particular example you can imagine a telephone directory
with N entries and a particular telephone number z¢ you are looking for. Furthermore, assume that you are only
given a black box for performing this data search. This black box, i.e. a so called oracle, can decide whether an item
is zo or not. Thus, in mathematical terms you are given a Boolean function

1l @=mp

with 4, denoting the Kronecker delta function. The classical oracle allows you to evaluate this Boolean function for
any element z of the database. Assuming that each application of this oracle requires one elementary step a classical
random search process will require N — 1 steps in the worst case and one step in the best possible case. Thus, for
large values of N, on the average a classical algorithm will need N/2 steps to find the item .

It has been shown by Grover!! that with the help of his quantum search algorithm this task can be performed
in O(\/N) steps with a probability arbitrarily close to unity. Thereby one exploits the phenomenon of quantum
interference. The basic idea of this quantum algorithm is to rotate an initial reference state of the qubit system
representing the database in the direction of the searched state |zo) with the help of a unitary quantum version of
the oracle. It will become apparent from the subsequent discussion that apart from Hadamard transformations the
dynamics of this rotation are analogous to a Rabi oscillation between this initially prepared reference state and the
scarched state |zo). It has been shown that Grover’s quantum search algorithm is optima
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Figure 1. Schematic representation of the quantum oracle Uy: For f(z) = x this quantum gate reduces to a CNOT
gate; for |a) = |ag) = 1/v/2 (J0) — |1)) it results in the conditional phase inversion I, of Eq. (8) needed in Grover’s
quantum search algorithm.

In Grover’s quantum search algorithm the N = 2™ elements of the database are represented by orthogonal
states of a distinguishable m-qubit system. These orthogonal states constitute the computational basis of a quantum
computer. The state |0..0110..0) of this computational basis, for example, corresponds to the element 0..0110..0 of
the database in binary notation. The quantum oracle U; is determined completely by the Boolean function of Eq. (3)
and is represented by a quantum gate, i.e. by the unitary and hermitian transformation

Us : |z,a) = |z, f(z) @ a). (4)

Thereby |x) is an arbitrary element of the computational basis and |a) is the state of an additional ancilla qubit
whicli is discarded later. The symbol & denotes addition modulo 2. As far as complexity estimates are concerned
it is assumed that this unitary transformation requires one elementary step. This assumption is analogous to the
complexity estimate of the corresponding classical version of this search problem.

It is important to note that the elementary rotations in the direction of the searched quantum state |zo) which
are the key ingredient in Grover’s algorithm can be performed with the help of this unitary oracle. Thus such a
rotation can be performed without explicit knowledge of the state |z). Its implicit knowledge through the values
of the Boolean function f(z) is already sufficient. For large values of N it turns out that the number of elementary
rotations needed to prepare state |xo) is ()(\/N ). To implement such an elementary rotation from the initial reference
s5) = ]0...0), for example, towards the final state |zo) two different types of quantum gates are needed, namely
Hadamard gates and controlled phase inversions. However, it has been shown by Grover!! that this Hadamard
transformation can also be replaced by any other unitary one-qubit operation.

state

A Hadamard gate H®) is a unitary and hermitian one-qubit operation. It produces an equally weighted super-
position of the two basis states according to the rule

1 .
0 = 50+ 1) (5)
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A m-qubit Hadamard gate H?") is defined by the m-fold tensor product, i.e. H?") = H® & ..« H®.

The remaining quantum gates needed for the implementation of the necessary rotation are controlled phase
inversions with respect to the initial and searched states |s) = [0...0) and |z¢). A controlled phase inversion with
respect to a state |z) changes the phase of this particular state by an amount of 7 and leaves all other states
unchanged. Thus the phase inversion I, with respect to the initial state |s) is defined by

Lls) = —l|s),
Llz) = |z) (z#s). (7)

The controlled phase inversion I, with respect to the searched state |zg) is defined in an analogous way. As
state |op) is not known explicitly but only implicitly through the property f(z¢) = 1 this transformation has to be
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performed with the help of the quantum oracle. This task can be achieved by preparing the ancilla of the oracle of

Eq. (4) in state |ag) = 1/v/2(]0) — |1)). As a consequence one obtains the required properties for the phase inversion

I,,, namely
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2. Amplitude distributions resulting from the various quantum gates involved in Grover’s quantum search
case of three qubits: The quantum states which are prepared by these gates are
Is), (e) —I,H®") I, HZ™Ms), (f) —~HE ) [LH®") L, H*")|s). The
1) entering the Boolean function of Eq. (3) is assumed to be state [111).

|z, f(z) ® ag) = |2,0® ap) = 1/vV2(|z,0) — |z, 1)) = |z,a0) for x # w0,
|z, f(z) @ ao) = |2, 1 ® ag) = 1/V2(|z,1) — |2,0)) = ~|z,a0) for z = 0.

(a) |s) = [000),

One should bear in mind that this controlled phase inversion can be performed with the help of the quantum oracle
of Eq. (4) without explicit knowledge of state |zo).

Grover’s algorithm starts by preparing all i qubits of the quantum computer in the reference state s) = 10...0).
An elementary rotation in the direction of the searched state |zo) with the property f(zo) = 11is achieved by the
gate sequence

om
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In order to rotate the initial state |s) into state |zo) one has to perform a sequence of n such rotations and a final
Hadamard transformation at the end, i.e.

|f) = HQ"s). (10)

The effect of one elementary rotation () is demonstrated in Fig. 2 for the case of three qubits, i.e. m = 3. The first
Hadamard transformation H (2% prepares an equally weighted state. The subsequent quantum gate I, inverts the
amplitude of the searched state |zo) = |111). Together with the subsequent Hadamard transformation and the phase
inversion I, this gate sequence () amplifies the probability amplitude of the searched state |111). In this particular
case an additional Hadamard transformation finally prepares the quantum computer in the searched state |111) with
a probability of 0.88.

In order to determine the dependence of the ideal number of repetitions n on the number of qubits m it is
convenient to analyze the repeated application of the gate sequence Q) according to Eq. (10) in terms of the two
states |s) and |v) = H®")|zo) whose overlap is given by e = (slv) = (s|H*|zg) = 2=m/% for m qubits. It is
straightforward to show that the unitary gate sequence () preserves the subspace spanned by these two states,'t i.e.

Q< |S>>:(1—462 26)(|6> >
|v) -2 1 |v)

(11)




Figure 3. Q is a rotation in the subspace spanned by states

s) and |v).
Thus () acts like a rotation in the plane spanned by states |s) and |v). The angle of rotation is given by ¢ =
arcsin(2ey/1 — €2). After j iterations the amplitude of state |v) is given by'?

sin [(27 + 1)e]. (12)
Therefore, the optimal number n of repetitions of the gate sequence () is approximately given by
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2.3. Hamiltonian description

If the database contains many elements, i.e. N = €72 >> 1, the repeated application of the elementary rotation which
is essential for Grover’s search algorithm can be described by Hamiltonian quantum dynamics.!® The elementary
rotation () can be approximated by the relation

Q=1-7i/Hg(e) + O(?) (14)

which involves the Hamiltonian

H = 2ie (Ju){s] ~ 5o (15)

The elementary time 7 might be interpreted as the physical time required for performing the elementary rotation Q.
The Hamiltonian of Eq. (15) describes the dynamics of a quantum mechanical two level system whose degenerate
energy levels |s) and |v) are coupled by a time-independent perturbation. In lowest order of € these degenerate energy
levels are orthogonal. The resulting oscillations between these coupled energy levels are characterized by the Rabi
frequency Q = 2(s|v)/7. Correspondingly, the repeated application of the elementary rotation () can be determined
with the help of Trotter’s product formula,!” namely

Q™= (-1, - HE™) B ~H(2m))” = exp (—%HG 'TH) + O(*n). (16)
)

Thus, in the framework of this Hamiltonian description applying the elementary rotation () n times is equivalent to
a time evolution of the effective two-level quantum system over a time interval of magnitude n7. This Hamiltonian
description demonstrates that the physics behind Grover’s quantum search algorithm is the same as the physics
governing the Rabi oscillations between degenerate or resonantly coupled energy eigenstates. As the errors entering
Eq. (16) are of order O(e?n) this Hamiltonian description is applicable only as long as e*n = n/2™ <« 1. Thus for a
given size of the database it is valid only as long as the number of iterations is sufficiently small, i.e. n < 2. However,
as Grover’s search algorithm needs approximately (7v/2™ /4) steps to find the searched item the main condition which
restricts the validity of this Hamiltonian description is a large size of the database, i.e. €2 = 1/N < 1.
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Figure 4. The probability of being in state |zo) after n = t/7 iterations of Grover’s quantum search algorithm
for four qubits: the ideal dynamics according to the Hamiltonian time evolution characterized by Eqs.(15) and (16)
(dotted line); the non-ideal case of coherent errors as characterized by Egs. (15), (16) and (17) (solid line) with
detunings w;7/(v|s) = 1.35, 0.9, 1.1, 1.25.

So far we have been concentrating on the ideal dynamics of Grover’s quantum search algorithm. However, in
practical applications it is very difficult to realize this search algorithm in an ideal way. Usually the ideal dynamics are
affected by numerous perturbations. Physically one may distinguish two different kinds of errors, namely incoherent
and coherent ones. Typically incoherent perturbations originate from a coupling of the physical qubits of a quantum
computer to an uncontrollable environment. As a consequence the resulting errors are of a stochastic nature. Coherent
errors may arise from non-ideal quantum gates which lead to a unitary but non-ideal time evolution of the quantum
algorithm. A simple example of this latter type of errors are systematic detunings from resonance of the light pulses
with which the required quantum gates are realized on the physical qubits. In the Hamiltonian formulation of
Grover’s algorithm such systematic detunings may be described by a perturbing Hamiltonian of the form

m

H, = Z h,wm(:"’). (17)
=1

In Eq. (17) it has been assumed that Grover’s quantum algorithm is realized by m qubits and that the i-th qubit is
detuned with respect to the ideal transition frequency by an amount w;. The Pauli spin-operator of the 4-th qubit
is denoted a(:"'). In the presence of these systematic detunings and for a large number of qubits the dynamics of
Grover’s algorithm are described by the Hamiltonians of Eqgs.(15) and (17).

In order to obtain insight into the influence of this type of coherent errors the performance of Grover’s algorithm
under repeated applications of the elementary rotation Q is depicted in Fig. 4. The dynamics of the ideal Grover
algorithm are depicted by the dashed line for the case of three qubits, i.e. m = 3. The Rabi oscillations with
frequency € = 2(v|s)/7 are clearly visible. The solid line shows the probability of observing the quantum computer
in state |zo) in a case in which all the qubits are detuned from their ideal resonance frequency. One notices the
deviations from the ideal behaviour. Due to the coherent nature of the errors the time evolution of the non-ideal
algorithm exhibits revival phenomena.'®

3. QUANTUM ERROR CORRECTION - BASIC CONCEPTS

One of the main practical problems one has to overcome in the implementation of quantum algorithms are non-ideal
performances of quantum gates'” or random environmental influences which both tend to affect quantum coherence.
To protect quantum computation against such errors two major strategies have been pursued recently, namely active
quantum error correction®®?* and passive error avoiding quantum codes.?® 2% Both theoretical approaches to error
correction rest on the concept of redundancy which is also fundamental for classical error-correcting codes.””

3.1. Active quantum error correction

Active quantum error correction schemes may be viewed as generalizations of classical error-correcting techniques
to the quantum domain. Typically they involve a suitably chosen quantum error-correcting code (QECC) and




a sequence of quantum measurements. A non-degenerate code, which is the simplest example, has to map all
possible states which may result from arbitrary environmental influences onto orthogonal states. According to basic
postulates of quantum theory orthogonal quantum states can be distinguished and based on the results of suitable
control measurements one may restore the original quantum state by a unitary recovery operation. These control
measurements have to be designed in such a way that on the one hand it is possible to determine the characteristic
properties of the error, the so called syndrome, but on the other hand it is impossible to gain information about the
logical quantum state. Thus, consistent with this physical requirement, the orthogonal logic basis states (or code
words) |¢;) (1 = 1,...,N) of an active error-correcting code capable of correcting error operators La, Lp, ... have to
fulfill the conditions®*

{ei| L} Lles) = Aabbij. (18)

It has been shown?! that these conditions are necessary and sufficient for the existence of conditioned unitary
recovery operations which preserve quantum coherence. For i # j, for example, these conditions state that for given
perturbations L, and Ly, orthogonal code words have to remain orthogonal. Otherwise it would not be possible
to restore them again after these perturbations by a unitary recovery operation. For ¢ = j these conditions state
that all code words have to be affected by two given perturbations L, and Ly, in the same way, i.e. the right hand
side of Eq. (18) has to be independent of 7. Otherwise the perturbations would destroy quantum coherence. In the
special case of a non-degenerate quantum code the right hand side of Eq. (18) vanishes for a # b, i.e. Aap = Aadab.
The code is called degenerate if Ayp # 0 for a # b . An example of an optimal active QECC correcting arbitrary
one-qubit errors was presented by Zurek et al..?? This code needs five physical qubits for encoding one logical qubit.

If one wants to stabilize a quantum algorithm by an active QECC one has to determine the syndrome of each
error periodically after sufficiently short time intervals. This is achieved by an appropriate sequence of unitary
transformations and measurements. Conditioned on the results of these control measurements the corresponding
unitary recovery operations have to be applied sufficiently fast. Typically decreasing the time between subsequent
control measurements and recovery operations increases the success probability of the QECC. Thus, the typically
large number of required control measurements and recovery operations are a main disadvantage of active QECCs.

3.2. Passive error-avoiding quantum codes

Here the approach is different: The main idea is to encode logical information in a subspace of the relevant Hilbert
space which is not affected by the physical interactions responsible for the occurance of errors. Such a subspace is
called a decoherence free subspace (DFS).2>28 This aim is achieved by restricting oneself to degenerate eigenspaces
of the relevant error operators. In the special case of a single error operator, say E, for example, all the basis states
{|4i)} of such a DFS have to fulfill the relation

Eli) = ¢ [4). (19)
Comparison with Eq. (18) shows that error-avoiding quantum codes may be viewed as completely degenerate active
QECCs. As the eigenvalue ¢ of Eq. (19) does not depend on |1;) all states of the DFS of the general form Y, a|1);)
are affected by the error operator in the same way, i.e.

E (Z aii)) = ¢ (Z a;l1s)). (20)

As a DFS is preserved under the influence of errors this method of error correction is purely passive. There is no
need for any control measurements and recovery operations.?® For this reason, the performance of such a passive
error-avoiding code does not depend on the probability of an error. If a code is tolerant to a given error, the error
may occur arbitrary frequently. However, obviously a useful, ideal error avoiding quantum code can be constructed
only in those rare case, in which a common, sufficiently highly degenerate eigenspace of the relevant error operators
can be found.

3.3. An example of a passive error-correcting code

As an example of an error avoiding quantum code let us consider the case of coherent errors which may affect Grover’s
quantum algorithm and which can be characterized by the Hamiltonian H, of Eq. (17). In the simple case of equal




detunings, i.e. w; = ... = w,, = w, the error operator E reduces to the form

m

He=hw) o). (21)

i=1

It is easy to find highly degenerate DFSs of this error operator. All states with a fixed number of ones and zeros
constitute a degenerate eigenspace of H,.?3!  For an even number of qubits it is possible to find an error avoiding
subspace with eigenvalue ¢ = 0 so that

(He + He) |v) = Haly) (22)
for all elements |1)) of this subspace. This subspace consists of all quantum states with zero total spin. For four
qubits, for example, it is defined by the basis vectors |0011),]0101),]0110),[1001),[1010),[1100) and involves all states
with the same number of zeros and ones. Four of these states may be used as a basis for the state space of two logical
qubits. For these cigenstates the error Hamiltonian H, maps onto zero, e.g.

m=4
H,|0011) = fww > 0{?]0011) = hw(1 + 1 — 1 —1)[0011) = 0.
=1

To be able to use this code for quantum computation, also the quantum gates constituting an algorithm have to be
“encoded”. For the implementation of an algorithm on a DFS gates are required that act on the logical qubits as
universal gates. For Grover’s algorithm, for example, we have to realize a Hadamard gate and a controlled phase
inversion on the logical states. The orthogonal complement of the DFS must not be mixed with the DFS. As an
example, a Hadamard transformation H defined on the simplest possible error avoiding code consisting of |¢g) = |01)
and |e;) = |10) could be represented by the transformation

1 1
V2 V2
This is a one qubit operation in the logical space which is physically implemented by a two-qubit gate. The physical
implementation of gates acting on two logical qubits can be realized provided appropriate multi-particle interactions

are available. Recently Bacon et al.?? proposed a way of fault-tolerant computation on a DFS which is based on
two-particle interactions.

00y <L ooy; 01y < Lqrony 4+ 110y 10y s == o1y — proyy; ) 5 1), (23)

The above mentioned error avoiding code works ideal for equal detunings of all qubits from resonance. However,
in realistic situations this case is scarcely realized. For the realistic assumption of unequal detunings in general
the eigenstates of H, are non-degenerate so that it is not possible to construct a perfect error avoiding quantum
code. Therefore the practical question arises whether the presented error avoiding quantum code is still useful for
stabilizing quantum algorithms against arbitrary systematic detunings.

The dynamics of Grover’s algorithm in the presence of unequal detunings are depicted in Fig. 5. The dotted line
represents the ideal dynamics in the absence of detunings for the case of 6 qubits as evaluated from the Hamiltonian
of Eq. (15). The characteristic Rabi oscillations are clearly apparent. The corresponding dynamics for 8 qubits in
the presence of arbitrarily chosen detunings are depicted by the solid line in Fig. 5. It is apparent that in this case a
quantum search for state |zo) is not successful at all. However, as apparent from the dashed line of Fig. 5 encoding the
quantum information by the error avoiding code introduced above improves the performance considerably. Despite
the fact that this error avoiding code has not been designed for these detunings it almost succeeds in finding the
searched quantum state |2o) after a number of iterations which is close to the ideal case (compare with Eq. (13)).
Similar stability properties of error avoiding codes have been observed by Lidar et al.??

4. EMBEDDED QUANTUM CODES AND ONE ERROR DETECTED-JUMP
CORRECTING QUANTUM CODES

Passive error avoiding quantum codes have the advantage that they do not require control measurements and recovery
operations which are cumbersome to implement in practice. But this method can only be used in those rare cases in
which one can find a sufficiently highly degenerate, common eigenspace of the relevant error operators. In many cases
of practical interest such an error free subspace cannot be found. Thus, typically the best one can do is to combine
active and passive error-correcting techniques to reduce the number of control measurements and recovery operations.
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Figure 5. Probability of finding the quantum computer in the searched state |xo) after n = t/7 iterations: ideal
dynamics without detunings for 6 qubits (dotted line), with detunings and without error avoiding encoding for 6
qubits (solid line), with detunings and with error avoiding encoding using 8 physical qubits which can encode the
quantum information of 6 logical qubits (dashed line). For the latter two cases the magnitudes of the detunings w;
of the 8 qubits which determine the error operator of Eq. (17) are given by w;s with mean value @ = (v|s)/7 and a
variance of Aw = 0.3(v|s).

Furthermore, it is also desirable for such combined error-correcting quantum codes that their redundancies are as
small as possible. In this section a recently proposed class of combined quantum codes? is discussed which is capable
of stabilizing distinguishable qubits against spontaneous decay processes. This quantum error correction method
relies on embedding an active error-correcting quantum code into a DFS and exploiting classical information about
which qubit has been affected by the environment. This embedding method implies a significant reduction of the
number of required control measurements in comparison with purely active error-correcting methods. Furthermore,
exploiting the classically available information about the ‘position’ of the error also redundancy can be reduced
significantly in comparison with other previously proposed embedded error-correcting schemes.

4.1. Description of spontaneous emission

In order to explain the main ideas let us consider n distinguishable qubits which are perturbed by statistically
independent reservoirs inducing spontaneous decay processes. The assumption of statistical independence of the
reservoirs is justified provided the characteristic wave lengths of the spontaneously emitted photons or phonons are
small in comparison with distances between adjacent qubits. Within the Markov approximation the time evolution
of the density operator p of these n qubits can be described by a master equation®?

p(t) = -

(5, 0] + 5 S {{Ls (L] + [Laplt), L) 24)

Thereby the Lindblad operator L, = y/kq |0)(1]o characterizes spontaneous decay of qubit a from its excited state
[1), into its stable state |0), with rate . The coherent part of the n-qubit dynamics is described by the Hamiltonian
H. Such a Hamiltonian description is also possible for some quantum algorithms as described in Sec. 2.3. In the
case of radiative damping of quantum optical systems the derivation of Eq. (24) involves the Born- and the Markov
approximations which are typically well fulfilled. These approximations rest on the assumption of weak couplings
hetween resonantly excited two-level systems and the vacuum modes of the electromagnetic field and a sufficiently
short correlation time of theses vacuum modes.?*3®  In solid state devices where spontancous decay processes
typically originate from couplings to phononic reservoirs this Markov approximation is usually only applicable for
sufficiently high temperatures of the reservoirs.3

A formal solution of Eq. (24) is given by®!

oo ot by by
p(t) = Z Z /0 dtN/O dtNﬁl.../ diy |(tlivan, . tran)) (W (ttnan, ..., tiar)]. (25)

N=0ai,...,an

0




Thus, if the initial state is pure, for example, the density operator p(t) can be unravelled into a statistical ensemble
of the pure states

[(tlEnan, ... tiay)) = c_i[H(”*tN)]/nL“Ne*i[f{(t“’_tN‘l)]/h . .e_i[mi'rtl)]/n[ml(’f“kn‘/nh/)(f =0)). (26)

Each of these unnormalized states characterizes the n-qubit system conditioned on the observation of N quantum
jumps of qubits ay, ..., ay which take place at times ¢t; < ... < tx. The action of these quantum jumps is represented
by the Lindblad operators Ly, ...La,. The squared norm of the quantum state [¢)(t[tyan, ., traq)) defines the
probability with which the associated quantum trajectory (tyav,...,txan) contributes to p(t). In this quantum
jump representation the conditional time evolution between two successive quantum jumps is determined by the
non-hermitian effective Hamiltonian H = H —i(h/2) S."_, LI La.

4.2. One detected-jump correcting codes

The dynamics described by Eq. (24) can be stabilized against spontaneous decay in an effective way by an embedded
quantum code. For this purpose one constructs first of all a DFS which stabilizes the conditional time evolution
between two successive quantum jumps passively. In a second step one inverts the occuring quantum jumps with the
help of an active QECC which is constructed within this DFS.25-26:28:35.37  For this stabilization it is necessary to
observe the n-qubit system continuously. Nevertheless, it is not necessary to apply additional gates to measure the
error syndrome. What is required is a space resolved detection of the spontaneously emitted photons or phonons.

Whenever a quantum jump occurs one has to apply the appropriate unitary recovery operation within a time
interval short in comparison with the decay times and with the coherent evolution times of the system.?” In contrast
to other purely active ways of error correction this combination of a passive and an active quantum code guarantees
perfect error correction even if the time between successive recovery operations does not tend to zero provided
that each quantum jump is detected with a probability of unity and that the required recovery operation is applied
instantaneously. However, similar assumptions are also required for other active QECC schemes in addition to a high
frequency of recovery operations. For an embedded quantum code the mean number of required recovery operations
equals the number of spontaneous decay events which is determined by the spontaneous decay rates o of the qubits.

Recently, Plenio et al.?” have presented such a one error-correcting embedded quantum code which applies to
the important special case of equal decay rates of all the qubits. Their active QECC constructed within their DFS
is capable of correcting spontaneous decay affecting a single logical qubit which is encoded by eight physical ones.
Being consistent with the conditions of Eq. (18) this embedded error-correcting quantum code does not require any
knowledge about which qubit is affected by the environment. However, its redundancy is rather large and it is not
clear how to generalize their code to an arbitrary number of logical qubits.

The redundancy of embedded quantum codes can be reduced significantly by systematically taking into account
the available information on which qubit has been affected by a quantum jump. If the qubits of a quantum computer
couple to independent reservoirs both information about the jump time, say ¢, and about the jump ‘position’, say
a, are available. Therefore, it is natural to exploit this additional information about the ‘position” of a quantum
jump for more efficient encoding. If one can determine not only the jump time ¢ but also the jump position a by
continuously monitoring the n-qubit quantum system, one has to correct the error operator L, only for this particular
value of a. As a consequence the corresponding active QECC has to fulfill Eqs.(18) for a = 8 only. The violation
of conditions (18) for a # 3 offers the possibility to construct embedded quantum codes with a significantly smaller
degree of redundancy.

As an example, let us consider the important special case of equal spontaneous decay rates of all the qubits, i.e.
ko = kg = . If the number of physical qubits n is even, the DFS of maximal dimension with respect to the conditional
time evolution between successive quantum jumps is formed by all possible n-particle quantum states with (n/2)
excited and (n/2) unexcited qubits. This DFS is eigenspace of the operator L} L, with eigenvalue x(n/2) and
with dimension d = (,,L"/lz) = n!/[(n/2)!]>. Thus, the conditional time evolution between successive quantum jumps
is not perturbed by the reservoirs. Furthermore, for a given number of physical qubits n the dimension of this DFS
is maximal so that the degree of redundancy is minimal. For the correction of quantum jumps we have to develop
an active QECC within this DFS. Thereby we want to exploit the fact that we have to correct quantum jumps only
which take place at a known ‘position’, say a. Let us start with the simplest possible case, namely the encoding of
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Figure 6. Network of quantum gates representing the sequence of unitary transformations recovering the state after
a spontancous emission. Here the second qubit of a four qubit register in a superposition of the codewords (27) is
emitting a photon. After the detection of the emission, the sequence myCaqCo3Co 7o Ho is applied. The control of
a CNOT is depicted by e, whereas ¢ indicates that the value of the control qubit is added modulo 2 to the target
qubit.

a single logical qubit with states |0)7, and |1)z. The following four-qubit encoding will do:

o) = |1100) + |0011) _|0110) + [1001)
i = 2 - V2

This encoding is formed by complementary pairs within this DFS. These complementary pairs involve an excited
state at any ‘position’. Provided the error ‘position’ « is known this encoding represents an active QECC with
error distance t = 1 formed by basis states of the DFS with dimension d = 6. This encoding violates Eqs. (18)
for a # B as (co|LiLsler) = 1/2 (0010[0010) = 1/2 and (co L§L1|cl> = 1/2 (0001|0001) = 1/2, for example.
Provided a quantum jump L, has occured at ‘position’ a immediate application of the unitary recovery operator
R, = W(Y(HH#“, Cop)TaH, restores the unperturbed quantum state again. Thereby 7., H,, and C,p represent
a m-rotation, a Hadamard transformation of qubit a and a conditional C NOT operation with control and target
qubits o and 3. Fig. 6 shows the recovery of a emission of the second qubit in a four qubit code. On the code space
formed by all possible linear combinations of the logical qubits of Eq. (27) R, is the left-inverse of the quantum jump
operator L,. For the construction of such a left-inverse unitary recovery operator R, the orthogonal code words |c;)
have to fulfill the necessary and sufficient conditions

0} — . (27)

1), — |e1)

(el LL Ealeyh = Kadiy. (28)

These conditions reflect the fact the the invertibility conditions of Eq. (18) have to be fulfilled for a = 8 only. It
should also be mentioned that it is also possible to encode a third logical quantum state, say |2), within the above
mentioned DFS, ie. [2), — |c) = %([1010) +|0101)). Thus, the three logical quantum states |co),|c1),|c2)
involving 4 physical qubits with two of them being excited form a one-error detected-jump correcting quantum code
which is denoted by 1-JC(4,2,3).

It is straightforward to generalize this construction to larger numbers of logical qubits. In analogy to Eq. (27)
one starts from an even number n of physical qubits and from the corresponding DFS of dimension d = ("'/’2)
This DFS is formed by all possible n-qubit states with (n/2) excited and (n/2) unexcited qubits. Within this DFS
one forms the logical states of the active QECC from all possible equally weighted complementary pairs of states.
The resulting embedded quantum code can correct single-qubit errors up to an error distance ¢ = 1. If one is able
to detect the error position with a probability of unity and to apply the recovery operation instantaneously, the
given code is perfect as long as the time between two successive jumps is nonzero. Under these conditions it works
perfect provided all qubits decay with the same rate. For unequal decay rates stabilizing properties of a one error
detected-jump correcting quantum code with six physical qubits are apparent from Fig. 7 where this code is used to
stabilize Grover’s algorithm. The one-error detected-jump correcting quantum code still succeeds almost perfectly
in finding the final state |zo).
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Figure 7. Time evolution of Grovers algorithm as described by Eq. (24) for decay rates randomly selected from a
Gaussian ensemble with mean decay rate & = (v |s)/7 and a variance Ax = (2/5) ®: with an embedded code using
6 qubits to encode 3 logical qubits (upper curve); 3 qubits without encoding (lower curve).

The constructed one-error correcting quantum codes are optimal in the sense that for a given number n of physical
qubits the number of logical qubit states [ is maximal and of magnitude [ = (”'/L;_ll) = %(”'/"2). This can be shown
by the following dimension estimate. For a given number n of physical qubits, & of which are excited, and a given
number ¢ of errors at known ‘positions’ ay, ..., a; the number of logical states [ is bounded by the inequality [ < ('A‘::)
This upper bound originates from the fact that after ¢ quantum jumps ¢ qubits are in state |0) at known ‘positions’.
As the logical states have to be recovered from these latter states by a unitary transformation the dimension of
the corresponding Hilbert space, namely ('k’:;), also determines the maximum possible number of orthogonal logical
states. Using the basic symmetry property of binomial coefficients the maximum number of logical qubits is achieved
for k = [n/2]. Thereby [z] denotes the largest integer smaller or equal to z. So we arrive at the final result that for

t = 1 the maximum number of logical quantum states is given by [ = (,L'/L_j_ll) =(1/2) (n'/'z)

Due to their simplicity these one-error detected-jump correcting quantum codes are suited well for stabilizing
quantum algorithms. There is no need for control measurements determining the error syndrome. The required error
position and jump time are obtained by monitoring qubits continuously. In the case of radiative decay, for example,
the spontaneously emitted photons may be detected by photodetection or one may measure the resulting recoil
acting on the physical qubit. In particular, this latter method may also be applicable to phononic decay processes.
These aspects and the minimal redundancy of these quantum codes make them particularly attractive for stabilizing
quantum computers which are based on arrays of trapped ions® or nuclear spins.”

4.3. Multiple-jump codes and error-designs

The constructed one-error detected-jump correcting quantum codes can be generalized to an arbitrary number ¢ of
errors and an arbitrary number of qubits.* The resulting quantum codes are capable of correcting up to ¢ errors
simultaneously. Correspondingly, we define a t-detected-jump correcting quantum code t — JC(n, k, ) by a set of [
orthogonal code words {|¢;),i = 1,...,l} formed by linear superpositions of n-qubit states each of which involves k
excited and n — k unexcited states. Analogous to Eqs.(28) these code words have to fulfill the conditions

(¢i|LiLe

cj) = Nedij (29)

which are sufficient and necessary for the existence of unitary recovery operations. Thereby the error operator Le de-
notes an arbitrary product of Lindblad operators, say Lq,, ...Lq, , corresponding to a jump pattern e = (g, ..., ) of
length m. Eqs. (29) have to be fulfilled for all possible jump patters e of length m not greater than t. According to this
terminology our previously constructed optimal one-error correcting codes are of the type 1 —.J C(n,n/2,(1/2) (”’/'_,))
with n being even. Furthermore, our previous dimensional estimate implies that t-detected-jump correcting quantum

codes of the type t — JC(n,n/2, (,L'/L._,_it)) would be optimal.

A general method for constructing ¢ — JC(n, k,1) codes with ¢ > 2 is not known at present. However, for code-
words consisting of linear superpositions of quantum states with equal amplitudes one can establish an illuminating
connection with combinatorial design theory.®®39 This link to this well developed area of discrete mathematics is
expected to be particularly fruitful for the further exploration of general ¢ — JC(n, k,l)-codes. In order to exhibit
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Figure 9. Partition of blocks defining the 2 — JC'(9, 3, 3)-code.

basic ideas of this connection let us reconsider the previously introduced optimal 1 — JC'(4,2,3)-code as a simple
example. The set of the three code words |co),|c1), [¢2) can be represented graphically by the connected diagram
depicted in Fig. 8. Each point of this diagram is associated with a qubit and two connected points, i.e. a block,
indicates that these two qubits are in the excited state |1). Within the framework of finite geometry this connected
diagram forms an affine finite plane over a binary field. In this context the six blocks of Fig. 8 represent lines, i.e.
one dimensional subspaces of this geometry. The three code words |cp), |c1), [c2) correspond to the three possible
disjoint pairs of blocks, i.e. to the three possible parallel pairs of lines. An example of a 2 — JC(9, 3, 3)-code which
is constructed with the help of this analogy by using known results of design theory®® is depicted in Fig. 9.

Summary

A new kind of embedded quantum codes? has been discussed which is capable of stabilizing distinguishable qubits
against spontaneous decay. Being an embedded code it combines advantages of active QECCs and of passive quan-
tum error correction. In particular, the mean number of required recovery operations equals the mean number of
spontaneous decay events and the dynamics between successive quantum jumps are stabilized passively. Further-
more, by exploiting information about the error position the redundancy of these quantum codes is significantly
smaller than the one of previously proposed embedded quantum codes. Numerical simulations demonstrate that
these quantum codes work well also in cases where the distinguishable qubits decay spontaneously with unequal
rates. Due to their minimal redundancy the constructed optimal one-error detected-jump correcting quantum codes
are particularly relevant for stabilizing quantum computers which are based on arrays of trapped ions® or nuclear
spins.”  The discussed connection with combinatorial design theory may turn out to be particularly useful for the
further exploration of many-error detected-jump correcting quantum codes.
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